Advertisement

Relationship between CSF tau biomarkers and structural brain MRI measures in frontotemporal lobar degeneration

Published:September 08, 2022DOI:https://doi.org/10.1016/j.jns.2022.120415

      Highlights

      • Frontotemporal lobar degeneration (FTLD) refers to a group of clinical syndromes with different underlying pathologies.
      • CSF biomarkers have been proposed as diagnostic and prognostic factors
      • We found a significant relationship between CSF lower p-tau/t-tau ratio and brain atrophy in the early stage of FTLD
      • Our data suggest that p-tau/t-tau ratio could play a role as prognostic factor in FTLD

      Abstract

      Background

      Recently in the field neurodegenerative diseases increasing attention has been pointed to CSF biomarkers and their integration with neuroimaging (1). Frontotemporal lobar degeneration (FTLD) refers to a heterogeneous group of clinical syndromes with different underlying proteinopathies including tau pathology. CSF biomarkers have been proposed as diagnostic and prognostic factors. Aim of our study was to evaluate the relationship between CSF tau biomarkers and structural MRI brain measures in FTLD.

      Methods

      We included early FTLD patient. All included patients underwent lumbar puncture to evaluate amyloid, total-tau (t-tau), phospho-tau 181 (p-tau); p-tau/t-tau ratio was also calculated; brain MRI was performed to estimate whole brain volume, volume of principal deep grey matter structures and regional cortical thickness.

      Results

      Demographic characteristics of the 28 included patients were as follows: female/male: 9/19; mean ± SD age: 68.1 ± 7.8 years. The p-tau/t-tau ratio was significantly correlated with whole brain volume (r = 0.69; p: 0.001), left putamen volume (r = 0.55 p: 0.009), left pallidum volume (r = 0.41; p: 0.01), right accumbens area (r = 0.47; p: 0.02). P-tau/t tau ratio showed also a significant correlation with cortical thickness of left temporal lobe (r = 0.74; p: 0.001) and right lateral orbital frontal cortex (r = 0.45; p: 0.03). Linear regression showed a significant relationship between p-tau/t-tau ratio and left temporal pole (p = 0.01; r2: 0.60) and brain volume (p:0.002; r2: 0.56) after controlling for age and gender.

