Advertisement
Review Article| Volume 160, ISSUE 1, P16-25, September 18, 1998

Download started.

Ok

Glucocorticosteroid therapy for multiple sclerosis: A critical review

      Abstract

      Controversy remains as to the efficacy, route of administration and dose of glucocorticosteroid (GCS) in multiple sclerosis (MS) therapy. With the recent approval of new disease modifying treatments and increasing interest in cost-benefit assessments, it is timely to critically consider their role in MS therapeutics. In this paper we review our current understanding of the cellular and molecular mechanisms of action of GCS as they relate to the postulated pathophysiology of MS. We also critically review the use of glucocorticosteroid therapy to: (1) improve recovery from exacerbations of MS, (2) delay the onset of MS in patients who experience a first episode of monosymptomatic optic neuritis, and (3) delay the time to onset of sustained progression of disability in patients with clinically definite MS.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abbruzzese G
        • Gandolfo C
        • Loeb C
        Bolus methylprednisolone versus ACTH in the treatment of multiple sclerosis.
        Ital. J. Neurol. Sci. 1983; 4: 169-172
        • Adcock I.M
        • Brown C.R
        • Gelder C.M
        • et al.
        Effects of glucocorticoids on transcription factor activation in human peripheral blood mononuclear cells.
        Am. J. Physiol. 1995; 268: C331-C338
        • Al-Habet S.M.H
        • Rogers J.H.J
        Methylprednisolone pharmacokinetics after intravenous and oral administration.
        Br. J. Clin. Pharmacol. 1989; 27: 285-290
        • Alam S.M
        • Kyriakides T
        • Lawden M
        • et al.
        Methylprednisolone in multiple sclerosis: a comparison of oral with intravenous therapy at equivalent high dose.
        J. Neurol. Neurosurg. Psychiatry. 1993; 56: 1219-1220
        • Almawi W.Y
        • Beyhum H.W
        • Rahme A.A
        • et al.
        Regulation of cytokine and cytokine receptor expression by glucocorticoids.
        J. Leukocyte Biol. 1996; 60: 563-572
        • Amano Y
        • Lee S.W
        • Allison A.C
        Inhibition by glucocorticoids of the formation of interleukin-1 alpha, interleukin-1 beta, and interleukin-6: mediation by decreased mRNA stability.
        Mol. Pharmacol. 1993; 43: 176-182
        • Andersson P.-B
        • Waubant E
        • Goodkin D.E
        How should we proceed with disease modifying treatments for multiple sclerosis?.
        Lancet. 1997; 349: 586-587
        • AyanlarBatuman O
        • Ferrero A.P
        • Diaz A
        • et al.
        Regulation of TGF beta 1 gene expression by glucocorticoids in normal human T lymphocytes.
        J. Clin. Invest. 1989; 88: 1574-1580
        • Barkof R
        • Hommes O.R
        • Scheltens P
        • et al.
        Quantitative MRI changes in gadolinium-DTPA enhancement after high-dose intravenous methylprednisolone in multiple sclerosis.
        Neurology. 1991; 41: 1219-1222
        • Barnes M.P
        • Bateman D.E
        • Cleland P.G
        • et al.
        Intravenous methylprednisolone for multiple sclerosis in relapse.
        J. Neurol. Neurosurg. Psychiatry. 1985; 48: 157-159
        • Barnes D
        • Hughes R.A.C
        • Morris R
        • et al.
        Randomised trial of oral and intravenous methylprednisolone in acute relapses of multiple sclerosis.
        Lancet. 1997; 349: 902-906
        • Barnes P.J
        • Adcock I
        Anti-inflammatory actions of steroids: molecular mechanisms.
        Trends Pharmacol. Sci. 1993; 14: 436-441
        • Baumhefner R.W
        • Tourtellotte W.W
        • Syndulko K
        • et al.
        Multiple sclerosis intra-blood–brain-barrier IgG synthesis: effect of pulse intravenous and intrathecal corticosteroids.
        Ital. J. Neurol. Sci. 1989; 10: 19-32
        • Beck R.W
        • Cleary P.A
        • Anderson M.J
        • et al.
        A randomised controlled trial of corticosteroids in the treatment of acute optic neuritis.
        New Engl. J. Med. 1992; 326: 581-588
        • Beck R.W
        The Optic Neuritis Treatment Trial: three year follow-up results.
        Arch. Opthalmol. 1995; 113: 136-137
        • Beck R.W
        • Cleary P.A
        • Trobe J
