Advertisement
Research Article| Volume 446, 120588, March 15, 2023

Interhemispheric parietal cortex connectivity reflects improvement in post-stroke spasticity due to treatment with botulinum toxin-A

  • Author Footnotes
    1 Both authors contributed equally to this work.
    Tomáš Veverka
    Footnotes
    1 Both authors contributed equally to this work.
    Affiliations
    Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czechia
    Search for articles by this author
  • Author Footnotes
    1 Both authors contributed equally to this work.
    Pavel Hok
    Correspondence
    Corresponding author at: Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Walther-Rathenau-Str. 46, 17475 Greifswald, Germany.
    Footnotes
    1 Both authors contributed equally to this work.
    Affiliations
    Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czechia

    Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Walther-Rathenau-Str. 46, 17475 Greifswald, Germany
    Search for articles by this author
  • Markéta Trnečková
    Affiliations
    Department of Computer Science, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12 779 00 Olomouc, Olomouc, Czechia
    Search for articles by this author
  • Pavel Otruba
    Affiliations
    Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czechia
    Search for articles by this author
  • Jana Zapletalová
    Affiliations
    Department of Biophysics, Biometry and Statistics, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czechia
    Search for articles by this author
  • Zbyněk Tüdös
    Affiliations
    Department of Radiology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czechia
    Search for articles by this author
  • Martin Lotze
    Affiliations
    Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Walther-Rathenau-Str. 46, 17475 Greifswald, Germany
    Search for articles by this author
  • Petr Kaňovský
    Affiliations
    Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czechia
    Search for articles by this author
  • Petr Hluštík
    Affiliations
    Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czechia
    Search for articles by this author
  • Author Footnotes
    1 Both authors contributed equally to this work.
Published:February 14, 2023DOI:https://doi.org/10.1016/j.jns.2023.120588

      Highlights

      • Treatment of post-stroke spasticity increases interhemispheric parietal connectivity.
      • Ipsilesional intraparietal sulcus and contralesional superior parietal lobule linked.
      • Interhemispheric connectivity is negatively correlated with severity of spasticity.

      Abstract

      In post-stroke spasticity (PSS), effective treatment with botulinum neurotoxin (BoNT) is associated with transient decrease in activation of the ipsilesional superior parietal lobule (SPL) and intraparietal sulcus (IPS). We hypothesized that this would be reflected in changes in resting-state functional connectivity (rsFC) of the SPL/IPS. Our aim was therefore to assess rsFC of the ipsilesional SPL/IPS in chronic stroke patients with hemiparesis both with and without PSS and to explore the relationship between SPL/IPS rsFC and PSS severity. To this end, fourteen chronic stroke patients with upper limb weakness and PSS (the PSS group) and 8 patients with comparable weakness but no PSS (the control group) underwent clinical evaluation and 3 fMRI examinations, at baseline (W0) and 4 and 11 weeks after BoNT (W4 and W11, respectively). Seed-based rsFC of the atlas-based SPL and IPS was evaluated using a group×time interaction analysis and a correlation analysis with PSS severity (modified Ashworth scale), integrity of the ipsilesional somatosensory afferent pathway (evoked potential N20 latency), and age. In the PSS group, transient improvement in PSS was associated with increase in rsFC between the ipsilesional IPS and the contralesional SPL at W4. The interhemispheric connectivity was negatively correlated with PSS severity at baseline and with PSS improvement at W4. We propose adaptation of the internal forward model as the putative underlying mechanism and discuss its possible association with increased limb use, diminished spastic dystonia, or improved motor performance, as well as its potential contribution to the clinical effects of BoNT.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Zorowitz R.D.
        • Gillard P.J.
        • Brainin M.
        Poststroke spasticity: sequelae and burden on stroke survivors and caregivers.
        Neurology. 2013; 80: S45-S52https://doi.org/10.1212/WNL.0b013e3182764c86
        • Dorňák T.
        • Justanová M.
        • Konvalinková R.
        • Říha M.
        • Mužík J.
        • Hoskovcová M.
        • Srp M.
        • Navrátilová D.
        • Otruba P.
        • Gál O.
        • Svobodová I.
        • Dušek L.
        • Bareš M.
        • Kaňovský P.
        • Jech R.
        Prevalence and evolution of spasticity in patients suffering from first-ever stroke with carotid origin: a prospective, longitudinal study.