      Conclusions

      Our data suggest that CSF biomarkers, especially p-tau/t-tau ratio, could play a role as prognostic factor in FTLD. Further longitudinal investigations are needed to confirm these findings.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Irwin D.J.
        • Fedler J.
        • Coffey C.S.
        • Caspell-Garcia C.
        • Kang J.H.
        • Simuni T.
        • Foroud T.
        • Toga A.W.
        • Tanner C.M.
        • Kieburtz K.
        • Chahine L.M.
        • Reimer A.
        • Hutten S.
        • Weintraub D.
        • Mollenhauer B.
        • Galasko D.R.
        • Siderowf A.
        • Marek K.
        • Trojanowski J.Q.
        • Shaw L.M.
        Parkinson’s progression marker initiative. Evolution of Alzheimer’s disease cerebrospinal fluid biomarkers in early Parkinson’s disease.
        Ann. Neurol. 2020; 88: 574-587https://doi.org/10.1002/ana.25811
        • Alm K.H.
        • Bakker A.
        Relationships between diffusion tensor imaging and cerebrospinal fluid metrics in early stages of the Alzheimer’s disease continuum.
        J. Alzheimers Dis. 2019; 70: 965-981https://doi.org/10.3233/JAD-1812103
        • Jack Jr., C.R.
        • Bennett D.A.
        • Blennow K.
        • Carrillo M.C.
        • Feldman H.H.
        • Frisoni G.B.
        • Hampel H.
        • Jagust W.J.
        • Johnson K.A.
        • Knopman D.S.
        • Petersen R.C.
        • Scheltens P.
        • Sperling R.A.
        • Dubois B.
        A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers.
        Neurology. 2016; 87: 539-547https://doi.org/10.1212/WNL.0000000000002923
        • Filippi M.
        • Canu E.
        • Agosta F.
        The role of amyloid-β, tau, and apolipoprotein E epsilon4 in Alzheimer disease: how is the team playing?.
        AJNR Am. J. Neuroradiol. 2013; 34: 511-512https://doi.org/10.3174/ajnr.A3295
        • Murley A.G.
        • Coyle-Gilchrist I.
        • Rouse M.A.
        • Jones P.S.
        • Li W.
        • Wiggins J.
        • Lansdall C.
        • Rodríguez P.V.
        • Wilcox A.
        • Tsvetanov K.A.
        • Patterson K.
        • Lambon Ralph M.A.
        • Rowe J.B.
        Redefining the multidimensional clinical phenotypes of frontotemporal lobar degeneration syndromes.
        Brain. 2020; 143: 1555-1571https://doi.org/10.1093/brain/awaa097
        • Pradhan S.
        • Tandon R.
        PSP-FTD complex: a possible variant of PSP.
        Am. J. Alzheimers Dis. Other Demen. 2020; 35 (15333175209223835)https://doi.org/10.1177/1533317520922383
        • Wszolek Z.K.
        • Tsuboi Y.
        • Ghetti B.
        • Pickering-Brown S.
        • Baba Y.
        • Cheshire W.P.
        Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17).
        Orphanet. J. Rare Dis. 2006; 1: 30https://doi.org/10.1186/1750-1172-1-30
        • Silva M.C.
        • Haggarty S.J.
        Tauopathies: deciphering disease mechanisms to develop effective therapies.
        Int. J. Mol. Sci. 2020; 21: 8948https://doi.org/10.3390/ijms21238948
        • Abu-Rumeileh S.
        • Mometto N.
        • Bartoletti-Stella A.
        • Polischi B.
        • Oppi F.
        • Poda R.
        • Stanzani-Maserati M.
        • Cortelli P.
        • Liguori R.
        • Capellari S.
        • Parchi P.
        Cerebrospinal fluid biomarkers in patients with frontotemporal dementia Spectrum: a single-center study.
        J. Alzheimers Dis. 2018; 66: 551-563https://doi.org/10.3233/JAD-180409
        • Jiskoot L.C.
        • Panman J.L.
        • Meeter L.H.
        • Dopper E.G.P.
        • Donker Kaat L.
        • Franzen S.
        • van der Ende E.L.
        • van Minkelen R.
        • SARB Rombouts
        • Papma J.M.
        • van Swieten J.C.
