Advertisement

Neurofilaments in neurologic disorders and beyond

Published:August 13, 2022DOI:https://doi.org/10.1016/j.jns.2022.120380

      Highlights

      • Neurofilaments play a role in neuronal integrity, synaptic plasticity and axonal transport.
      • Various neurologic disorders involve disruption of the neurofilament network.
      • Aberrant neurofilament expression can be detected histologically, in CSF and blood.
      • Neurofilaments may be a useful biomarker in disease monitoring and prognosis.

      Abstract

      Many neurologic diseases can initially present as a diagnostic challenge and even when a diagnosis is made, monitoring of disease activity, progression and response to therapy may be limited with existing clinical and paraclinical assessments. As such, the identification of disease specific biomarkers provides a promising avenue by which diseases can be effectively diagnosed, monitored and used as a prognostic indicator for long-term outcomes. Neurofilaments are an integral component of the neuronal cytoskeleton, where assessment of neurofilaments in the blood, cerebrospinal fluid (CSF) and diseased tissue has been shown to have value in providing diagnostic clarity, monitoring disease activity, tracking progression and treatment efficacy, as well as lending prognostic insight into long-term outcomes. As such, this review attempts to provide a glimpse into the structure and function of neurofilaments, their role in various neurologic and non-neurologic disorders, including uncommon conditions with recent knowledge of neurofilament-related pathology, as well as their applicability in future clinical practice.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Petzold A.
        Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss.
        J. Neurol. Sci. 2005 Jun 15; 233: 183-198https://doi.org/10.1016/j.jns.2005.03.015
        • Gaetani L.
        • Blennow K.
        • Calabresi P.
        • Di Filippo M.
        • Parnetti L.
        • Zetterberg H.
        Neurofilament light chain as a biomarker in neurological disorders.
        J. Neurol. Neurosurg. Psychiatry. 2019 Aug; 90: 870-881https://doi.org/10.1136/jnnp-2018-320106
        • Khalil M.
        • Teunissen C.E.
        • Otto M.
        • Piehl F.
        • Sormani M.P.
        • Gattringer T.
        • et al.
        Neurofilaments as biomarkers in neurological disorders.
        Nat. Rev. Neurol. 2018 Oct; 14: 577-589https://doi.org/10.1038/s41582-018-0058-z
        • Lepinoux-Chambaud C.
        • Eyer J.
        Review on intermediate filaments of the nervous system and their pathological alterations.
        Histochem. Cell Biol. 2013 Jul; 140: 13-22https://doi.org/10.1007/s00418-013-1101-1
        • Yuan A.
        • Nixon A.R.
        Neurofilament proteins as biomarkers to monitor neurological diseases and the efficacy of therapies.
        Front. Neurosci. 2021 Sep 27; 15689938https://doi.org/10.3389/fnins.2021.689938
        • Munoz-Lasso D.C.
        • Roma-Mateo C.
        • Pallardo F.V.
        • Gonzalez-Cabo P.
        Much more than a scaffold: cytoskeletal proteins in neurological disorders.
        Cells. 2020 Feb 4; 9: 358https://doi.org/10.3390/cells9020358
        • Yuan A.
        • Rao M.V.
        • Veeranna
        • Nixon R.A.
        Neurofilaments and neurofilament proteins in health and disease.
        Cold Spring Harb. Perspect. Biol. 2017 Apr 3; 9: a018309https://doi.org/10.1101/cshperspect.a018309
        • Snider N.T.
        • Omary M.B.
        Post-translational modifications of intermediate filament proteins: mechanisms and functions.
        Nat. Rev. Mol. Cell Biol. 2014 Mar; 15: 163-177https://doi.org/10.1038/nrm3753
        • Alagaratnam J.
        • von Widekind S.
        • De Francesco D.
        • Underwood J.
        • Edison P.
        • Winston A.
        • et al.
        Correlation between CSF and blood neurofilament light chain protein: a systematic review and meta-analysis.
