Advertisement

Accuracy of clinical versus oculographic detection of pathological saccadic slowing

  • Scott N. Grossman
    Correspondence
    Corresponding author.
    Affiliations
    Department of Neurology, New York University Grossman School of Medicine, United States of America
    Search for articles by this author
  • Rachel Calix
    Affiliations
    Department of Neurology, New York University Grossman School of Medicine, United States of America
    Search for articles by this author
  • Todd Hudson
    Affiliations
    Department of Neurology, New York University Grossman School of Medicine, United States of America

    Rusk Institute of Rehabilitation, New York University Grossman School of Medicine, United States of America
    Search for articles by this author
  • John Ross Rizzo
    Affiliations
    Department of Neurology, New York University Grossman School of Medicine, United States of America

    Rusk Institute of Rehabilitation, New York University Grossman School of Medicine, United States of America
    Search for articles by this author
  • Ivan Selesnick
    Affiliations
    Department of Electrical and Computer Engineering, New York University Tandon School of Engineering, United States of America
    Search for articles by this author
  • Steven Frucht
    Affiliations
    Department of Neurology, New York University Grossman School of Medicine, United States of America
    Search for articles by this author
  • Steven L. Galetta
    Affiliations
    Department of Neurology, New York University Grossman School of Medicine, United States of America

    Department of Ophthalmology, New York University Grossman School of Medicine, United States of America
    Search for articles by this author
  • Laura J. Balcer
    Affiliations
    Department of Neurology, New York University Grossman School of Medicine, United States of America

    Department of Ophthalmology, New York University Grossman School of Medicine, United States of America

    Department of Population Health, New York University Grossman School of Medicine, United States of America
    Search for articles by this author
  • Janet C. Rucker
    Affiliations
    Department of Neurology, New York University Grossman School of Medicine, United States of America

    Department of Ophthalmology, New York University Grossman School of Medicine, United States of America
    Search for articles by this author
Published:September 22, 2022DOI:https://doi.org/10.1016/j.jns.2022.120436

      Highlights

      • Clinical identification of saccadic slowing by clinicians across different training levels is challenging.
      • Correct identification of slowed saccades has important implications for neurological diagnosis since pathologically slow saccades are highly localizing.
      • In some neurodegenerative disorders, such as progressive supranuclear palsy, diagnosis rests on proper identification of saccadic pathology and, in its earliest stages, on recognition of slow saccades.
      • Incorporating quantified analysis of saccades as a supplement to the clinical exam is high yield.
      • Infrared oculography isclinically useful and should be integrated into daily practice. It is a necessary exam tool, analogous to OCT for nerve fiber layer quantification.

