The interaction between metaplastic neuromodulation and fatigue in multiple sclerosis

Published:December 11, 2022DOI:


      • There is evidence for metaplasticity improving functional outcomes, but this remains unexplored during neuromuscular fatigue in people with MS
      • Corticospinal excitability during fatigue is unchanged with priming Transcranial Direct Current Stimulation in people with Multiple Sclerosis
      • Metaplasticity is possibly impaired in people with Multiple Sclerosis


      Background and objective

      Neuromuscular fatigue contributes to decrements in quality of life in Multiple Sclerosis (MS), yet available treatments demonstrate limited efficacy. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique which presents promise in managing fatigue, possibly related to its capacity to modulate corticospinal excitability. There is evidence for capitalising on metaplasticity using tDCS for improving outcomes. However, this remains to be explored with fatigue in people with MS (pwMS). We investigated cathodal tDCS (ctDCS) priming on anodal tDCS (atDCS)-induced corticospinal excitability and fatigue modulation in pwMS.


      15 pwMS and 15 healthy controls completed fatiguing exercise whilst receiving either ctDCS or sham (stDCS) primed atDCS to the motor cortex. We assessed change in contraction force and motor evoked potential (MEP) amplitude across time to represent changes in fatigue and corticospinal excitability.

      Results and conclusion

      ctDCS primed atDCS induced MEP elevation in healthy participants but not in pwMS, possibly indicating impaired metaplasticity in pwMS. No tDCS-mediated change in the magnitude of fatigue was observed, implying that development of fatigue may not rely on changes in corticospinal excitability.