        BMJ Neurol. Open. 2021 Jun 16; 3e000143https://doi.org/10.1136/bmjno-2021-000143
        • Kuhle J.
        • Barro C.
        • Andreasson U.
        • Derfuss T.
        • Lindberg R.
        • Sandelius A.
        • et al.
        Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa.
        Clin. Chem. Lab. Med. 2016 Oct; 54: 1655-1661https://doi.org/10.1515/cclm-2015-1195
        • Khalil M.
        • Pirpamer L.
        • Hofer E.
        • Voortman M.M.
        • Barro C.
        • Leppert D.
        • et al.
        Serum neurofilament light levels in normal aging and their association with morphologic brain changes.
        Nat. Commun. 2020 Feb 10; 11: 812https://doi.org/10.1038/s41467-020-14612-6
        • Polymeris A.A.
        • Helfenstein F.
        • Benkert P.
        • Aeschbacher S.
        • Leppert D.
        • Coslovsky M.
        • et al.
        Renal function and body mass index contribute to serum neurofilament light chain levels in elderly patients with atrial fibrillation.
        Front. Neurosci. 2022 Apr 14; 16819010https://doi.org/10.3389/fnins.2022.819010
        • Akamine S.
        • Marutani N.
        • Kanayama D.
        • Gotoh S.
        • Maruyama R.
        • Yanagida K.
        • et al.
        Renal function is associated with blood neurofilament light chain level in older adults.
        Sci. Rep. 2020 Nov 23; 10: 20350https://doi.org/10.1038/s41598-020-76990-7
        • Ladang A.
        • Kovacs S.
        • Lengele L.
        • Locquet M.
        • Reginster J.Y.
        • Bruyere O.
        • et al.
        Neurofilament light chain concentration in an aging population.
        Aging Clin. Exp. Res. 2022 Feb; 34: 331-339https://doi.org/10.1007/s40520-021-02054-z
        • Manouchehrinia A.
        • Piehl F.
        • Hillert J.
        • Kuhle J.
        • Alfredsson L.
        • Olsson T.
        • et al.
        Confounding effect of blood volume and body mass index on blood neurofilament light chain levels.
        Ann. Clin. Transl. Neurol. 2020 Jan; 7: 139-143https://doi.org/10.1002/acn3.50972
        • Koini M.
        • Pirpamer L.
        • Hofer E.
        • Buchmann A.
        • Pinter D.
        • Ropele S.
        • et al.
        Factors influencing serum neurofilament light chain levels in normal aging.
        Aging (Albany NY). 2021 Dec 18; 13: 25729-25738https://doi.org/10.18632/aging.203790
        • Korley F.K.
        • Goldstick J.
        • Mastali M.
        • Van Eyk J.E.
        • Barsan W.
        • Meurer W.J.
        • et al.
        Serum NfL (neurofilament light chain) levels and incident stroke in adults with diabetes mellitus.
        Stroke. 2019 July; 50: 1669-1675https://doi.org/10.1161/STROKEAHA.119.024941
        • Olney N.T.
        • Spina S.
        • Miller B.L.
        Frontotemporal dementia.
        Neurol. Clin. 2017 May; 35: 339-374https://doi.org/10.1016/j.ncl.2017.01.008
        • Landqvist Waldo M.
        • Frizell Santillo A.
        • Passant U.
        • Zetterberg H.
        • Rosengren L.
        • Nilsson C.
        • Englund E.
        Cerebrospinal neurofilament light chain protein levels in subtypes of frontotemporal dementia.
        BMC Neurol. 2013 May 29; 13: 54https://doi.org/10.1186/1471-2377-13-54
        • Zhang J.V.
        • Irwin D.J.
        • Blennow K.
        • Zetterberg H.
        • Lee E.B.
        • Shaw L.M.
        • et al.
        Neurofilament light chain related to longitudinal decline in frontotemporal lobar degeneration.
        Neurol. Clin. Pract. 2021 Apr; 11: 105-116https://doi.org/10.1212/CPJ.0000000000000959
        • Rohrer J.D.