      Abstract

      Saccadic slowing as a component of supranuclear saccadic gaze palsy is an important diagnostic sign in multiple neurologic conditions, including degenerative, inflammatory, genetic, or ischemic lesions affecting brainstem structures responsible for saccadic generation. Little attention has been given to the accuracy with which clinicians correctly identify saccadic slowing. We compared clinician (n = 19) judgements of horizontal and vertical saccade speed on video recordings of saccades (from 9 patients with slow saccades, 3 healthy controls) to objective saccade peak velocity measurements from infrared oculographic recordings. Clinician groups included neurology residents, general neurologists, and fellowship-trained neuro-ophthalmologists. Saccades with normal peak velocities on infrared recordings were correctly identified as normal in 57% (91/171; 171 = 9 videos × 19 clinicians) of clinician decisions; saccades determined to be slow on infrared recordings were correctly identified as slow in 84% (224/266; 266 = 14 videos × 19 clinicians) of clinician decisions. Vertical saccades were correctly identified as slow more often than horizontal saccades (94% versus 74% of decisions). No significant differences were identified between clinician training levels. Reliable differentiation between normal and slow saccades is clinically challenging; clinical performance is most accurate for detection of vertical saccade slowing. Quantitative analysis of saccade peak velocities enhances accurate detection and is likely to be especially useful for detection of mild saccadic slowing.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Leigh R.J.
        • Zee D.S.
        The Neurology of Eye Movements.
        5th ed. Oxford University Press, New York2015
        • Tilikete C.
        • Matthieu P.R.
        Ocular Motor Apraxia.
        Springer Nature, Switzerland2019
        • Jensen K.
        • Shaikh A.G.
        Slow Saccades.
        Springer Nature, Switzerland2019
        • Rucker J.C.
        • Hudson T.E.
        Translational Neurology of Slow Saccades.
        Springer Nature, Switzerland2019
        • Boghen D.
        • Troost B.T.
        • Daroff R.B.
        • Dell’Osso L.F.
        • Birkett J.E.
        Velocity characteristics of Normal human saccades.
        Invest. Ophthalmol. Vis. Sci. 1974; 13: 619-623
        • Bahill A.T.
        • Clark M.R.
        • Stark L.
        The main sequence, a tool for studying human eye movements.
        Math. Biosci. 1975; 24: 191-204
        • Baloh R.W.
        • Sills A.W.
        • Kumley W.E.
        • Honrubia V.
        Quantitative measurement of saccade amplitude, duration, and velocity.
        Neurology. 1975; 25: 1065-1070
        • Leigh R.J.
        • Kennard C.
        Using saccades as a research tool in the clinical neurosciences.
        Brain : a journal of neurology. 2004; 127: 460-477
        • Frohman T.C.
        • Frohman E.M.
        • O’Suilleabhain P.
        • et al.
        Accuracy of clinical detection of INO in MS.
        Corroboration with Quantitative Infrared Oculography. 2003; 61: 848-850
        • Dai W.
        • Selesnick I.
        • Rizzo J.R.
        • Rucker J.
        • Hudson T.
        A nonlinear generalization of the Savitzky-Golay filter and the quantitative analysis of saccades.
        J. Vis. 2017; 17: 10
        • Wang M.
        • Kong L.
        • Li Z.
        • Zhang L.
        Covariance estimators for generalized estimating equations (GEE) in longitudinal analysis with small samples.
        Stat. Med. 2016; 35: 1706-1721
        • Hudson T.E.
        Bayesian Data Analysis for the Behavioral and Neural Sciences.
        Cambridge University Press, 2021
        • Feldon S.E.
        • Unsold R.
        Graves’ ophthalmopathy evaluated by infrared eye-movement recordings.
        Arch. Ophthalmol. 1982; 100: 324-328
        • Sharpe J.A.
        • McReelis K.
        • Wong A.M.
        Recovery of peripheral versus central nerves identified by saccadic velocity after abducens neuropathy.
        Ann. N. Y. Acad. Sci. 2005; 1039: 417-429
        • Wong A.M.
        • McReelis K.
        • Sharpe J.A.
        Saccade dynamics in peripheral vs central sixth nerve palsies.
        Neurology. 2006; 66: 1390-1398
        • Robinson D.A.
        Oculomotor unit behavior in the monkey.
        J. Neurophysiol. 1970; 33: 393-403
      1. Neurophysiology, pathology, and models of rapid eye movements.
        in: Anastasio T. Demer J. Leigh R.J. David A Robinson’s Modeling the Oculomotor Control System. Elsevier, Amsterdam, Netherlands2022: 287-315
        • Van Gisbergen J.A.
        • Robinson D.A.
        • Gielen S.
        A quantitative analysis of generation of saccadic eye movements by burst neurons.
        J. Neurophysiol. 1981; 45: 417-442
        • Horn A.K.
        The reticular formation.
        Prog. Brain Res. 2006; 151: 127-155
        • Horn A.K.
        • Helmchen C.
        • Wahle P.
        GABAergic neurons in the rostral mesencephalon of the macaque monkey that control vertical eye movements.
        Ann. N. Y. Acad. Sci. 2003; 1004: 19-28
        • Strassman A.
        • Highstein S.M.
        • McCrea R.A.
