Advertisement
Research Article| Volume 446, 120593, March 15, 2023

Neural activity during monkey vehicular wayfinding

  • Author Footnotes
    1 All authors contributed greatly to all aspects of this work.
    William K. Page
    Footnotes
    1 All authors contributed greatly to all aspects of this work.
    Affiliations
    Dept. of Neurology, University of Rochester Medical Ctr., Rochester, NY 14642, USA
    Search for articles by this author
  • Author Footnotes
    1 All authors contributed greatly to all aspects of this work.
    David W. Sulon
    Footnotes
    1 All authors contributed greatly to all aspects of this work.
    Affiliations
    Dept. of Neurology, Penn State Health Medical Ctr., Hershey, PA 17036, USA
    Search for articles by this author
  • Author Footnotes
    1 All authors contributed greatly to all aspects of this work.
    Charles J. Duffy
    Correspondence
    Corresponding author at: Dept. of Neurology, University Hospitals, Cleveland, OH 44122, USA.
    Footnotes
    1 All authors contributed greatly to all aspects of this work.
    Affiliations
    Dept. of Neurology, University of Rochester Medical Ctr., Rochester, NY 14642, USA

    Dept. of Neurology, Penn State Health Medical Ctr., Hershey, PA 17036, USA

    Dept. of Neurology, University Hospitals and Case Western Reserve University, Cleveland, OH 44122, USA
    Search for articles by this author
  • Author Footnotes
    1 All authors contributed greatly to all aspects of this work.
Published:February 17, 2023DOI:https://doi.org/10.1016/j.jns.2023.120593

      Highlights

      • A monkey steered a motorized cart on a self-generated path to a cued room location while we recorded hippocampal (HPC) and medial superior temporal (MST) activity.
      • Local field potentials in HPC and MST highlight room locations.
      • Single neuron responses form a continuum from high activity when the monkey moved on a path to the goal, to high activity when the monkey deviates from paths to the goal.
      • Granger causality analysis suggests that on- and off-path neurons play separate roles in linking HPC and MST across distinct stages of the wayfinding task.