        • et al.
        The effect of corticosteroids for acute optic neuritis on the subsequent development of multiple sclerosis.
        New Eng. J. Med. 1993; 329: 1764-1769
        • Becker J
        • Grasso R.J
        Suppression of phagocytosis by dexamethasone in macrophage cultures: inability of arachidonic acid, indomethacin and nordihydroguaiaretic acid to reverse the inhibitory response mediated by a steroid inducible factor.
        Int. J. Immunopharmacol. 1985; 7: 839-847
        • Berg J.M
        DNA binding specificity of steroid receptors.
        Cell. 1989; 57: 1065-1068
        • Bowden A.N
        • Bowden P.M.A
        • Friedman A.I
        • et al.
        A trial of corticotrophin gelatin injection in acute optic neuritis.
        J. Neurol. Neurosurg. Psychiatry. 1974; 37: 869-873
        • Boumpas D.T
        • Paliogianni F
        • Anastassiou E.D
        • et al.
        Glucocorticosteroid action on the immune system: molecular and cellular aspects.
        Clin. Exp. Rheumatol. 1991; 9: 4113-4423
        • Brenner T
        • Brocke S
        • Szafer F
        • et al.
        Inhibition of nitric oxide synthase for treatment of experimental autoimmune encephalomyelitis.
        J. Immunol. 1997; 158: 2940-2946
        • Brosnan C.F
        • Raine C.S
        Mechanisms of immune injury in multiple sclerosis.
        Brain Pathol. 1996; 6: 243-257
        • Burnham J.A
        • Wright R.R
        • Dreisbach J
        • et al.
        The effect of high-dose steroids on MRI gadolinium enhancement in acute demyelinating lesions.
        Neurology. 1991; 412: 1349-1354
        • Butler W.T
        Corticosteroids and immunoglobin synthesis.
        Transplant. Proc. 1975; VII: 49-53
        • Cannella B
        • Raine C.S
        The adhesion molecule and cytokine profile of multiple sclerosis lesions.
        Ann. Neurol. 1995; 37: 424-435
        • Chao C.C
        • Hu S
        • Close K
        • et al.
        Cytokine release from microglia: differential inhibition by pentoxifylline and dexamethasone.
        J. Infect. Dis. 1992; 166: 847-853
        • Cronstein B.N
        • Kimmel S.C
        • Levin R.I
        • et al.
        A mechanism for the anti-inflammatory effects of corticosteroid: the glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial–leukocyte adhesion molecule-1 and intercellular adhesion molecule-1.
        Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 9991-9995
        • Defer G.-L
        • Barre J
        • Ledudal P
        • Tillement J.-P
        • Degos J.-D
        Methylprednisolone infusion during acute exacerbation of MS: plasma and CSF concentrations.
        Eur. Neurol. 1995; 35: 143-148
        • Durelli L
        • Cocito D
        • Riccio A
        • et al.
        Gusmaroli, Bergamini L., High dose intravenous methylprednisolone in the treatment of multiple sclerosis: clinical-immunologic correlations.
        Neurology. 1986; 36: 238-243
        • Durelli L
        • Poccardi G
        • Cavallo R
        CD8+ high CD11b+ low T cells (T suppressor-effectors) in multiple sclerosis cerebrospinal fluid are increased during high dose corticosteroid treatment.
        J. Neuroimmunol. 1991; 31: 221-228
        • Fauci A.S
        • Dale D.C
        The effect of in vivo hydrocortisone on subpopulations of human lymphocytes.
        J. Clin. Invest. 1974; 53: 240-246
        • Fauci A.S
        Mechanisms of corticosteroid action on lymphocyte subpopulations II. Differential effects of in vitro hydrocortisone, prednisone and dexamethasone on in vitro expression of lymphocyte function.
        Clin. Exp. Immunol. 1976; 24: 54-62
        • Flower R.J
        Eleventh Gaddum memorial lecture. Lipocortin and the mechanism of action of the glucocorticoids.
        Br. J. Pharmacol. 1988; 94: 987-1015
        • Fries L.F
        • Brickman C.M
        • Frank M.M
        Monocyte receptors for the Fc portion of IgG increase in number in autoimmune haemolytic anaemia and other haemolytic states and are decreased by glucocorticoid therapy.
        J. Immunol. 1983; 131: 1240-1245
        • Ganter S
        • Northoff H
        • Mannel D
        • et al.
        Growth control of cultured microglia.
        J. Neurosci. Res. 1992; 33: 218-230
        • Goodin D.S