        Eur. J. Neurol. 2019; 26: 880-886https://doi.org/10.1111/ene.13902
        • Sommerfeld D.K.
        • Eek E.U.-B.
        • Svensson A.-K.
        • Holmqvist L.W.
        • von Arbin M.H.
        Spasticity after stroke: its occurrence and association with motor impairments and activity limitations.
        Stroke. 2004; 35: 134-139https://doi.org/10.1161/01.STR.0000105386.05173.5E
        • Sheean G.
        • Lannin N.A.
        • Turner-Stokes L.
        • Rawicki B.
        • Snow B.J.
        Cerebral palsy institute, botulinum toxin assessment, intervention and after-care for upper limb hypertonicity in adults: international consensus statement.
        Eur. J. Neurol. 2010; 17: 74-93https://doi.org/10.1111/j.1468-1331.2010.03129.x
        • Simpson D.M.
        • Hallett M.
        • Ashman E.J.
        • Comella C.L.
        • Green M.W.
        • Gronseth G.S.
        • Armstrong M.J.
        • Gloss D.
        • Potrebic S.
        • Jankovic J.
        • Karp B.P.
        • Naumann M.
        • So Y.T.
        • Yablon S.A.
        Practice guideline update summary: botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity, and headache: report of the guideline development subcommittee of the American academy of neurology.
        Neurology. 2016; 86: 1818-1826https://doi.org/10.1212/WNL.0000000000002560
        • Sunnerhagen K.S.
        • Olver J.
        • Francisco G.E.
        Assessing and treating functional impairment in poststroke spasticity.
        Neurology. 2013; 80: S35-S44https://doi.org/10.1212/WNL.0b013e3182764aa2
        • Hok P.
        • Veverka T.
        • Hluštík P.
        • Nevrlý M.
        • Kaňovský P.
        The central effects of botulinum toxin in dystonia and spasticity.
        Toxins (Basel). 2021; 13: 155https://doi.org/10.3390/toxins13020155
        • Manganotti P.
        • Acler M.
        • Formaggio E.
        • Avesani M.
        • Milanese F.
        • Baraldo A.
        • Storti S.F.
        • Gasparini A.
        • Cerini R.
        • Mucelli R.P.
        • Fiaschi A.
        Changes in cerebral activity after decreased upper-limb hypertonus: an EMG-fMRI study.
        Magn. Reson. Imaging. 2010; 28: 646-652https://doi.org/10.1016/j.mri.2009.12.023
        • Tomášová Z.
        • Hluštík P.
        • Král M.
        • Otruba P.
        • Herzig R.
        • Krobot A.
        • Kaňovský P.
        Cortical activation changes in patients suffering from post-stroke arm spasticity and treated with botulinum toxin a.
        J. Neuroimaging. 2013; 23: 337-344https://doi.org/10.1111/j.1552-6569.2011.00682.x
        • Veverka T.
        • Hluštík P.
        • Hok P.
        • Otruba P.
        • Tüdös Z.
        • Zapletalová J.
        • Krobot A.
        • Kaňovský P.
        Cortical activity modulation by botulinum toxin type a in patients with post-stroke arm spasticity: real and imagined hand movement.
        J. Neurol. Sci. 2014; 346: 276-283https://doi.org/10.1016/j.jns.2014.09.009
        • Veverka T.
        • Hok P.
        • Otruba P.
        • Zapletalová J.
        • Kukolová B.
        • Tüdös Z.
        • Krobot A.
        • Kaňovský P.
        • Hluštík P.
        Botulinum toxin modulates posterior parietal cortex activation in post-stroke spasticity of the upper limb.
        Front. Neurol. 2019; 10: 495https://doi.org/10.3389/fneur.2019.00495
        • Veverka T.
        • Hluštík P.
        • Tomášová Z.
        • Hok P.
        • Otruba P.
        • Král M.
        • Tüdös Z.
        • Zapletalová J.
        • Herzig R.
        • Krobot A.
        • Kaňovský P.
        BoNT-A related changes of cortical activity in patients suffering from severe hand paralysis with arm spasticity following ischemic stroke.
        J. Neurol. Sci. 2012; 319: 89-95https://doi.org/10.1016/j.jns.2012.05.008
        • Currà A.