        Anatomy and physiology of saccadic burst neurons in the alert squirrel monkey. I. Excitatory burst neurons.
        J. Comp. Neurol. 1986; 249: 337-357
        • Horn A.K.
        • Buttner-Ennever J.A.
        • Suzuki Y.
        • Henn V.
        Histological identification of premotor neurons for horizontal saccades in monkey and man by parvalbumin immunostaining.
        J. Comp. Neurol. 1995; 359: 350-363
        • Horn A.K.E.
        • Büttner-Ennever J.A.
        Premotor neurons for vertical eye movements in the rostral mesencephalon of monkey and human: histologic identification by parvalbumin immunostaining.
        J. Comp. Neurol. 1998; 392: 413-427
        • Henn V.
        • Lang W.
        • Hepp K.
        • Reisine H.
        Experimental gaze palsies in monkeys and their relation to human pathology.
        Brain : a journal of neurology. 1984; 107: 619-636
        • Suzuki Y.
        • Buttner-Ennever J.A.
        • Straumann D.
        • Hepp K.
        • Hess B.J.
        • Henn V.
        Deficits in torsional and vertical rapid eye movements and shift of Listing’s plane after uni- and bilateral lesions of the rostral interstitial nucleus of the medial longitudinal fasciculus.
        Exp. Brain Res. 1995; 106: 215-232
        • Kaneko C.R.
        Effect of ibotenic acid lesions of the omnipause neurons on saccadic eye movements in rhesus macaques.
        J. Neurophysiol. 1996; 75: 2229-2242
        • Bhidayasiri R.
        • Plant G.T.
        • Leigh R.J.
        A hypothetical scheme for the brainstem control of vertical gaze.
        Neurology. 2000; 54: 1985-1993
        • Hikosaka O.
        • Wurtz R.H.
        Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus.
        J. Neurophysiol. 1985; 53: 266-291
        • Hikosaka O.
        • Wurtz R.H.
        Saccadic eye movements following injection of lidocaine into the superior colliculus.
        Exp. Brain Res. 1986; 61: 531-539
        • Schiller P.H.
        • True S.D.
        • Conway J.L.
        Deficits in eye movements following frontal eye-field and superior colliculus ablations.
        J. Neurophysiol. 1980; 44: 1175-1189
        • Waitzman D.M.
        • Silakov V.L.
        • DePalma-Bowles S.
        • Ayers A.S.
        Effects of reversible inactivation of the primate mesencephalic reticular formation. II. Hypometric vertical saccades.
        J Neurophysiol. 2000; 83: 2285-2299
        • Bhidayasiri R.
        • Riley D.E.
        • Somers J.T.
        • Lerner A.J.
        • Büttner-Ennever J.A.
        • Leigh R.J.
        Pathophysiology of slow vertical saccades in progressive supranuclear palsy.
        Neurology. 2001; 57: 2070-2077
        • Hardwick A.
        • Rucker J.C.
        • Cohen M.L.
        • et al.
        Evolution of oculomotor and clinical findings in autopsy-proven Richardson syndrome.
        Neurology. 2009; 73: 2122-2124
        • Steele J.C.
        • Richardson J.C.
        • Olszewski J.
        Progressive supranuclear palsy. A heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia.
        Arch. Neurol. 1964; 10: 333-359
        • Juncos J.L.
        • Hirsch E.C.
        • Malessa S.
        • Duyckaerts C.
        • Hersh L.B.
        • Agid Y.
        Mesencephalic cholinergic nuclei in progressive supranuclear palsy.
        Neurology. 1991; 41: 25-30
        • Daniel S.E.
        • de Bruin V.M.
        • Lees A.J.
        The clinical and pathological spectrum of Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy): a reappraisal.
        Brain : a journal of neurology. 1995; 118: 759-770
        • Hanson M.R.
        • Hamid M.A.
        • Tomsak R.L.
        • Chou S.S.
        • Leigh R.J.
        Selective saccadic palsy caused by pontine lesions: clinical, physiological, and pathological correlations.
        Ann. Neurol. 1986; 20: 209-217
        • Rufa A.
        • Cerase A.
        • De Santi L.
        • et al.
        Impairment of vertical saccades from an acute pontine lesion in multiple sclerosis.
        J. Neuroophthalmol. 2008; 28: 305-307
        • Johnston J.L.
        • Sharpe J.A.
        • Ranalli P.J.
        • Morrow M.J.
        Oblique misdirection and slowing of vertical saccades after unilateral lesions of the pontine tegmentum.
        Neurology. 1993; 43: 2238-2244
        • Zee D.S.
        • Optican L.M.
        • Cook J.D.
        • Robinson D.A.
        • Engel W.K.
        Slow saccades in spinocerebellar degeneration.
        Arch. Neurol. 1976; 33: 243-251
        • Burk K.
        • Fetter M.
        • Abele M.
        • et al.
        Autosomal dominant cerebellar ataxia type I: oculomotor abnormalities in families with SCA1, SCA2, and SCA3.
        J. Neurol. 1999; 246: 789-797
        • Velazquez-Perez L.
        • Seifried C.
        • Santos-Falcon N.
        • et al.
        Saccade velocity is controlled by polyglutamine size in spinocerebellar ataxia 2.
        Ann. Neurol. 2004; 56: 444-447
        • Rufa A.
        • Federighi P.
        Fast versus slow: different saccadic behavior in cerebellar ataxias.
        Ann. N. Y. Acad. Sci. 2011; 1233: 148-154
        • Wadia N.
        • Pang J.
        • Desai J.
        • Mankodi A.
        • Desai M.
        • Chamberlain S.