        Corticosteroids and optic neuritis [letter].
        Neurology. 1993; 43: 632-633
        • Goodkin D.E
        • Rudick R.A
        • Kinkel R
        • et al.
        Corticosteroids and optic neuritis [letter].
        Neurology. 1993; 43: 631-632
        • Grabstein K
        • Dower S
        • Gillis S
        • et al.
        Expression of interleukin 2, interferon-gamma, and the IL- 2 receptor by human peripheral blood lymphocytes.
        J. Immunol. 1986; 136: 4503-4508
        • Guyre P.M
        • Girard M.T
        • Morganelli P.M
        • et al.
        Glucocorticoid effects on the production and actions of immune cytokines.
        J. Steroid Biochem. 1988; 30: 89-93
        • Jacobs L.D
        • Cookfair D.L
        • Rudick R.A
        • et al.
        Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis.
        Ann. Neurol. 1996; 39: 285-294
        • Johnson K
        • Brooks B.R
        • Cohen J.A
        Copolymer 1 reduces the relapse rate and improves disability in relapsing remitting multiple sclerosis: results of a Phase III multicenter double blind placebo controlled trial.
        Neurology. 1995; 45: 1268-1276
        • Kern J.A
        • Lamb R.J
        • Reed J.C
        • et al.
        Dexamethasone inhibition of interleukin 1 beta production by human monocytes. Post-transcriptional mechanisms.
        J. Clin. Invest. 1988; 81: 237-244
        • Kiefer R
        • Kreutzberg G.W
        Effects of dexamethasone on microglial activation in vivo: selective downregulation of major histocompatibility complex class II expression in regenerating facial nucleus.
        J. Neuroimmunol. 1991; 34: 99-108
        • Kirk P
        • Compston A
        The effect of methylprednisolone on lymphocyte phenotype and function in patients with multiple sclerosis.
        J. Neuroimmunol. 1990; 26: 1-8
        • Kupersmith M.J
        • Kaufman D.O
        • Paty D.W
        • et al.
        Megadose corticosteroids in multiple sclerosis.
        Neurology. 1994; 44: 1-4
        • Kuroda Y
        • Shimamoto Y
        Human tumor necrosis factor-alpha augments experimental allergic encephalomyelitis in rats.
        J. Neuroimmunol. 1991; 34: 159-164
        • Kurtzke J.F
        On the evaluation of disability in multiple sclerosis.
        Neurology. 1961; 2: 686-694
        • La Mantia L
        • Eoli M
        • Milanese C
        Double blind trial of dexamethasone versus methylprednisolone in multiple sclerosis acute relapses.
        Eur. Neurol. 1994; 34: 199-203
        • Loughlin A.J
        • Woodroofe M.N
        • Cuzner M.L
        Regulation of Fc receptor and major histocompatibility complex antigen expression on isolated rat microglia by tumour necrosis factor, interleukin-1 and lipopolysaccharide: effects on interferon-gamma induced activation.
        Immunology. 1992; 75: 170-175
        • Lyons P.R
        • Newman P.K
        • Saunders M
        Methylprednisolone therapy in multiple sclerosis: a profile of adverse effects.
        J. Neurol. Neurosurg. Psychiatry. 1988; 51: 285-287
        • Mancuso F
        • Flower R.J
        • Perrett M
        Leukocyte transmigration, but not rolling or adhesion, is selectively inhibited by dexamethasone in the hamster post capillary venule.
        J. Immunol. 1995; 155: 377-386
        • Millar J.H.D
        • Vas C.J
        • Noronha M.J
        • et al.
        Long term treatment of multiple sclerosis with corticotrophin.
        Lancet. 1967; 2: 429-431
        • Miller H
        • Newell D.J
        • Ridley A
        Multiple sclerosis trials of maintenance treatment with prednisolone and soluble aspirin.
        Lancet. 1961; 1: 127-129
        • Milligan N.M
        • Newcombe R
        • Compston D.A.S
        A double-blind controlled trial of high dose methylprednisolone in patients with multiple sclerosis: 1. Clinical effects.
        J. Neurol. Neurosurg. Psychiatry. 1987; 50: 511-516
        • Muller-Ladner U
        • Jones J.L
        • Wetsel R.A
        • et al.
        Enhanced expression of chemotactic receptors in multiple sclerosis lesions.
        J. Neurol. Sci. 1996; 144: 135-141
      1. Myers LW. Treatment of multiple sclerosis with ACTH and corticosteroids. In: Rudick R, Goodkin DE, editors. Multiple sclerosis. New York: Springer Verlag, 1992:135–56.