        • Trompetto C.
        • Abbruzzese G.
        • Berardelli A.
        Central effects of botulinum toxin type a: evidence and supposition.
        Mov. Disord. 2004; 19: S60-S64https://doi.org/10.1002/mds.20011
        • Currà A.
        • Berardelli A.
        Do the unintended actions of botulinum toxin at distant sites have clinical implications?.
        Neurology. 2009; 72: 1095-1099https://doi.org/10.1212/01.wnl.0000345010.98495.fc
        • Rosales R.L.
        • Dressler D.
        On muscle spindles, dystonia and botulinum toxin.
        Eur. J. Neurol. 2010; 17: 71-80https://doi.org/10.1111/j.1468-1331.2010.03056.x
        • de Lange F.P.
        • Helmich R.C.
        • Toni I.
        Posture influences motor imagery: an fMRI study.
        Neuroimage. 2006; 33: 609-617https://doi.org/10.1016/j.neuroimage.2006.07.017
        • Mantel T.
        • Dresel C.
        • Welte M.
        • Meindl T.
        • Jochim A.
        • Zimmer C.
        • Haslinger B.
        Altered sensory system activity and connectivity patterns in adductor spasmodic dysphonia.
        Sci. Rep. 2020; 10: 10179https://doi.org/10.1038/s41598-020-67295-w
        • Mohammadi B.
        • Kollewe K.
        • Samii A.
        • Beckmann C.F.
        • Dengler R.
        • Münte T.F.
        Changes in resting-state brain networks in writer’s cramp.
        Hum. Brain Mapp. 2012; 33: 840-848https://doi.org/10.1002/hbm.21250
        • Brodoehl S.
        • Wagner F.
        • Prell T.
        • Klingner C.
        • Witte O.W.
        • Günther A.
        Cause or effect: altered brain and network activity in cervical dystonia is partially normalized by botulinum toxin treatment.
        NeuroImage: Clin. 2019; 22101792https://doi.org/10.1016/j.nicl.2019.101792
        • Delnooz C.C.S.
        • Pasman J.W.
        • Beckmann C.F.
        • van de Warrenburg B.P.C.
        Altered striatal and pallidal connectivity in cervical dystonia.
        Brain Struct. Funct. 2015; 220: 513-523https://doi.org/10.1007/s00429-013-0671-y
        • Delnooz C.C.S.
        • Pasman J.W.
        • Beckmann C.F.
        • van de Warrenburg B.P.C.
        Task-free functional MRI in cervical dystonia reveals multi-network changes that partially normalize with botulinum toxin.
        PLoS One. 2013; 8e62877https://doi.org/10.1371/journal.pone.0062877
        • Hok P.
        • Hvizdošová L.
        • Otruba P.
        • Kaiserová M.
        • Trnečková M.
        • Tüdös Z.
        • Hluštík P.
        • Kaňovský P.
        • Nevrlý M.
        Botulinum toxin injection changes resting state cerebellar connectivity in cervical dystonia.
        Sci. Rep. 2021; 11: 8322https://doi.org/10.1038/s41598-021-87088-z
        • Jochim A.
        • Li Y.
        • Gora-Stahlberg G.
        • Mantel T.
        • Berndt M.
        • Castrop F.
        • Dresel C.
        • Haslinger B.
        Altered functional connectivity in blepharospasm/orofacial dystonia.
        Brain. Behav. 2018; 8e00894https://doi.org/10.1002/brb3.894
        • Binkofski F.
        • Amunts K.
        • Stephan K.M.
        • Posse S.
        • Schormann T.
        • Freund H.J.
        • Zilles K.
        • Seitz R.J.
        Broca’s region subserves imagery of motion: a combined cytoarchitectonic and fMRI study.
        Hum. Brain Mapp. 2000; 11: 273-285https://doi.org/10.1002/1097-0193(200012)11:4<273::aid-hbm40>3.0.co;2-0
        • Guillot A.
        • Collet C.
        • Nguyen V.A.
        • Malouin F.
        • Richards C.
        • Doyon J.
        Brain activity during visual versus kinesthetic imagery: an fMRI study.
        Hum. Brain Mapp. 2009; 30: 2157-2172https://doi.org/10.1002/hbm.20658
        • Konen C.S.
        • Mruczek R.E.B.
        • Montoya J.L.
