Advertisement

Unique compensatory oculomotor behavior in people living with multiple sclerosis

  • Colin R. Grove
    Affiliations
    Department of Otolaryngology-Head and Neck Surgery, Laboratory of Vestibular NeuroAdaptation, Johns Hopkins University, Baltimore, MD, USA
    Search for articles by this author
  • Andrew Wagner
    Affiliations
    Otolaryngology – Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43212, USA

    School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43212, USA
    Search for articles by this author
  • Brian J. Loyd
    Affiliations
    School of Physical Therapy and Rehabilitation Sciences, University of Montana, Missoula, MT, USA
    Search for articles by this author
  • Leland E. Dibble
    Affiliations
    Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT, USA
    Search for articles by this author
  • Michael C. Schubert
    Correspondence
    Corresponding author at: Johns Hopkins University, School of Medicine, Department of Otolaryngology Head and Neck Surgery, Laboratory of Vestibular NeuroAdaptation, 601 North Caroline St, Rm 6245, Baltimore, MD 21287, USA.
    Affiliations
    Department of Otolaryngology-Head and Neck Surgery, Laboratory of Vestibular NeuroAdaptation, Johns Hopkins University, Baltimore, MD, USA

    Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA
    Search for articles by this author
Published:September 05, 2022DOI:https://doi.org/10.1016/j.jns.2022.120411

      Highlights

      • People living with moderate multiple sclerosis often fail to generate compensatory saccades.
      • People living with mild multiple sclerosis tend to over-compensate for gaze position error.
      • The absence of saccades to compensate for low VOR gain may suggest internuclear ophthalmoplegia.

      Abstract

      Introduction

      Globally, there are 3 million people living with multiple sclerosis (PLW-MS). A large proportion of PLW-MS have abnormal vestibular function tests that suggest central vestibular lesions. Yet, data regarding vestibular-ocular control in PLW-MS is limited. Thus, we aimed to further characterize compensatory saccade (CS) behavior in PLW-MS.

      Methods

      We analyzed video head impulse data from four groups of six age- and sex-matched adults: people living with mild MS (PLW-mild-MS, people living with moderate MS (PLW-moderate-MS), people living with unilateral vestibular deafferentation (PLW-UVD), and healthy controls (HC).

      Results

      PLW-moderate-MS had lower lateral canal vestibulo-ocular reflex (VOR) gain bilaterally compared to PLW-mild MS (p < 0.001), HC (p < 0.001), and PLW-UVD (p < 0.001). CS frequency was higher for impulses towards the less affected side in PLW-moderate-MS versus the more (p = 0.01) and less (p < 0.001) affected sides in PLW-mild-MS. CS latency was shorter (p < 0.001) and CS peak velocity was lower (p < 0.001) with impulses towards the more affected side versus the less affected side in PLW-moderate-MS. However, CS peak velocity with impulses towards each side was similar in PLW-mild-MS (p = 0.12). Gaze position error (GPE) was larger after impulses towards the more affected side versus the less affected side in PLW-moderate-MS (p < 0.001) and PLW-mild-MS (p < 0.001). MS-related disability was moderately associated with VOR gain (p < 0.001) and GPE (p < 0.001). Additionally, we identified micro-saccades and position correcting saccades that were uniquely employed by PLW-MS as compensatory gaze stabilizing strategies.