        • Woollacott I.O.
        • Dick K.M.
        • Brotherhood E.
        • Gordon E.
        • Fellows A.
        • et al.
        Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia.
        Neurology. 2016 Sep; 87: 1329-1336https://doi.org/10.1212/WNL.0000000000003154
        • Rojas J.C.
        • Wang P.
        • Staffaroni A.M.
        • Heller C.
        • Cobigo Y.
        • Wolf A.
        • et al.
        Plasma neurofilament light for prediction of disease progression in familial frontotemporal lobe degeneration.
        Neurology. 2021 May 4; 96: e2296-e2312https://doi.org/10.1212/WNL.0000000000011848
        • van der Ende E.L.
        • Meeter L.H.
        • Poos J.M.
        • Panman J.L.
        • Jiskoot L.C.
        • Dopper E.G.P.
        • et al.
        Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study.
        Lancet Neurol. 2019 Dec; 18: 1103-1111https://doi.org/10.1016/S1474-4422(19)30354-0
        • He L.
        • Morley J.E.
        • Aggarwal G.
        • Nguyen A.D.
        • Vellas B.
        • de Souto Barreto P.
        • et al.
        Plasma neurofilament light chain is associated with cognitive decline in non-dementia older adults.
        Sci. Rep. 2021 Jun 28; 11: 13394https://doi.org/10.1038/s41598-021-91038-0
        • Ashton N.J.
        • Janelidze S.
        • Al Khleifat A.
        • Leuzy A.
        • van der Ende E.L.
        • Karikari T.K.
        • et al.
        A multicentre validation study of the diagnostic value of plasma neurofilament light.
        Nat. Commun. 2021 Jun 7; 12: 3400https://doi.org/10.1038/s41467-021-23620-z
        • Darmanthe N.
        • Tabatabaei-Jafar H.
        • Cherbuin N.
        Alzheimer's Disease Neuroimaging Initiative, Combination of plasma neurofilament light chain and mini-mental state examination score predicts progression from mild cognitive impairement to Alzheimer's disease within 5 years.
        J. Alzheimers Dis. 2021; 82: 951-964https://doi.org/10.3233/JAD-210092
        • Carmona-Iragui M.
        • Alcolea D.
        • Barroeta I.
        • Videla L.
        • Muñoz L.
        • Van Pelt K.L.
        • et al.
        Diagnostic and prognostic performance and longitudinal changes in plasma neurofilament light chain concentrations in adults with Down syndrome: a cohort study.
        Lancet Neurol. 2021 Aug; 20: 605-614https://doi.org/10.1016/S1474-4422(21)00129-0
        • Zetterberg H.
        • Skillback T.
        • Mattson N.
        • Trojanowski J.Q.
        • Portelius E.
        • Shaw L.M.
        • et al.
        Association of cerebrospinal fluid neurofilament light concentration with Alzheimer disease progression.
        JAMA Neurol. 2016 Jan; 73: 60-67https://doi.org/10.1001/jamaneurol.2015.3037
        • Mattsson N.
        • Andreasson U.
        • Zetterberg H.
        • Blennow K.
        Alzheimer's disease neuroimaging initiative, Association between longitudinal plasma neurofilament light and neurodegeneration in patients with Alzheimer disease.
        JAMA Neurol. 2017 May 1; 76: 791-799https://doi.org/10.1001/jamaneurol.2016.6117
        • Santangelo R.
        • Agosta F.
        • Masi F.
        • Spinelli E.G.
        • Cecchetti G.
        • Caso F.
        • et al.
        Plasma neurofilament light chain levels and cognitive testing as predictors of fast progression in Alzheimer’s disease.
        Eur. J. Neurol. 2021 Sep; 28: 2980-2988https://doi.org/10.1111/ene.14999
        • Bateman R.J.
        • Xiong C.
        • Benzinger T.L.
        • Fagan A.M.
        • Goate A.
        • Fox N.C.
        • et al.
        Clinical and biomarker changes in dominantly inherited Alzheimer's disease.