        A clinicogenetic analysis of six Indian spinocerebellar ataxia (SCA2) pedigrees. The significance of slow saccades in diagnosis.
        Brain : a journal of neurology. 1998; 121: 2341-2355
        • Geiner S.
        • Horn A.K.
        • Wadia N.H.
        • Sakai H.
        • Buttner-Ennever J.A.
        The neuroanatomical basis of slow saccades in spinocerebellar ataxia type 2 (Wadia-subtype).
        Prog. Brain Res. 2008; 171: 575-581
        • Lloyd-Smith Sequeira A.
        • Rizzo J.R.
        • Rucker J.C.
        Clinical approach to Supranuclear brainstem saccadic gaze palsies.
        Front. Neurol. 2017; 8: 429
        • Rottach K.G.
        • von Maydell R.D.
        • Das V.E.
        • et al.
        Evidence for independent feedback control of horizontal and vertical saccades from Niemann-Pick type C disease.
        Vis. Res. 1997; 37: 3627-3638
        • Abel L.A.
        • Walterfang M.
        • Fietz M.
        • Bowman E.A.
        • Velakoulis D.
        Saccades in adult Niemann-Pick disease type C reflect frontal, brainstem, and biochemical deficits.
        Neurology. 2009; 72: 1083-1086
        • Salsano E.
        • Umeh C.
        • Rufa A.
        • Pareyson D.
        • Zee D.S.
        Vertical supranuclear gaze palsy in Niemann-Pick type C disease.
        Neurol. Sci. 2012; 33: 1225-1232
        • Leigh R.J.
        • Riley D.E.
        Eye movements in parkinsonism.
        in: It’s Saccadic Speed That Counts. 54. 2000: 1018-1019
        • Serra A.
        • Liao K.
        • Matta M.
        • Leigh R.J.
        Diagnosing disconjugate eye movements: phase-plane analysis of horizontal saccades.
        Neurology. 2008; 71: 1167-1175
        • Rottach K.G.
        • Riley D.E.
        • DiScenna A.O.
        • Zivotofsky A.Z.
        • Leigh R.J.
        Dynamic properties of horizontal and vertical eye movements in parkinsonian syndromes.
        Ann. Neurol. 1996; 39: 368-377
        • Chen A.L.
        • Riley D.E.
        • King S.A.
        • et al.
        The disturbance of gaze in progressive supranuclear palsy: implications for pathogenesis.
        Front. Neurol. 2010; 1: 147
        • Garbutt S.
        • Riley D.E.
        • Kumar A.N.
        • Han Y.
        • Harwood M.R.
        • Leigh R.J.
        Abnormalities of optokinetic nystagmus in progressive supranuclear palsy.
        J. Neurol. Neurosurg. Psychiatry. 2004; 75: 1386-1394
        • Kumar A.N.
        • Han Y.H.
        • Liao K.
        • Rucker J.C.
        • Ramat S.
        • Leigh R.J.
        Evaluating large saccades in patients with brain-stem or cerebellar disorders.
        Ann. N. Y. Acad. Sci. 2005; 1039: 404-416
        • Ling M.L.H.
        • Tynan D.
        • Ruan C.W.
        • et al.
        Assessment of saccadic velocity at the bedside.
        Neuroophthalmology. 2020; 44: 71-75
        • Averbuch-Heller L.
        • Gordon C.
        • Zivotofsky A.
        • et al.
        Small vertical saccades have normal speeds in progressive supranuclear palsy (PSP).
        Ann. N. Y. Acad. Sci. 2002; 956: 434-437
        • Höglinger G.U.
        • Respondek G.
        • Stamelou M.
        • et al.
        Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria.
        Movement Disorders. 2017; 32: 853-864
        • Davis S.L.
        • Frohman T.C.
        • Crandall C.G.
        • et al.
        Modeling Uhthoff’s phenomenon in MS patients with internuclear ophthalmoparesis.
        Neurology. 2008; 70: 1098-1106
        • Leigh R.J.
        • Serra A.
        Taking the temperature of MS with INO.
        Neurology. 2008; 70: 1063-1064
        • Ventre J.
        • Vighetto A.
        • Bailly G.
        • Prablanc C.
        Saccade metrics in multiple sclerosis: versional velocity disconjugacy as the best clue?.
        J. Neurol. Sci. 1991; 102: 144-149
        • Flipse J.P.
        • Straathof C.S.
        • Van der Steen J.
        • et al.
        Binocular saccadic eye movements in multiple sclerosis.
        J. Neurol. Sci. 1997; 148: 53-65
        • Frohman E.M.
        • O’Suilleabhain P.
        • Dewey Jr., R.B.
        • Frohman T.C.
        • Kramer P.D.
        A new measure of dysconjugacy in INO: the first-pass amplitude.
        J. Neurol. Sci. 2003; 210: 65-71
        • van der Geest J.N.
        • Frens M.A.
        Recording eye movements with video-oculography and scleral search coils: a direct comparison of two methods.
        J. Neurosci. Methods. 2002; 114: 185-195
        • McCamy M.B.
        • Otero-Millan J.
        • Leigh R.J.
        • et al.
        Simultaneous recordings of human microsaccades and drifts with a contemporary video eye tracker and the search coil technique.
        PLoS One. 2015; 10e0128428
        • Raynowska J.
        • Rizzo J.R.
        • Rucker J.C.
        • et al.
        Validity of low-resolution eye-tracking to assess eye movements during a rapid number naming task: performance of the eyetribe eye tracker.
        Brain Inj. 2018; 32: 200-208
        • Dai W.
        • Selesnick I.
        • Rizzo J.R.
        • Rucker J.
        • Hudson T.
        Detection of normal and slow saccades using implicit piecewise polynomial approximation.
        J. Vis. 2021; 21: 8