        • Kastner S.
        Functional organization of human posterior parietal cortex: grasping- and reaching-related activations relative to topographically organized cortex.
        J. Neurophysiol. 2013; 109: 2897-2908https://doi.org/10.1152/jn.00657.2012
        • Delhaye B.P.
        • Long K.H.
        • Bensmaia S.J.
        Neural basis of touch and proprioception in primate cortex.
        Compr. Physiol. 2018; 8: 1575-1602https://doi.org/10.1002/cphy.c170033
        • Tian X.
        • Poeppel D.
        Mental imagery of speech and movement implicates the dynamics of internal forward models.
        Front. Psychol. 2010; 1: 166https://doi.org/10.3389/fpsyg.2010.00166
        • Kaňovský P.
        • Slawek J.
        • Denes Z.
        • Platz T.
        • Comes G.
        • Grafe S.
        • Pulte I.
        Efficacy and safety of treatment with incobotulinum toxin a (botulinum neurotoxin type a free from complexing proteins; NT 201) in post-stroke upper limb spasticity.
        J. Rehabil. Med. 2011; 43: 486-492https://doi.org/10.2340/16501977-0796
        • Veverka T.
        • Hlustik P.
        • Otruba P.
        • Hok P.
        • Opavsky R.
        • Zapletalova J.
        • Kanovsky P.
        Cortical somatosensory processing after botulinum toxin therapy in post-stroke spasticity.
        Medicine (Baltimore). 2021; 100https://doi.org/10.1097/MD.0000000000026356
        • Bohannon R.W.
        • Smith M.B.
        Interrater reliability of a modified Ashworth scale of muscle spasticity.
        Phys. Ther. 1987; 67: 206-207
        • Folstein M.F.
        • Folstein S.E.
        • McHugh P.R.
        “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician.
        J. Psychiatr. Res. 1975; 12: 189-198
        • Zung W.W.
        A self-rating depression scale.
        Arch. Gen. Psychiatry. 1965; 12: 63-70
        • Wissel J.
        • Ward A.B.
        • Erztgaard P.
        • Bensmail D.
        • Hecht M.J.
        • Lejeune T.M.
        • Schnider P.
        • Altavista M.C.
        • Cavazza S.
        • Deltombe T.
        • Duarte E.
        • Geurts A.C.H.
        • Gracies J.-M.
        • Haboubi N.H.J.
        • Juan F.J.
        • Kasch H.
        • Kätterer C.
        • Kirazli Y.
        • Manganotti P.
        • Parman Y.
        • Paternostro-Sluga T.
        • Petropoulou K.
        • Prempeh R.
        • Rousseaux M.
        • Slawek J.
        • Tieranta N.
        European consensus table on the use of botulinum toxin type A in adult spasticity.
        J. Rehabil. Med. 2009; 41: 13-25https://doi.org/10.2340/16501977-0303
        • Krobot A.
        • Schusterová B.
        • Tomsová J.
        • Kristková V.
        • Konečný P.
        Specific protocol of physiotherapy in stroke patients.
        Cesk. Slov. Neurol. N. 2008; 71/104: V74
        • Hefter H.
        • Jost W.H.
        • Reissig A.
        • Zakine B.
        • Bakheit A.M.
        • Wissel J.
        Classification of posture in poststroke upper limb spasticity: a potential decision tool for botulinum toxin A treatment?.
        Int. J. Rehabil. Res. 2012; 35: 227-233https://doi.org/10.1097/MRR.0b013e328353e3d4
        • Paternostro-Sluga T.
        • Grim-Stieger M.
        • Posch M.
        • Schuhfried O.
        • Vacariu G.
        • Mittermaier C.
        • Bittner C.
        • Fialka-Moser V.
        Reliability and validity of the Medical Research Council (MRC) scale and a modified scale for testing muscle strength in patients with radial palsy.
        J. Rehabil. Med. 2008; 40: 665-671https://doi.org/10.2340/16501977-0235
        • Mahoney F.I.
        • Barthel D.W.
        Functional evaluation: the Barthel index.
        Md. State Med. J. 1965; 14: 61-65
        • Quinn T.J.
        • Dawson J.
        • Walters M.R.
        • Lees K.R.
        Variability in modified Rankin scoring across a large cohort of international observers.