      These findings expand understanding of tDCS effects in pwMS, highlighting differences that may be relevant in the disease pathophysiology.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Abdelmoula A.
        • Baudry S.
        • Duchateau J.
        Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability.
        Neuroscience. 2016; 322: 94-103
        • Abdelmoula A.
        • Baudry S.
        • Duchateau J.
        Anodal transcranial direct current stimulation does not influence the neural adjustments associated with fatiguing contractions in a hand muscle.
        Eur. J. Appl. Physiol. 2019; 119: 597-609
        • Abraham W.C.
        Metaplasticity: tuning synapses and networks for plasticity.
        Nat. Rev. Neurosci. 2008; 9: 387-399
        • Abraham W.C.
        • Bear M.F.
        Metaplasticity: the plasticity of synaptic plasticity.
        Trends Neurosci. 1996; 19: 126-130
        • Abraham W.C.
        • Tate W.P.
        Metaplasticity: a new vista across the field of synaptic plasticity.
        Prog. Neurobiol. 1997; 52: 303-323
        • Ambrus G.G.
        • Al-Moyed H.
        • Chaieb L.
        • Sarp L.
        • Antal A.
        • Paulus W.
        The fade-in–short stimulation–fade out approach to sham tDCS–reliable at 1 mA for naive and experienced subjects, but not investigators.
        Brain Stimul. 2012; 5: 499-504
        • Angius L.
        • Pageaux B.
        • Hopker J.
        • Marcora S.M.
        • Mauger A.R.
        Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors.
        Neuroscience. 2016; 339: 363-375
        • Antal A.
        • Chaieb L.
        • Moliadze V.
        • Monte-Silva K.
        • Poreisz C.
        • Thirugnanasambandam N.
        • et al.
        Brain-derived neurotrophic factor (BDNF) gene polymorphisms shape cortical plasticity in humans.
        Brain Stimul. 2010; 3: 230-237
        • Barbi C.
        • Pizzini F.B.
        • Tamburin S.
        • Martini A.
        • Pedrinolla A.
        • Laginestra F.G.
        • et al.
        Brain structural and functional alterations in multiple sclerosis-related fatigue: a systematic review.
        Neurol. Int. 2022; 14: 506-535
        • Batsikadze G.
        • Moliadze V.
        • Paulus W.
        • Kuo M.F.
        • Nitsche M.A.
        Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans.
        J. Physiol. 2013; 591: 1987-2000
        • Bienenstock E.L.
        • Cooper L.N.
        • Munro P.W.
        Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex.
        J. Neurosci. 1982; 2: 32-48
        • Bliss T.V.P.
        • Lømo T.
        Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path.
        J. Physiol. 1973; 232: 331-356
        • Britton T.
        • Meyer B.-U.
        • Benecke R.
        Variability of cortically evoked motor responses in multiple sclerosis.
        Electroencephalogr. Clin. Neurophysiol. 1991; 81: 186-194
        • Cantello R.
        • Gianelli M.
        • Civardi C.
        • Mutani R.
        Magnetic brain stimulation: the silent period after the motor evoked potential.
        Neurology. 1992; 42: 1951
        • Caramia M.D.
        • Palmieri M.G.
        • Desiato M.T.
        • Boffa L.
        • Galizia P.
        • Rossini P.M.
        • et al.
        Brain excitability changes in the relapsing and remitting phases of multiple sclerosis: a study with transcranial magnetic stimulation.
        Clin. Neurophysiol. 2004; 115: 956-965
        • Cetin K.
        • Johnson K.L.
        • Ehde D.M.
        • Kuehn C.M.
        • Amtmann D.
        • Kraft G.H.
        Antidepressant use in multiple sclerosis: epidemiologic study of a large community sample.
        Mult. Scler. 2007; 13: 1046-1053
        • Christova M.
        • Rafolt D.
        • Gallasch E.
        Cumulative effects of anodal and priming cathodal tDCS on pegboard test performance and motor cortical excitability.
        Behav. Brain Res. 2015; 287: 27-33
        • Cogiamanian F.
        • Marceglia S.
        • Ardolino G.
        • Barbieri S.
        • Priori A.
        Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas.
        Eur. J. Neurosci. 2007; 26: 242-249
        • Datta A.
        Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models.
        Front. Psychiatry. 2012; 3: 1-8
        • Davis G.W.
        • Bezprozvanny I.
        Maintaining the stability of neural function: a homeostatic hypothesis.
        Annu. Rev. Physiol. 2001; 63: 847-869
        • Di Lazzaro V.
        • Ranieri F.
        • Profice P.
        • Pilato F.
        • Mazzone P.
        • Capone F.
        • et al.
        Transcranial direct current stimulation effects on the excitability of corticospinal axons of the human cerebral cortex.
        Brain Stimul. 2013; 6: 641-643
        • Fricke K.
        • Seeber A.A.
        • Thirugnanasambandam N.
        • Paulus W.
        • Nitsche M.A.
        • Rothwell J.C.
        Time course of the induction of homeostatic plasticity generated by repeated transcranial direct current stimulation of the human motor cortex.
        J. Neurophysiol. 2011; 105: 1141-1149
        • Fujiyama H.
        • Hinder M.R.
        • Barzideh A.
        • Van de Vijver C.
        • Badache A.C.
        • Manrique-C M.N.
        • et al.
        Preconditioning tDCS facilitates subsequent tDCS effect on skill acquisition in older adults.
        Neurobiol. Aging. 2017; 51: 31-42
        • Gandevia S.C.
        • Allen G.M.
        • Butler J.E.
        • Taylor J.L.
        Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex.
        J. Physiol. 1996; 490: 529-536
        • Huang Y.Z.
        • Rothwell J.C.
        • Edwards M.J.
        • Chen R.S.
        Effect of physiological activity on an NMDA-dependent form of cortical plasticity in human.
        Cereb. Cortex. 2008; 18: 563-570
        • Jamil A.
        • Batsikadze G.
        • Kuo H.I.
        • Labruna L.
        • Hasan A.
        • Paulus W.
        • et al.
        Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation.
        J. Physiol. 2017; 595: 1273-1288
        • Kluger B.M.
        • Krupp L.B.
        • Enoka R.M.
        Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy.
        Neurology. 2013; 80: 409-416
        • Kurtzke J.F.
        Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS).