        Longitudinal multimodal MRI as prognostic and diagnostic biomarker in presymptomatic familial frontotemporal dementia.
        Brain. 2019; 142: 193-208https://doi.org/10.1093/brain/awy288
        • Staffaroni A.M.
        • Goh S.M.
        • Cobigo Y.
        • Ong E.
        • Lee S.E.
        • Casaletto K.B.
        • Wolf A.
        • Forsberg L.K.
        • Ghoshal N.
        • Graff-Radford N.R.
        • Grossman M.
        • Heuer H.W.
        • Hsiung G.R.
        • Kantarci K.
        • Knopman D.S.
        • Kremers W.K.
        • Mackenzie I.R.
        • Miller B.L.
        • Pedraza O.
        • Rascovsky K.
        • Tartaglia M.C.
        • Wszolek Z.K.
        • Kramer J.H.
        • Kornak J.
        • Boeve B.F.
        • Boxer A.L.
        • Rosen H.J.
        • ARTFL-LEFFTDS Longitudinal Frontotemporal Lobar Degeneration Consortium
        Rates of brain atrophy across disease stages in familial frontotemporal dementia associated with MAPT, GRN, and C9orf72 pathogenic variants.
        JAMA Netw. Open. 2020; 3e2022847https://doi.org/10.1001/jamanetworkopen.2020.22847
        • Panman J.L.
        • Jiskoot L.C.
        • Bouts M.J.R.J.
        • Meeter L.H.H.
        • van der Ende E.L.
        • Poos J.M.
        • FeisRA Kievit A.J.A.
        • van Minkelen R.
        • Dopper E.G.P.
        • Rombouts S.A.R.B.
        • van Swieten J.C.
        • Papma J.M.
        Gray and white matter changes in presymptomatic genetic frontotemporal dementia: a longitudinal MRI study.
        Neurobiol. Aging. 2019; 76115124https://doi.org/10.1016/j.neurobiolaging.20 18.12.017
        • De Micco R.
        • Agosta F.
        • Basaia S.
        • Siciliano M.
        • Cividini C.
        • Tedeschi G.
        • Filippi M.
        • Tessitore A.
        Functional connectomics and disease progression in drug-Naïve Parkinson’s disease patients.
        Mov. Disord. 2021 Feb 27; https://doi.org/10.1002/mds.28541
        • Giordano A.
        • Tessitore A.
        • Corbo D.
        • Cirillo G.
        • de Micco R.
        • Russo A.
        • Liguori S.
        • Cirillo M.
        • Esposito F.
        • Tedeschi G.
        Clinical and cognitive correlations of regional gray matter atrophy in progressive supranuclear palsy.
        Parkinsonism Relat. Disord. 2013 Jun; 19: 590-594
        • Rascovsky K.
        • Hodges J.R.
        • Knopman D.
        • Mendez M.F.
        • Kramer J.H.
        • Neuhaus J.
        • van Swieten J.C.
        • Seelaar H.
        • Dopper E.G.
        • Onyike C.U.
        • Hillis A.E.
        • Josephs K.A.
        • Boeve B.F.
        • Kertesz A.
        • Seeley W.W.
        • Rankin K.P.
        • Johnson J.K.
        • Gorno-Tempini M.L.
        • Rosen H.
        • Prioleau-Latham C.E.
        • Lee A.
        • Kipps C.M.
        • Lillo P.
        • Piguet O.
        • Rohrer J.D.
        • Rossor M.N.
        • Warren J.D.
        • Fox N.C.
        • Galasko D.
        • Salmon D.P.
        • Black S.E.
        • Mesulam M.
        • Weintraub S.
        • Dickerson B.C.
        • Diehl-Schmid J.
        • Pasquier F.
        • Deramecourt V.
        • Lebert F.
        • Pijnenburg Y.
        • Chow T.W.
        • Manes F.
        • Grafman J.
        • Cappa S.F.
        • Freedman M.
        • Grossman M.
        • Miller B.L.
        Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia.
        Brain. 2011; 134: 2456-2477
        • Gorno-Tempini M.L.
        • Hillis A.E.
        • Weintraub S.
        • Kertesz A.
        • Mendez M.
        • Cappa S.F.
        • Ogar J.M.
        • Rohrer J.D.
        • Black S.
        • Boeve B.F.
        • Manes F.
        • Dronkers N.F.
        • Vandenberghe R.
        • Rascovsky K.
        • Patterson K.