      Abstract

      Navigation gets us from place to place, creating a path to arrive at a goal. We trained a monkey to steer a motorized cart in a large room, beginning at its trial-by-trial start location and ending at a trial-by-trial cued goal location. While the monkey steered its autonomously chosen path to its goal, we recorded neural activity simultaneously in both the hippocampus (HPC) and medial superior temporal (MST) cortex.
      Local field potentials (LFPs) in these sites show similar patterns of activity with the 15–30 Hz band highlighting specific room locations. In contrast, 30–100 Hz LFPs support a unified map of the behaviorally relevant start and goal locations. The single neuron responses (SNRs) do not substantially contribute to room or start-goal maps. Rather, the SNRs form a continuum from neurons that are most active when the monkey is moving on a path toward the goal, versus other neurons that are most active when the monkey deviates from paths toward the goal.
      Granger analyses suggest that HPC firing precedes MST firing during cueing at the trial start location, mainly mediated by off-path neurons. In contrast, MST precedes HPC firing during steering, mainly mediated by on-path neurons. Interactions between MST and HPC are mediated by the parallel activation of on-path and off-path neurons, selectively activated across stages of this wayfinding task.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Arbib M.A.
        Brain theory and cooperative computation. [review] [115 refs].
        Hum. Neurobiol. 1985; 4: 201-218
        • Arszovszki A.
        • Borhegyi Z.
        • Klausberger T.
        Three axonal projection routes of individual pyramidal cells in the ventral CA1 hippocampus.
        Front. Neuroanat. 2014; 8: 53
        • Basar-Eroglu C.
        • Struber D.
        • Schurmann M.
        • Stadler M.
        • Basar E.
        Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance.
        Int. J. Psychophysiol. 1996; 24: 101-112
        • Bilkey D.K.
        Neuroscience. In the place space.
        Science. 2004; 305: 1245-1246
        • Bremmer F.
        • Kubischik M.
        • Pekel M.
        • Hoffmann K.P.
        • Lappe M.
        Visual selectivity for heading in monkey area MST.
        Exp. Brain Res. 2010; 200: 51-60
        • Buzsaki G.
        • Moser E.I.
        Memory, navigation and theta rhythm in the hippocampal-entorhinal system.
        Nat. Neurosci. 2013; 16: 130-138
        • Colgin L.L.
        • Denninger T.
        • Fyhn M.
        • Hafting T.
        • Bonnevie T.
        • Jensen O.
        • Moser M.B.
        • Moser E.I.
        Frequency of gamma oscillations routes flow of information in the hippocampus.
        Nature. 2009; 462: 353-357
        • Colgin L.L.
        • Moser E.I.
        Hippocampal theta rhythms follow the beat of their own drum.
        Nat. Neurosci. 2009; 12: 1483-1484
        • Cook E.P.
        • Wilhelm A.C.
        • Guest J.A.
        • Liang Y.
        • Masse N.Y.
        • Colbert C.M.
        The neuronal transfer function: contributions from voltage- and time-dependent mechanisms.
        Prog. Brain Res. 2007; 165: 1-12
        • Crist C.F.
        • Yamasaki D.S.
        • Komatsu H.
        • Wurtz R.H.
        A grid system and a microsyringe for single cell recordings.
        J. Neurosci. Methods. 1988; 26: 117-122
        • Duffy C.J.
        • Page W.K.
        • Froehler M.T.
        Posterior Cortical Processing of Self-Movement Cues: MSTd’s Role in Papez’s Circuit for Navigation and Orientation. J. S. Taube and S. I. Wiener.
        2004
        • Duffy C.J.
        • Wurtz R.H.
        Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli.
        J.Neurophysiol. 1991; 65: 1346-1359
        • Fenton A.A.
        • Lytton W.W.
        • Barry J.M.
        • Lenck-Santini P.P.
        • Zinyuk L.E.
        • Kubik S.
        • Bures J.
        • Poucet B.
        • Muller R.U.
        • Olypher A.V.
        Attention-like modulation of hippocampus place cell discharge.
        J. Neurosci. 2010; 30: 4613-4625
        • Froehler M.T.
        • Duffy C.J.
        Cortical neurons encoding path and place: where you go is where you are.
        Science. 2002; 295: 2462-2465
        • Gu Y.
        • Cheng Z.
        • Yang L.
        • DeAngelis G.C.
        • Angelaki D.E.
        Multisensory convergence of visual and vestibular heading cues in the pursuit area of the frontal eye field.
        Cereb. Cortex. 2016; 26: 3785-3801
        • Gu Y.
        • Watkins P.V.
        • Angelaki D.E.
        • DeAngelis G.C.
        Visual and nonvisual contributions to three-dimensional heading selectivity in the medial superior temporal area.
        J. Neurosci. 2006; 26: 73-85
        • Gulli R.A.
        • Duong L.R.
        • Corrigan B.W.
        • Doucet G.
        • Williams S.
        • Fusi S.
        • Martinez-Trujillo J.C.