      Conclusions

      In PLW-MS, the characteristics of compensatory oculomotor behavior depend on the extent of residual VOR gain.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Walton C.
        • King R.
        • Rechtman L.
        • Kaye W.
        • Leray E.
        • Marrie R.A.
        • et al.
        Rising prevalence of multiple sclerosis worldwide: insights from the atlas of MS, third edition.
        Mult. Scler. 2020 Dec; 26: 1816-1821
        • Amatya B.
        • Khan F.
        • Galea M.
        Rehabilitation for people with multiple sclerosis: an overview of Cochrane reviews.
        Cochrane Database Syst. Rev. 2019 Jan 14; 1CD012732
        • Di Stadio A.
        • Dipietro L.
        • Ralli M.
        • Greco A.
        • Ricci G.
        • Bernitsas E.
        The role of vestibular evoked myogenic potentials in multiple sclerosis-related vertigo. A systematic review of the literature.
        Mult. Scler. Relat. Disord. 2019 Feb; 28: 159-164
        • Crnošija L.
        • Krbot Skorić M.
        • Gabelić T.
        • Adamec I.
        • Habek M.
        Vestibular evoked myogenic potentials and MRI in early multiple sclerosis: validation of the VEMP score.
        J. Neurol. Sci. 2017 Jan 15; 372: 28-32
        • Ertugrul G.
        • Konuskan B.
        • Solmaz I.
        • Anlar B.
        • Aksoy S.
        Vestibulo-ocular reflex involvement in childhood-onset multiple sclerosis.
        Mult. Scler. Relat. Disord. 2020 Sep; 44102329
        • Pavlović I.
        • Ruška B.
        • Pavičić T.
        • Krbot Skorić M.
        • Crnošija L.
        • Adamec I.
        • et al.
        Video head impulse test can detect brainstem dysfunction in multiple sclerosis.
        Mult. Scler. Relat. Disord. 2017 May; 14: 68-71
        • Serra A.
        • Derwenskus J.
        • Downey D.L.
        • Leigh R.J.
        Role of eye movement examination and subjective visual vertical in clinical evaluation of multiple sclerosis.
        J. Neurol. 2003 May; 250: 569-575
        • Magnano I.
        • Pes G.M.
        • Pilurzi G.
        • Cabboi M.P.
        • Ginatempo F.
        • Giaconi E.
        • et al.
        Exploring brainstem function in multiple sclerosis by combining brainstem reflexes, evoked potentials, clinical and MRI investigations.
        Clin. Neurophysiol. 2014 Nov; 125: 2286-2296
        • Weier K.
        • Penner I.K.
        • Magon S.
        • Amann M.
        • Naegelin Y.
        • Andelova M.
        • et al.
        Cerebellar abnormalities contribute to disability including cognitive impairment in multiple sclerosis.
        PLoS One. 2014 Jan 22; 9e86916
        • Reulen J.P.
        • Sanders E.A.
        • Hogenhuis L.A.
        Eye movement disorders in multiple sclerosis and optic neuritis.
        Brain. 1983 Mar; 106: 121-140
        • Graves J.
        • Balcer L.J.
        Eye disorders in patients with multiple sclerosis: natural history and management.
        Clin. Ophthalmol. 2010 Dec 6; 4: 1409-1422
        • Loyd B.J.
        • Agnew L.
        • Fangman A.
        • Thackeray A.
        • Peterson D.S.
        • Schubert M.C.
        • et al.
        Characterizing gaze and postural stability deficits in people with multiple sclerosis.
        Mult. Scler. Relat. Disord. 2021 Oct; 55103205
        • Mañago M.M.
        • Schenkman M.
        • Berliner J.
        • Hebert J.R.
        Gaze stabilization and dynamic visual acuity in people with multiple sclerosis.
        J. Vestib. Res. 2016; 26: 469-477
        • Heesen C.
        • Böhm J.
        • Reich C.
        • Kasper J.
        • Goebel M.
        • Gold S.M.
        Patient perception of bodily functions in multiple sclerosis: gait and visual function are the most valuable.
        Mult. Scler. 2008 Aug; 14: 988-991
        • Garg H.
        • Dibble L.E.
        • Schubert M.C.
        • Sibthorp J.
        • Foreman K.B.
        • Gappmaier E.
        Gaze stability, dynamic balance and participation deficits in people with multiple sclerosis at fall-risk.
        Anat. Rec. (Hoboken). 2018 Nov; 301: 1852-1860
        • Aw S.T.
        • Chen L.
        • Todd M.J.
        • Barnett M.H.
        • Halmagyi G.M.
        Vestibulo-ocular reflex deficits with medial longitudinal fasciculus lesions.
        J. Neurol. 2017 Oct; 264: 2119-2129
        • Lee S.H.
        • Kim S.H.
        • Kim S.S.
        • Kang K.W.
        • Tarnutzer A.A.
        Preferential impairment of the Contralesional posterior Semicircular Canal in Internuclear Ophthalmoplegia.
        Front. Neurol. 2017 Sep 22; 8: 502
        • Millar J.L.
        • Gimmon Y.
        • Roberts D.
        • Schubert M.C.
        Improvement after vestibular rehabilitation not explained by improved passive VOR gain.
        Front. Neurol. 2020 Feb 20; 11: 79
        • Kurtzke J.F.
        Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS).
        Neurology. 1983 Nov; 33: 1444-1452
        • Jacobson G.P.