        • Nieves J
        • Cosman F
        • Herbert J
        • et al.
        High prevalence of vitamin D deficiency and reduced bone mass in multiple sclerosis.
        Neurology. 1994; 44: 1687-1692
        • Noseworthy J.H
        • Ebers G.C
        • Vandervoort M.K
        • et al.
        The impact of blinding on the results of a randomised, placebo controlled multiple sclerosis clinical trial.
        Neurology. 1994; 44: 16-20
      2. Ontjes D. Adrenocorticosteroids, corticotropin releasing hormone and anti-adrenal drugs. In: Munson PL, Minelle RA, Breese GR, editors. Principles of pharmacology. New York: Chapman and Hall, 1995:749–89.

        • Panitch HS
        • Bever AP
        Clinical trials of interferons in MS. What have we learned?.
        J. Neuroimmunol. 1993; 46: 155-164
        • Parillo J.E
        • Fauci A.S
        Comparison of the effector cells in human cellular cytotoxicity and antibody-dependent cellular cytotoxicity: differential sensitivity of effector cells in vivo and in vitro to corticosteroids.
        Scand. J. Immunol. 1978; 8: 99-107
        • Radomski M.W
        • Palmer R.M.J
        • Moncada S
        Glucocorticoids inhibit the expression of an inducible but not the constitutive nitric oxide synthase in vascular endothelial cells.
        Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 10043-10049
        • Rawson M.D
        • Liversedge L.A
        Treatment of retrobulbar neuritis with corticotrophin.
        Lancet. 1969; 2: 222
        • Ray A
        • LaForge K.S
        • Sehgal P.B
        On the mechanism for efficient repression of the interleukin-6 promoter by glucocorticoids: enhancer, TATA box, and RNA start site (Inr motif) occlusion.
        Mol. Cell. Biol. 1990; 10: 5736-5746
        • Renold A
        • Jenkins D
        • Forsham P.H
        • et al.
        The use of intravenous ACTH: a study in quantitative adrenocortical stimulation.
        J. Clin. Endocrinol. Metab. 1952; 12: 763-797
        • Rinehart J.J
        • Sagone A.L
        • Balcerzak S.P
        Effects of corticosteroid therapy in human monocyte function.
        New Engl. J. Med. 1975; 292: 236-241
        • Rinne U.K
        • Sonninen V
        • Tuovinen T
        Corticotrophin treatment in multiple sclerosis.
        Acta Neurol. Scand. 1968; 44: 207-218
        • Rose A.S
        • Kuzma J.W
        • Kurtzke J.F
        • et al.
        Cooperative study in the evaluation of therapy in multiple sclerosis. ACTH vs placebo-final report.
        Neurology. 1970; 20: 1-59
        • Rosenberg G.A
        • Dencoff B.S
        • Correa N
        • et al.
        Effect of steroids on CSF matrix metalloproteinases in multiple sclerosis: relation to blood–brain-barrier injury.
        Neurology. 1996; 46: 1626-1632
        • Ruddle N.H
        • Bergman C.M
        • McGrath K.M
        • et al.
        An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis.
        J. Exp. Med. 1990; 172: 1193-2000
        • Schreiber A.D
        • Parson J
        • McDermott P
        • et al.
        Effect of corticosteroids on the human monocyte IgG and complement receptors.
        J. Clin. Invest. 1975; 56: 1189-1197
        • Schwid S.R
        • Goodman A.D
        • Puzas J.E
        • et al.
        Sporadic corticosteroid pulses and osteoporosis in multiple sclerosis.
        Arch. Neurol. 1996; 53: 753-757
        • Selmaj K
        • Raine C.S
        Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro.
        Ann. Neurol. 1988; 23: 339-346
        • Sharief M.K
        • Hentges R
        Association between TNF alpha and disease progression in patients with multiple sclerosis.
        New Engl. J. Med. 1991; 325: 467-472
        • Silberberg DH
        Corticosteroids and optic neuritis.
        New Engl. J. Med. 1993; 329: 1808-1810
        • Stevens D.B
        • Gould K.E
        • Swanborg R.H
        Transforming growth factor-beta 1 inhibits tumor necrosis factor-alpha/lymphotoxin production and adoptive transfer of disease by effector cells of autoimmune encephalomyelitis.
        J. Neuroimmunol. 1994; 51: 77-83
      3. The IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing remitting multiple sclerosis. I. Clinical results of a multicenter randomised double-blind, placebo-controlled trial. Neurology 1993;43:655–61.