        Stroke. 2008; 39: 2975-2979https://doi.org/10.1161/STROKEAHA.108.515262
        • Kaňovský P.
        • Streitová H.
        • Dufek J.
        • Znojil V.
        • Daniel P.
        • Rektor I.
        Change in lateralization of the P22/N30 cortical component of median nerve somatosensory evoked potentials in patients with cervical dystonia after successful treatment with botulinum toxin A.
        Mov. Disord. 1998; 13: 108-117https://doi.org/10.1002/mds.870130122
        • Opavský R.
        • Otruba P.
        • Vysloužil M.
        • Král M.
        • Hluštík P.
        • Kaňovský P.
        Post-stroke upper limb spasticity - modulation with botulinum toxin type A therapy and reflection in somatosensory cortical activation.
        Ceska a Slovenska Neurol. Neurochirurgie. 2011; 74: 54-59
        • Whitfield-Gabrieli S.
        • Nieto-Castanon A.
        Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks.
        Brain Connect. 2012; 2: 125-141https://doi.org/10.1089/brain.2012.0073
        • Behzadi Y.
        • Restom K.
        • Liau J.
        • Liu T.T.
        A component based noise correction method (CompCor) for BOLD and perfusion based fMRI.
        Neuroimage. 2007; 37: 90-101https://doi.org/10.1016/j.neuroimage.2007.04.042
        • Winkler A.M.
        • Ridgway G.R.
        • Webster M.A.
        • Smith S.M.
        • Nichols T.E.
        Permutation inference for the general linear model.
        Neuroimage. 2014; 92: 381-397https://doi.org/10.1016/j.neuroimage.2014.01.060
        • Choi H.-J.
        • Zilles K.
        • Mohlberg H.
        • Schleicher A.
        • Fink G.R.
        • Armstrong E.
        • Amunts K.
        Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus.
        J. Comp. Neurol. 2006; 495: 53-69https://doi.org/10.1002/cne.20849
        • Eickhoff S.B.
        • Stephan K.E.
        • Mohlberg H.
        • Grefkes C.
        • Fink G.R.
        • Amunts K.
        • Zilles K.
        A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data.
        NeuroImage. 2005; 25: 1325-1335https://doi.org/10.1016/j.neuroimage.2004.12.034
        • Scheperjans F.
        • Hermann K.
        • Eickhoff S.B.
        • Amunts K.
        • Schleicher A.
        • Zilles K.
        Observer-independent cytoarchitectonic mapping of the human superior parietal cortex.
        Cereb. Cortex. 2008; 18: 846-867https://doi.org/10.1093/cercor/bhm116
        • Scheperjans F.
        • Eickhoff S.B.
        • Hömke L.
        • Mohlberg H.
        • Hermann K.
        • Amunts K.
        • Zilles K.
        Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex.
        Cereb. Cortex. 2008; 18: 2141-2157https://doi.org/10.1093/cercor/bhm241
        • Ojardias E.
        • Ollier E.
        • Lafaie L.
        • Celarier T.
        • Giraux P.
        • Bertoletti L.
        Time course response after single injection of botulinum toxin to treat spasticity after stroke: systematic review with pharmacodynamic model-based meta-analysis.
        Ann. Phys. Rehabil. Med. 2022; 65101579https://doi.org/10.1016/j.rehab.2021.101579
        • Richard N.
        • Desmurget M.
        • Teillac A.
        • Beuriat P.-A.
        • Bardi L.
        • Coudé G.
        • Szathmari A.
        • Mottolese C.
        • Sirigu A.
        • Hiba B.
        Anatomical bases of fast parietal grasp control in humans: a diffusion-MRI tractography study.
        NeuroImage. 2021; 235118002https://doi.org/10.1016/j.neuroimage.2021.118002
        • Connolly J.D.
        • Andersen R.A.
        • Goodale M.A.
        FMRI evidence for a “parietal reach region” in the human brain.
        Exp. Brain Res. 2003; 153: 140-145https://doi.org/10.1007/s00221-003-1587-1
        • Trompetto C.
        • Bove M.
        • Avanzino L.
        • Francavilla G.
        • Berardelli A.
        • Abbruzzese G.
        Intrafusal effects of botulinum toxin in post-stroke upper limb spasticity.