        • Miller B.L.
        • Knopman D.S.
        • Hodges J.R.
        • Mesulam M.M.
        • Grossman M.
        Classification of pri- mary progressive aphasia and its variants.
        Neurology. 2011; 76: 1006-1014
        • Strong M.J.
        • Abrahams S.
        • Goldstein L.H.
        • Woolley S.
        • Mclaughlin P.
        • Snowden J.
        • Mioshi E.
        • Roberts-South A.
        • Benatar M.
        • Hortobagyi T.
        • Rosenfeld J.
        • Silani V.
        • Ince P.G.
        • Turner M.R.
        Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): revised diagnostic criteria.
        Amyotroph Lateral Scler Frontotemp. Degener. 2017; 18: 153-174
        • Armstrong M.J.
        • Litvan I.
        • Lang A.E.
        • Bak T.H.
        • Bhatia K.P.
        • Borroni B.
        • Boxer A.L.
        • Dickson D.W.
        • Grossman M.
        • Hallett M.
        • Josephs K.A.
        • Kertesz A.
        • Lee S.E.
        • Miller B.L.
        • Reich S.G.
        • Riley D.E.
        • Tolosa E.
        • Troster A.I.
        • Vidailhet M.
        • Weiner W.J.
        Criteria for the diagnosis of corticobasal degeneration.
        Neurology. 2013; 80: 496-503
        • Hoglinger G.U.
        • Respondek G.
        • Stamelou M.
        • Kurz C.
        • Josephs K.A.
        • Lang A.E.
        • Mollenhauer B.
        • Muller U.
        • Nilsson C.
        • Whitwell J.L.
        • Arzberger T.
        • Englund E.
        • Gelpi E.
        • Giese A.
        • Irwin D.J.
        • Meissner W.G.
        • Pantelyat A.
        • Rajput A.
        • van Swieten J.C.
        • Troakes C.
        • Antonini A.
        • Bhatia K.P.
        • Bordelon Y.
        • Compta Y.
        • Corvol J.C.
        • Colosimo C.
        • Dickson D.W.
        • Dodel R.
        • Ferguson L.
        • Grossman M.
        • Kassubek J.
        • Krismer F.
        • Levin J.
        • Lorenzl S.
        • Morris H.R.
        • Nestor P.
        • Oertel W.H.
        • Poewe W.
        • Rabinovici G.
        • Rowe J.B.
        • Schellenberg G.D.
        • Seppi K.
        • van Eimeren T.
        • Wenning G.K.
        • Boxer A.L.
        • Golbe L.I.
        • Litvan I.
        • Movement Disorder Society-endorsed PSP Study Group
        Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria.
        Mov. Disord. 2017; 32: 853-864
        • Chiasserini D.
        • Biscetti L.
        • Farotti L.
        • Eusebi P.
        • Salvadori N.
        • Lisetti V.
        • Baschieri F.
        • Chipi E.
        • Frattini G.
        • Stoops E.
        • Vanderstichele H.
        • Calabresi P.
        • Parnetti L.
        Performance evaluation of an automated ELISA system for Alzheimer’s disease detection in clinical routine.
        J. Alzheimers Dis. 2016 Jul 22; 54: 55-67
        • Smith S.M.
        • De Stefano N.
        • Jenkinson M.
        Matthews normalised accurate measurement of longitudinal brain change.
        J. Comput. Assist. Tomogr. 2001; 25 (May/June): 466-475
        • Smith S.M.
        • Zhang Y.
        • Jenkinson M.
        • Chen J.
        • Matthews P.M.
        • Federico A.
        • De Stefano N.
        Accurate, robust and automated longitudinal and cross-sectional brain change analysis.
        NeuroImage. 2002; 17: 479-489
        • Agosta F.
        • Galantucci S.
        • Magnani G.
        • Marcone A.
        • Martinelli D.
        • Antonietta Volontè M.
        • Riva N.
        • Iannaccone S.
        • Ferraro P.M.
        • Caso F.
        • Chiò A.
        • Comi G.
        • Falini A.
        • Filippi M.
        MRI signatures of the frontotemporal lobar degeneration continuum.
        Hum. Brain Mapp. 2015; 36: 2602-2614https://doi.org/10.1002/hbm.22794