        • Thompson A.J
        • Kennard C
        • Swash M
        • et al.
        Relative efficacy of intravenous myethylprednisolone and ACTH in the treatment of acute relapse in MS.
        Neurology. 1989; 39: 969-971
        • Tourtellotte WW
        • Baumhefner RW
        • Potvin CP
        • et al.
        Multiple sclerosis de novo CNS Ig G synthesis: effect of ACTH and corticosteroids.
        Neurology. 1930; 1980: 1155-1162
        • Tourtellotte W.W
        • Haerer A.F
        Use of an oral corticosteroid in the treatment of multiple sclerosis.
        Arch. Neurol. 1965; 12: 536-545
        • Troiano R
        • Hafstein M
        • Ruderman M
        • et al.
        Effect of high dose intravenous steroid administration on contrast enhancing computed tomographic scan lesions in multiple sclerosis.
        Ann. Neurol. 1984; 15: 257-263
        • Troiano R.A
        • Hafstein M.P
        • Zito G
        • et al.
        The effect of oral corticosteroid dosage on CT enhancing multiple sclerosis plaques.
        J. Neurol. Sci. 1985; 70: 67-72
        • Troiano R.A
        • Cook S.D
        • Cowling P.C
        Steroid therapy in multiple sclerosis. Point of view.
        Arch. Neurol. 1987; 44: 803-807
        • Troiano R.A
        • Jotkowitz A
        • Cook S
        • et al.
        Rate and types of fractures in corticosteroid-treated multiple sclerosis patients.
        Neurology. 1992; 42: 1389-1391
        • Weinshenker B.G
        The natural history of multiple sclerosis.
        Neurol. Clin. 1995; 13: 119-146
      4. Weiss W, Stadlan EM. Design and statistical issues related to testing experimental therapy in multiples sclerosis. In: Goodkin DE, Rudick RA, editors. Treatment of multiple sclerosis. Trial design, results and future perspectives. New York: Springer Verlag, 1992:91–122.

        • Werb Z
        Biochemical actions of glucocorticoids on macrophages in culture. Specific inhibition of elastase, collagenase and plasminogen activator secretion and effects on other metabolic functions.
        J. Exp. Med. 1978; 147: 1695-1712
        • Williams T.J
        • Yarwood H
        Effect of glucocorticosteroids on microvascular permeability.
        Am. Rev. Respir. Dis. 1990; 141: S39-S43
      5. Wray S. Optic neuritis. In: Raine CS, McFarland HF, Tourtellotte W, editors. Multiple sclerosis. Clinical and pathogenetic basis. London: Chapman and Hall Medical, 1997:21–30.