        N. Engl. J. Med. 2012 Aug 30; 367: 795-804https://doi.org/10.1056/NEJMoa1202753
        • Reiman E.M.
        • Chen K.
        • Alexander G.E.
        • Caselli R.J.
        • Bandy D.
        • Osborne D.
        • et al.
        Functional brain abnormalities in young adults at genetic risk for late onset Alzheimer's dementia.
        Proc. Natl. Acad. Sci. U. S. A. 2004 Jan 6; 101: 284-289https://doi.org/10.1073/pnas.2635903100
        • Weston P.S.J.
        • Poole T.
        • Ryan N.S.
        • Nair A.
        • Liang Y.
        • Macpherson K.
        • et al.
        Serum neurofilament light in familial Alzheimer disease: a marker of early neurodegeneration.
        Neurology. 2017 Nov 21; 89: 2167-2175https://doi.org/10.1212/WNL.0000000000004667
        • Preische O.
        • Schultz S.A.
        • Apel A.
        • Kuhle J.
        • Kaeser S.A.
        • Barro C.
        • et al.
        Serum neurofilament dynamics predict neurodegeneration and clinical progression in presymptomatic Alzheimer's disease.
        Nat. Med. 2019 Feb; 25: 277-283https://doi.org/10.1038/s41591-018-0304-3
        • Hirano A.
        • Donnenfeld H.
        • Sasaki S.
        • Nakano I.
        Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis.
        J. Neuropathol. Exp. Neurol. 1984 Sep; 43: 461-470https://doi.org/10.1097/00005072-198409000-00001
        • Hirano A.
        • Nakano I.
        • Kurland L.T.
        • Mulder D.W.
        • Holley P.W.
        • Saccomanno G.
        Fine structural study of neurofibrillary changes in a family with amyotrophic lateral sclerosis.
        J. Neuropathol. Exp. Neurol. 1984 Sep; 43: 471-480https://doi.org/10.1097/00005072-198409000-00002
        • Feneberg E.
        • Oeckl P.
        • Steinacker P.
        • Verde F.
        • Barro C.
        • Van Damme P.
        • et al.
        Multicenter evaluation of neurofilaments in early symptom onset amyotrophic lateral sclerosis.
        Neurology. 2018 Jan 2; 90: e22-e30https://doi.org/10.1212/WNL.0000000000004761
        • Poesen K.
        • De Schaepdryver M.
        • Stubendorff B.
        • Gille B.
        • Muckova P.
        • Wendler S.
        • et al.
        Neurofilament markers for ALS correlate with extent of upper and lower motor neuron disease.
        Neurology. 2017 Jun 13; 88: 2302-2309https://doi.org/10.1212/WNL.0000000000004029
        • Vacchiano V.
        • Mastrangelo A.
        • Zenesini C.
        • Masullo M.
        • Quadalti C.
        • Avoni P.
        • et al.
        Plasma and CSF neurofilament light chain in amyotrophic lateral sclersosis: a cross-sectional and longitudinal study.
        Front. Aging Neurosci. 2021 Oct 22; 13753242https://doi.org/10.3389/fnagi.2021.753242
        • De Schaepdryver M.
        • Jeromin A.
        • Gille B.
        • Claeys K.G.
        • Herbst V.
        • Brix B.
        • et al.
        Comparison of elevated phosphorylated neurofilament heavy chains in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis.
        J. Neurol. Neurosurg. Psychiatry. 2018 Apr; 89: 367-373https://doi.org/10.1136/jnnp-2017-316605
        • McCombe P.A.
        • Pfluger C.
        • Singh P.
        • Lim C.Y.H.
        • Airey C.
        • Henderson R.D.
        Serial measurements of phosphorylated neurofilament-heavy in the serum of subjects with amyotrophic lateral sclerosis.
        J. Neurol. Sci. 2015; 353: 122-129https://doi.org/10.1016/j.jns.2015.04.032
        • Lu C.H.
        • Macdonald-Wallis C.
        • Gray E.
        • Pearce N.