        • Canu E.
        • Agosta F.
        • Imperiale F.
        • Fontana A.
        • Caso F.
        • Spinelli E.G.
        • Magnani G.
        • Falini A.
        • Comi G.
        • Filippi M.
        Added value of multimodal MRI to the clinical diagnosis of primary progressive aphasia variants.
        Cortex. 2019; 113: 58-66https://doi.org/10.1016/j.cortex.2018.11.025
        • Rohrer J.D.
        • Nicholas J.M.
        • Cash D.M.
        • van Swieten J.
        • Dopper E.
        • Jiskoot L.
        • vanMinkelen R.
        • Rombouts S.A.
        • Cardoso M.J.
        • Clegg S.
        • Espak M.
        • et al.
        Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the genetic frontotemporal dementia initiative (GENFI) study: a cross-sectional analysis.
        Lancet Neurol. 2015; 14: 253-262https://doi.org/10.1016/S1474-4422(14)70324-2
        • Chen Q.
        • Boeve B.F.
        • Senjem M.
        • LEFFTDS Consortium
        • et al.
        Rates of lobar atrophy in asymptomatic MAPT mutation carriers.
        Alzheimers Dement (N Y). 2019; 5: 338-346https://doi.org/10.1016/j.trci.2019.05.010
        • Boxer A.L.
        • Gold M.
        • Huey E.
        • et al.
        The advantages of frontotemporal degeneration drug development (part 2 of frontotemporal degeneration: the next therapeutic frontier).
        Alzheimers Dement. 2013; 9: 189-198https://doi.org/10.1016/j.jalz.2012.03.003
        • Hu W.T.
        • Watts K.
        • Grossman M.
        • Glass J.
        • Lah J.J.
        • Hales C.
        • Shelnutt M.
        • Van Deerlin V.
        • Trojanowski J.Q.
        • Levey A.I.
        Reduced CSF p-Tau181 to tau ratio is a biomarker for FTLD-TDP.
        Neurology. 2013; 81: 1945-1952https://doi.org/10.1212/01.wnl.0000436625.63650.27
        • Pijnenburg Y.A.
        • Verwey N.A.
        • van der Flier W.M.
        • Scheltens P.
        • Teunissen C.E.
        Discriminative and prognostic potential of cerebrospinal fluid phosphoTau/tau ratio and neurofilaments for frontotemporal dementia subtypes.
        Alzheimers Dement (Amst.). 2015; 14: 505-512
        • Meeter L.H.H.
        • Vijverberg E.G.
        • Del Campo M.
        • Rozemuller A.J.M.
        • Donker Kaat L.
        • de Jong F.J.
        • van der Flier W.M.
        • Teunissen C.E.
        • van Swieten J.C.
        • Pijnenburg Y.A.L.
        Clinical value of neurofilament and phospho-tau/tau ratio in the frontotemporal dementia spectrum.
        Neurology. 2018; 90: e1231-e1239
        • Grossman M.
        • Elman L.
        • McCluskey L.
        • McMillan C.T.
        • Boller A.
        • Powers J.
        • Rascovsky K.
        • Hu W.
        • Shaw L.
        • Irwin D.J.
        • Lee V.M.
        • Trojanowski J.Q.
        Phosphorylated tau as a candidate biomarker for amyotrophic lateral sclerosis.
        JAMA Neurol. 2014; 71: 442-448https://doi.org/10.1001/jamaneurol.2013.6064
        • Davies R.R.
        • Kipps C.M.
        • Mitchell J.
        • Kril J.J.
        • Halliday G.M.
        • Hodges J.R.
        Progression in frontotemporal dementia: identifying a benign behavioral variant by magnetic resonance imaging.
        Arch. Neurol. 2006; 63: 1627-1631https://doi.org/10.1001/archneur.63.11.1627
        • Rohrer J.D.
        • Isaacs A.M.
        • Mizielinska S.
        • Mead S.
        • Lashley T.
        • Wray S.
        • Sidle K.
        • Fratta P.
        • Orrell R.W.
        • Hardy J.
        • Holton J.
        • Revesz T.
        • Rossor M.N.
        • Warren J.D.
        C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis.
        Lancet Neurol. 2015; 14: 291-301https://doi.org/10.1016/S1474-4422(14)70233-9