        Context-dependent representations of objects and space in the primate hippocampus during virtual navigation.
        Nat. Neurosci. 2020; 23: 103-112
        • Henn V.
        • Young L.R.
        • Finley C.
        Vestibular nucleus units in alert monkeys are also influenced by moving visual fields.
        Brain Res. 1974; 71: 144-149
        • Hlavacka F.
        • Mergner T.
        • Schweigart G.
        Interaction of vestibular and proprioceptive inputs for human self-motion perception.
        Neurosci. Lett. 1992; 138: 161-164
        • Jacobs J.
        • Kahana M.J.
        • Ekstrom A.D.
        • Mollison M.V.
        • Fried I.
        A sense of direction in human entorhinal cortex.
        Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 6487-6492
        • Kavcic V.
        • Fernandez R.
        • Logan D.J.
        • Duffy C.J.
        Neurophysiological and perceptual correlates of navigational impairment in Alzheimer’s disease.
        Brain. 2006; 129: 736-746
        • Kawano K.
        • Sasaki M.
        • Yamashita M.
        Response properties of neurons in posterior parietal cortex of monkey during visual-vestibular stimulation. I. Visual tracking neurons.
        J.Neurophys. 1984; 51: 340-351
        • Kishore S.
        • Hornick N.
        • Sato N.
        • Page W.K.
        • Duffy C.J.
        Driving strategy alters neuronal responses to self-movement: cortical mechanisms of distracted driving.
        Cereb. Cortex. 2011; 22: 201-208
        • Knierim J.J.
        • Neunuebel J.P.
        • Deshmukh S.S.
        Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local-global reference frames.
        Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2014; 369 (20130369)
        • Komatsu H.
        • Wurtz R.H.
        Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons.
        J. Neurophysiol. 1988; 60: 580-603
        • Kunz L.
        • Maidenbaum S.
        • Chen D.
        • Wang L.
        • Jacobs J.
        • Axmacher N.
        Mesoscopic neural representations in spatial navigation.
        Trends Cogn. Sci. 2019; 23: 615-630
        • Kunz L.
        • Wang L.
        • Lachner-Piza D.
        • Zhang H.
        • Brandt A.
        • Dumpelmann M.
        • Reinacher P.C.
        • Coenen V.A.
        • Chen D.
        • Wang W.X.
        • Zhou W.
        • Liang S.
        • Grewe P.
        • Bien C.G.
        • Bierbrauer A.
        • Navarro Schroder T.
        • Schulze-Bonhage A.
        • Axmacher N.
        Hippocampal theta phases organize the reactivation of large-scale electrophysiological representations during goal-directed navigation.
        Sci. Adv. 2019; 5 (eaav8192)
        • Laczo J.
        • Parizkova M.
        • Moffat S.D.
        Spatial navigation, aging and Alzheimer’s disease.
        Aging (Albany NY). 2018; 10: 3050-3051
        • Lee S.A.
        • Miller J.F.
        • Watrous A.J.
        • et al.
        Electrophysiological signals of spatial boundaries in the human Subiculam.
        J. Neurosci. 2018; 38: 3265-3272
        • Leibold C.
        • Monsalve-Mercado M.M.
        Traveling Theta waves and the hippocampal phase code.
        Sci. Rep. 2017; 7: 7678
        • Lever C.
        • Burton S.
        • Jeewajee A.
        • O’Keefe J.
        • Burgess N.
        Boundary vector cells in the subiculum of the hippocampal formation.
        J. Neurosci. 2009; 29: 9771-9777
        • Lithfous S.
        • Dufour A.
        • Despres O.
        Spatial navigation in normal aging and the prodromal stage of Alzheimer’s disease: insights from imaging and behavioral studies.
        Ageing Res. Rev. 2013; 12: 201-213
        • Logan D.J.
        • Duffy C.J.
        Cortical area MSTd combines visual cues to represent 3-D self-movement.
        Cereb. Cortex. 2006; 16: 1494-1507
        • Lütkepohl H.
        New Introduction to Multiple Time Series Analysis.
        Springer, Berlin, New York2005
        • Matsumura N.
        • Nishijo H.
        • Tamura R.
        • Eifuku S.
        • Endo S.
        • Ono T.
        Spatial- and task-dependent neuronal responses during real and virtual translocation in the monkey hippocampal formation.
        J. Neurosci. 1999; 19: 2381-2393
        • McNaughton B.L.
        • Leonard B.
        • Chen L.L.
        Cortical-hippocampal interactions and cognitive mapping: a hypothesis based on reintegration of the parietal and inferotemporal pathways for visual processing.
        psychobiology. 1989; 17: 230-235
        • Meirovitch Y.
        • Harris H.
        • Dayan E.
        • Arieli A.
        • Flash T.
        Alpha and beta band event-related desynchronization reflects kinematic regularities.
        J. Neurosci. 2015; 35: 1627-1637
        • Mergner T.
        • Hlavacka F.
        • Schweigart G.
        Interaction of vestibular and proprioceptive inputs.
        J. Vestib. Res. 1993; 3: 41-57
        • Motter B.C.
        • Steinmetz M.A.
        • Duffy C.J.
        • Mountcastle V.B.