        • Newman C.W.
        The development of the dizziness handicap inventory.
        Arch. Otolaryngol. Head Neck Surg. 1990 Apr; 116: 424-427
        • Shumway-Cook A.W.M.
        Motor Control: Translating Research into Clinical Practice.
        4th ed. Lippincott, Williams & Wilkins, Baltimore, MD2011
        • Powell L.E.
        • Myers A.M.
        The activities-specific balance confidence (ABC) scale.
        J. Gerontol. A Biol. Sci. Med. Sci. 1995 Jan; 50A: 28
        • Loyd B.J.
        • Fangman A.
        • Peterson D.S.
        • Gappmaier E.
        • Schubert M.C.
        • Thackery A.
        • et al.
        Rehabilitation to improve gaze and postural stability in people with multiple sclerosis: study protocol for a prospective randomized clinical trial.
        BMC Neurol. 2019 Jun 10; 19 (119-z)
        • Mantokoudis G.
        • Schubert M.C.
        • Tehrani A.S.
        • Wong A.L.
        • Agrawal Y.
        Early adaptation and compensation of clinical vestibular responses after unilateral vestibular deafferentation surgery.
        Otol. Neurotol. 2014 Jan; 35: 148-154
        • Anson E.R.
        • Bigelow R.T.
        • Carey J.P.
        • Xue Q.L.
        • Studenski S.
        • Schubert M.C.
        • et al.
        VOR gain is related to compensatory saccades in healthy older adults.
        Front. Aging Neurosci. 2016 Jun; 24: 150
        • Anson E.R.
        • Bigelow R.T.
        • Carey J.P.
        • Xue Q.L.
        • Studenski S.
        • Schubert M.C.
        • et al.
        Aging increases compensatory saccade amplitude in the video head impulse test.
        Front. Neurol. 2016 Jul 18; 7: 113
        • Wagner A.R.
        • Schubert M.C.
        Evidence a shared mechanism mediates ipsi- and contralesional compensatory saccades and gait after unilateral vestibular deafferentation.
        J. Neurophysiol. 2020 Apr 1; 123: 1486-1495
        • Colagiorgio P.
        • Versino M.
        • Colnaghi S.
        • Quaglieri S.
        • Manfrin M.
        • Zamaro E.
        • et al.
        New insights into vestibular-saccade interaction based on covert corrective saccades in patients with unilateral vestibular deficits.
        J. Neurophysiol. 2017 Jun 1; 117: 2324-2338
        • Schubert M.C.
        • Hall C.D.
        • Das V.
        • Tusa R.J.
        • Herdman S.J.
        Oculomotor strategies and their effect on reducing gaze position error.
        Otol. Neurotol. 2010 Feb; 31: 228-231
        • Mantokoudis G.
        • Tehrani A.S.
        • Wozniak A.
        • Eibenberger K.
        • Kattah J.C.
        • Guede C.I.
        • et al.
        VOR gain by head impulse video-oculography differentiates acute vestibular neuritis from stroke.
        Otol. Neurotol. 2015 Mar; 36: 457-465
        • McGarvie L.A.
        • MacDougall H.G.
        • Halmagyi G.M.
        • Burgess A.M.
        • Weber K.P.
        • Curthoys I.S.
        The video head impulse test (vHIT) of Semicircular Canal function - age-dependent normative values of VOR gain in healthy subjects.
        Front. Neurol. 2015 Jul 8; 6: 154
        • R Core Team. R
        A language and environment for statistical computing.
        in: R Foundation for Statistical Computing. 2021
        • Mahfuz M.M.
        • Millar J.L.
        • Schubert M.C.
        Repeated video head impulse testing in patients is a stable measure of the passive vestibulo-ocular reflex.
        J. Otolaryngol. 2021 Jul; 16: 128-137
        • Macdougall H.G.
        • Curthoys I.S.
        Plasticity during vestibular compensation: the role of saccades.
        Front. Neurol. 2012 Feb 28; 3: 21
        • Grove C.R.
        • Whitney S.L.
        • Pyle G.M.
        • Heiderscheit B.C.
        Instrumented gait analysis to identify persistent deficits in gait stability in adults with chronic vestibular loss.
        JAMA Otolaryngol. Head Neck Surg. 2021 August 01; 147: 729-738
        • Weber K.P.
        • Aw S.T.
        • Todd M.J.
        • McGarvie L.A.
        • Curthoys I.S.
        • Halmagyi G.M.
        Horizontal head impulse test detects gentamicin vestibulotoxicity.
        Neurology. 2009 Apr 21; 72: 1417-1424
        • Iwasaki S.
        • Kamogashira T.
        • Fujimoto C.
        • Kabaya K.
        • Kinoshita M.
        • Yamasoba T.
        The role of neck input in producing corrective saccades in the head impulse test.
        Front. Neurol. 2022 May 17; 13881411
        • McCamy M.B.
        • Otero-Millan J.
        • Leigh R.J.
        • King S.A.
        • Schneider R.M.
        • Macknik S.L.
        • et al.
        Simultaneous recordings of human microsaccades and drifts with a contemporary video eye tracker and the search coil technique.
        PLoS One. 2015 Jun 2; 10e0128428
        • Otero-Millan J.
        • Castro J.L.
        • Macknik S.L.
        • Martinez-Conde S.
        Unsupervised clustering method to detect microsaccades.
        J. Vis. 2014 Feb 25; 14: 18https://doi.org/10.1167/14.2.18