        Eur. J. Neurol. 2008; 15: 367-370https://doi.org/10.1111/j.1468-1331.2008.02076.x
        • Mooshagian E.
        • Holmes C.D.
        • Snyder L.H.
        Local field potentials in the parietal reach region reveal mechanisms of bimanual coordination.
        Nat. Commun. 2021; 12: 2514https://doi.org/10.1038/s41467-021-22701-3
        • Hensel L.
        • Lange F.
        • Tscherpel C.
        • Viswanathan S.
        • Freytag J.
        • Volz L.J.
        • Eickhoff S.B.
        • Fink G.R.
        • Grefkes C.
        Recovered grasping performance after stroke depends on interhemispheric frontoparietal connectivity.
        Brain. 2022; awac157https://doi.org/10.1093/brain/awac157
        • Yuan K.
        • Wang X.
        • Chen C.
        • Lau C.C.-Y.
        • Chu W.C.-W.
        • Tong R.K.-Y.
        Interhemispheric functional reorganization and its structural base after BCI-guided upper-limb training in chronic stroke.
        IEEE Trans. Neural. Syst. Rehabil. Eng. 2020; 28: 2525-2536https://doi.org/10.1109/TNSRE.2020.3027955
        • Hannanu F.F.
        • Goundous I.
        • Detante O.
        • Naegele B.
        • Jaillard A.
        Spatiotemporal patterns of sensorimotor fMRI activity influence hand motor recovery in subacute stroke: a longitudinal task-related fMRI study.
        Cortex. 2020; 129: 80-98https://doi.org/10.1016/j.cortex.2020.03.024
        • Pool E.-M.
        • Leimbach M.
        • Binder E.
        • Nettekoven C.
        • Eickhoff S.B.
        • Fink G.R.
        • Grefkes C.
        Network dynamics engaged in the modulation of motor behavior in stroke patients.
        Hum. Brain Mapp. 2018; 39: 1078-1092https://doi.org/10.1002/hbm.23872
        • Machner B.
        • von der Gablentz J.
        • Göttlich M.
        • Heide W.
        • Helmchen C.
        • Sprenger A.
        • Münte T.F.
        Behavioral deficits in left hemispatial neglect are related to a reduction of spontaneous neuronal activity in the right superior parietal lobule.
        Neuropsychologia. 2020; 138107356https://doi.org/10.1016/j.neuropsychologia.2020.107356
        • Tscherpel C.
        • Hensel L.
        • Lemberg K.
        • Vollmer M.
        • Volz L.J.
        • Fink G.R.
        • Grefkes C.
        The differential roles of contralesional frontoparietal areas in cortical reorganization after stroke.
        Brain Stimul. 2020; 13: 614-624https://doi.org/10.1016/j.brs.2020.01.016
        • Allart E.
        • Mazevet D.
        • Idée S.
        • Constant Boyer F.
        • Bonan I.
        Adjunct therapies after botulinum toxin injections in spastic adults: systematic review and SOFMER recommendations.
        Ann. Phys. Rehabil. Med. 2022; 65101544https://doi.org/10.1016/j.rehab.2021.101544
        • Smith S.M.
        • Fox P.T.
        • Miller K.L.
        • Glahn D.C.
        • Fox P.M.
        • Mackay C.E.
        • Filippini N.
        • Watkins K.E.
        • Toro R.
        • Laird A.R.
        • Beckmann C.F.
        Correspondence of the brain’s functional architecture during activation and rest.
        PNAS. 2009; 106: 13040-13045https://doi.org/10.1073/pnas.0905267106
        • Pandyan A.D.
        • Gregoric M.
        • Barnes M.P.
        • Wood D.
        • Van Wijck F.
        • Burridge J.
        • Hermens H.
        • Johnson G.R.
        Spasticity: clinical perceptions, neurological realities and meaningful measurement.
        Disabil. Rehabil. 2005; 27: 2-6https://doi.org/10.1080/09638280400014576
        • Trompetto C.
        • Currà A.
        • Puce L.
        • Mori L.
        • Serrati C.
        • Fattapposta F.
        • Abbruzzese G.
        • Marinelli L.
        Spastic dystonia in stroke subjects: prevalence and features of the neglected phenomenon of the upper motor neuron syndrome.
        Clin. Neurophysiol. 2019; 130: 521-527https://doi.org/10.1016/j.clinph.2019.01.012