        • Petzold A.
        • Norgren N.
        • et al.
        Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis.
        Neurology. 2015 Jun 2; 84: 2247-2257https://doi.org/10.1212/WNL.0000000000001642
        • Benatar M.
        • Wuu J.
        • Andersen P.M.
        • Lombardi V.
        • Malaspina A.
        Neurofilament light: a candidate biomarker of presymptomatic amyotrophic lateral sclerosis and phenoconversion.
        Ann. Neurol. 2018 Jul; 84: 130-139https://doi.org/10.1002/ana.25276
        • Gendron T.F.
        • C9ORF72 Neurofilament Study Group
        • Daughrity L.M.
        • Heckman M.G.
        • Diehl N.N.
        • Wuu J.
        • et al.
        Phosphorylated neurofilament heavy chain: a biomarker of survival for C9ORF72-associated amyotrophic lateral sclerosis.
        Ann. Neurol. 2017; 82: 139-146https://doi.org/10.1002/ana.24980
        • Benatar M.
        • Wuu J.
        • Lombardi V.
        • Jeromin A.
        • Bowser R.
        • Andersen P.M.
        • et al.
        Neurofilaments in pre-symptomatic ALS and the impact of genotype.
        Amyotroph. Lateral Scler. Frontotemporal. Degener. 2019 Nov; 20: 538-548https://doi.org/10.1080/21678421.2019.1646769
        • Mercuri E.
        • Pera M.C.
        • Scoto M.
        • Finkel R.
        • Muntoni F.
        Spinal muscular atrophy - insights and challenges in the treatment era.
        Nat. Rev. Neurol. 2020 Dec; 16: 706-715https://doi.org/10.1038/s41582-020-00413-4
        • Darras B.T.
        • Crawford T.O.
        • Finkel R.S.
        • Mercuri E.
        • De Vivo D.C.
        • Oskoui M.
        • et al.
        Neurofilament as a potential biomarker for spinal muscular atrophy.
        Ann. Clin. Transl. Neurol. 2019 Apr 17; 6: 932-944https://doi.org/10.1002/acn3.779
        • Nitz E.
        • Smitka M.
        • Schallner J.
        • Akgün K.
        • Ziemssen T.
        • von der Hagen M.
        • et al.
        Serum neurofilament light chain in pediatric spinal muscular atrophy patients and healthy children.
        Ann. Clin. Transl. Neurol. 2021 Oct; 8: 2013-2024https://doi.org/10.1002/acn3.51449
        • Finkel R.S.
        • Mercuri E.
        • Darras B.T.
        • Connolly A.M.
        • Kuntz N.L.
        • Kirschner J.
        • et al.
        Nusinersen versus sham control in infantile onset spinal muscular atrophy.
        N. Engl. J. Med. 2017 Nov 2; 377: 1723-1732https://doi.org/10.1056/NEJMoa1702752
        • Olsson B.
        • Alberg L.
        • Cullen N.C.
        • Michael E.
        • Wahlgren L.
        • Kroksmark A.K.
        • et al.
        NFL is a marker of treatment response in children with SMA treated with nusinersen.
        J. Neurol. 2019 Sep; 266: 2129-2136https://doi.org/10.1007/s00415-019-09389-8
        • Rich K.A.
        • Fox A.
        • Yalvac M.
        • Heintzman S.
        • Tellez M.
        • Bartlett A.
        • et al.
        Neurofilament levels in CSF and serum in an adult SMA cohort treated with nusinersen.
        J. Neuromuscul. Dis. 2022; 9: 111-119https://doi.org/10.3233/JND-210735
        • Milella G.
        • Introna A.
        • D'Errico E.
        • Fraddosio A.
        • Scaglione G.
        • Morea A.
        • et al.
        Cerebrospinal fluid and clinical profiles in adult type 2-3 spinal muscular atrophy patients treated with nusinersen: an 18-month single-centre experience.
        Clin. Drug Investig. 2021 Sep; 41: 775-784https://doi.org/10.1007/s40261-021-01071-0
        • Faravelli I.