        Neurology. 1983; 33: 1444
        • Lang N.
        • Siebner H.R.
        • Ernst D.
        • Nitsche M.A.
        • Paulus W.
        • Lemon R.N.
        • et al.
        Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects.
        Biol. Psychiatry. 2004; 56: 634-639
        • Lassmann H.
        • Wekerle H.
        Chapter 12 - the pathology of multiple sclerosis.
        in: Compston A. Confavreux C. Lassmann H. McDonald I. Miller D. Noseworthy J. McAlpine’s Multiple Sclerosis. 4th ed. Churchill Livingstone, Edinburgh2006: 557-599
        • Leocani L.
        • Colombo B.
        • Magnani G.
        • Martinelli-Boneschi F.
        • Cursi M.
        • Rossi P.
        • et al.
        Fatigue in multiple sclerosis is associated with abnormal cortical activation to voluntary movement—EEG evidence.
        Neuroimage. 2001; 13: 1186-1192
        • Liebetanz D.
        • Nitsche M.A.
        • Tergau F.
        • Paulus W.
        Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability.
        Brain. 2002; 125: 2238-2247
        • Liepert J.
        • Mingers D.
        • Heesen C.
        • Bäumer T.
        • Weiller C.
        Motor cortex excitability and fatigue in multiple sclerosis: a transcranial magnetic stimulation study.
        Mult. Scler. 2005; 11: 316-321
        • Monte-Silva K.
        • Kuo M.-F.
        • Liebetanz D.
        • Paulus W.
        • Nitsche M.A.
        Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS).
        J. Neurophysiol. 2010; 103: 1735-1740
        • Ngomo S.
        • Leonard G.
        • Moffet H.
        • Mercier C.
        Comparison of transcranial magnetic stimulation measures obtained at rest and under active conditions and their reliability.
        J. Neurosci. Methods. 2012; 205: 65-71
        • Nitsche M.A.
        • Fricke K.
        • Henschke U.
        • Schlitterlau A.
        • Liebetanz D.
        • Lang N.
        • et al.
        Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans.
        J. Physiol. 2003; 553: 293-301
        • Nitsche M.A.
        • Liebetanz D.
        • Schlitterlau A.
        • Henschke U.
        • Fricke K.
        • Frommann K.
        • et al.
        GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans.
        Eur. J. Neurosci. 2004; 19: 2720-2726
        • Nitsche M.A.
        • Paulus W.
        Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.
        J. Physiol. 2000; 527: 633-639
        • Nitsche M.A.
        • Paulus W.
        Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans.
        Neurology. 2001; 57: 1899-1901
        • Oldfield R.C.
        The assessment and analysis of handedness: the Edinburgh inventory.
        Neuropsychologia. 1971; 9: 97-113
        • Petajan J.H.
        • White A.T.
        Motor-evoked potentials in response to fatiguing grip exercise in multiple sclerosis patients.
        Clin. Neurophysiol. 2000; 111: 2188-2195
        • Rossi S.
        • Studer V.
        • Motta C.
        • De Chiara V.
        • Barbieri F.
        • Bernardi G.
        • et al.
        Inflammation inhibits GABA transmission in multiple sclerosis.
        Mult. Scler. 2012; 18: 1633-1635
        • Rudroff T.
        • Workman C.D.
        • Fietsam A.C.
        • Kamholz J.
        Response variability in transcranial direct current stimulation: why sex matters.
        Front. Psychiatry. 2020; 11: 585
        • Sheean G.L.
        • Murray N.M.
        • Rothwell J.C.
        • Miller D.H.
        • Thompson A.J.
        An electrophysiological study of the mechanism of fatigue in multiple sclerosis.
        Brain. 1997; 120: 299-315
        • Siebner H.R.
        • Lang N.
        • Rizzo V.
        • Nitsche M.A.
        • Paulus W.
        • Lemon R.N.
        • et al.
        Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex.
        J. Neurosci. 2004; 24: 3379-3385
        • Stagg C.
        • Bachtiar V.
        • Johansen-Berg H.
        The role of GABA in human motor learning.
        Curr. Biol. 2011; 21: 480-484
        • Staubli U.
        • Chun D.
        Factors regulating the reversibility of long-term potentiation.
        J. Neurosci. 1996; 16: 853-860
        • Steens A.
        • Heersema D.J.
        • Maurits N.M.
        • Renken R.J.
        • Zijdewind I.
        Mechanisms underlying muscle fatigue differ between multiple sclerosis patients and controls: a combined electrophysiological and neuroimaging study.
        Neuroimage. 2012; 59: 3110-3118
        • Taylor J.L.
        • Butler J.E.
        • Allen G.M.
        • Gandevia S.C.
        Changes in motor cortical excitability during human muscle fatigue.
        J. Physiol. 1996; 490: 519-528
        • Thickbroom G.
        • Sacco P.
        • Faulkner D.
        • Kermode A.
        • Mastaglia F.
        Enhanced corticomotor excitability with dynamic fatiguing exercise of the lower limb in multiple sclerosis.
        J. Neurol. 2008; 255: 1001-1005
        • Thirugnanasambandam N.
        • Sparing R.
        • Dafotakis M.
        • Meister I.G.
        • Paulus W.
        • Nitsche M.A.
        • et al.
        Isometric contraction interferes with transcranial direct current stimulation (tDCS) induced plasticity: evidence of state-dependent neuromodulation in human motor cortex.
        Restor. Neurol. Neurosci. 2011; 29: 311-320
        • Thomas C.
        • Ghodratitoostani I.
        • Delbem A.C.B.
        • Ali A.
        • Datta A.
        Influence of gender-related differences in transcranial direct current stimulation: a computational study.
        Conf. Proc. IEEE Eng. Med. Biol. Soc. 2019; 2019: 5196-5199
        • Turrigiano G.G.
        • Nelson S.B.
        Homeostatic plasticity in the developing nervous system.
        Nat. Rev. Neurosci. 2004; 5: 97-107
        • Williams P.S.
        • Hoffman R.L.
        • Clark B.C.
        Preliminary evidence that anodal transcranial direct current stimulation enhances time to task failure of a sustained submaximal contraction.
        PLoS One. 2013; 8: 1-11
        • Williams P.S.
        • Hoffman R.L.
        • Clark B.C.
        Preliminary evidence that anodal transcranial direct current stimulation enhances time to task failure of a sustained submaximal contraction.
        PLoS One. 2013; 8e81418