        Functional properties of parietal visual neurons: mechanisms of directionality along a single Axis.
        J. Neurosci. 1987; 7: 154-176
        • Nagano-Saito A.
        • Cisek P.
        • Perna A.S.
        • Shirdel F.Z.
        • Benkelfat C.
        • Leyton M.
        • Dagher A.
        From anticipation to action, the role of dopamine in perceptual decision making: an fMRI-tyrosine depletion study.
        J. Neurophysiol. 2012; 108: 501-512
        • O'Keefe J.
        • Burgess N.
        Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells.
        Hippocampus. 2005; 15: 853-866
        • Page W.K.
        • Duffy C.J.
        Path perturbation detection tasks reduce MSTd neuronal self-movement heading responses.
        J. Neurophysiol. 2018; 119: 124-133
        • Page W.K.
        • Sato N.
        • Froehler M.T.
        • Vaughn W.
        • Duffy C.J.
        Navigational path integration by cortical neurons: origins in higher-order direction selectivity.
        J. Neurophysiol. 2015; 113: 1896-1906
        • Papez J.W.
        A proposed mechanism of emotion.
        Arch. Neurol. Psychiatr. 1937; 38: 725-743
        • Poucet B.
        • Lenck-Santini P.P.
        • Paz-Villagran V.
        • Save E.
        Place cells, neocortex and spatial navigation: a short review.
        J. Physiol. Paris. 2003; 97: 537-546
        • Powell M.J.D.
        The theory of radial basis function approximation in 1990.
        in: Light W.A. Advances in Numerical Analysis, Volume 2: Wavelets, Subdivision Algorithms, and Radial Basis Functions. Clarendon Press, 1992: 105-210
        • Regis R.G.
        • Shoemaker C.A.
        A stochastic radial basis function method for the global optimization of expensive functions.
        INFORMS J. Comput. 2007; 19: 497-509
        • Rolls E.T.
        • Wirth S.
        Spatial representations in the primate hippocampus, and their functions in memory and navigation.
        Prog. Neurobiol. 2018; 171: 90-113
        • Saleem K.S.
        • Logothetis N.
        A Combined MRI and Histology Atlas of the rhesus Monkey Brain in Stereotaxic Coordinates.
        Academic, London, Burlington, MA2007
        • Save E.
        • Poucet B.
        Hippocampal-parietal cortical interactions in spatial cognition. [review] [68 refs].
        Hippocampus. 2000; 10: 491-499
        • Shannon C.E.
        A mathematical theory of communication.
        Bell Syst. Tech. J. 1948; 27: 379-423
        • Shenoy K.V.
        • Bradley D.C.
        • Andersen R.A.
        Influence of gaze rotation on the visual response of primate MSTd neurons.
        J. Neurophysiol. 1999; 81: 2764-2786
        • Squatrito S.
        • Maioli M.G.
        Gaze field properties of eye position neurones in areas MST and 7a of the macaque monkey.
        Vis. Neurosci. 1996; 13: 385-398
        • Steinmetz M.A.
        • Motter B.C.
        • Duffy C.J.
        • Mountcastle V.B.
        Functional properties of parietal visual neurons: radial organization of directionalities within the visual field.
        J. Neurosci. 1987; 7: 177-191
        • Tanaka K.
        • Hikosaka K.
        • Saito H.
        • Yukie M.
        • Fukada Y.
        • Iwai E.
        Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey.
        J. Neurosci. 1986; 6: 134-144
        • Timme N.M.
        • Lapish C.
        A tutorial for information theory in neuroscience.
        eNeuro. 2018; 5
        • van Wijngaarden J.B.
        • Babl S.S.
        • Ito H.T.
        Entorhinal-retrosplenial circuits for allocentric-egocentric transformation of boundary coding.
        Elife. 2020; 9
        • Vinck M.
        • Womelsdorf T.
        • Buffalo E.A.
        • Desimone R.
        • Fries P.
        Attentional modulation of cell-class-specific gamma-band synchronization in awake monkey area v4.
        Neuron. 2013; 80: 1077-1089
        • White D.J.
        • Congedo M.
        • Ciorciari J.
        • Silberstein R.B.
        Brain oscillatory activity during spatial navigation: theta and gamma activity link medial temporal and parietal regions.
        J. Cogn. Neurosci. 2012; 24: 686-697
        • Whitlock J.R.
        • Sutherland R.J.
        • Witter M.P.
        • Moser M.B.
        • Moser E.I.
        Navigating from hippocampus to parietal cortex.
        Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 14755-14762
        • Wikenheiser A.M.
        • Redish A.D.
        Hippocampal theta sequences reflect current goals.
        Nat. Neurosci. 2015; 18: 289-294
        • Wirth S.
        • Baraduc P.
        • Plante A.
        • Pinede S.
        • Duhamel J.R.
        Gaze-informed, task-situated representation of space in primate hippocampus during virtual navigation.
        PLoS Biol. 2017; 15e2001045
        • Wurtz R.H.
        • Hikosaka O.
        Role of the basal ganglia in the initiation of saccadic eye movements.
        Prog. Brain Res. 1986; 64: 175-190