        • Meneri M.
        • Saccomanno D.
        • Velardo D.
        • Abati E.
        • Gagliardi D.
        • et al.
        Nusinersen treatment and cerebrospinal fluid neurofilaments: an explorative study on spinal muscular atrophy type 3 patients.
        J. Cell. Mol. Med. 2020 Mar; 24: 3034-3039https://doi.org/10.1111/jcmm.14939
        • Mercuri E.
        • Darras B.T.
        • Chiriboga C.A.
        • Day J.W.
        • Campbell C.
        • Connolly A.M.
        • et al.
        Nusinersen versus sham control in later-onset spinal muscular atrophy.
        N. Engl. J. Med. 2018 Feb 15; 378: 625-635https://doi.org/10.1056/NEJMoa1710504
        • Braak H.
        • Del Tredici K.
        • Rub U.
        • de Vos R.A.
        • Jansen Steur E.N.
        • Braak E.
        Staging of brain pathology related to sporadic Parkinson's disease.
        Neurobiol. Aging. 2003 Mar-Apr; 24: 197-211https://doi.org/10.1016/s0197-4580(02)00065-9
        • Papp M.J.
        • Kahn J.E.
        • Lantos P.L.
        Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome).
        J. Neurol. Sci. 1989 Dec; 94: 79-100https://doi.org/10.1016/0022-510x(89)90219-0
        • Inoue M.
        • Yagishita S.
        • Ryo M.
        • Hasegawa K.
        • Amano N.
        • Matsushita M.
        The distribution and dynamic density of oligodendroglial cytoplasmic inclusions (GCIs) in multiple system atrophy: a correlation between the density of GCIs and the degree o finvolvement of striatonigral and olivopontocerebellar systems.
        Acta Neuropathol. 1997 Jun; 93: 585-591https://doi.org/10.1007/s004010050655
        • Tawana K.
        • Ramsden D.B.
        Progressive supranuclear palsy.
        Mol. Pathol. 2001 Dec; 54: 427-434
        • Dickson D.W.
        • Bergeron C.
        • Chin S.S.
        • Duyckaerts C.
        • Horoupian D.
        • Ikeda K.
        • et al.
        Office of rare diseases neuropathologic criteria for corticobasal degeneration.
        J. Neuropathol. Exp. Neurol. 2002 Nov; 61: 935-946https://doi.org/10.1093/jnen/61.11.935
        • Rosler T.W.
        • Marvian A.T.
        • Brendel M.
        • Nykanen N.P.
        • Hollerhage M.
        • Schwarz S.C.
        • et al.
        Four-repeat tauopathies.
        Prog. Neurobiol. 2019 Sep; 180101644https://doi.org/10.1016/j.pneurobio.2019.101644
        • Holmberg B.
        • Rosengren L.
        • Karlsson J.E.
        • Johnels B.
        Increased cerebrospinal fluid levels of neurofilament protein in progressive supranuclear palsy and multiple-system atrophy compared with Parkinson's disease.
        Mov. Disord. 1998 Jan; 13: 70-77https://doi.org/10.1002/mds.870130116
        • Magdalinou N.K.
        • Paterson R.W.
        • Schott J.M.
        • Fox N.C.
        • Mummery C.
        • Blennow K.
        • et al.
        A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes.
        J. Neurol. Neurosurg. Psychiatry. 2015 Nov; 86: 1240-1247https://doi.org/10.1136/jnnp-2014-309562
        • Hall S.
        • Ohrfelt A.
        • Constantinescu R.
        • Andreasson U.
        • Surova Y.
        • Bostrom F.
        • et al.
        Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders.
        Arch. Neurol. 2012 Nov; 69: 1445-1452https://doi.org/10.1001/archneurol.2012.1654
        • Ge F.
        • Ding J.
        • Liu Y.
        • Lin H.
        • Chang T.
        Cerebrospinal fluid NFL in the differential diagnosis of parkinsonian disorders: a meta-analysis.
        Neurosci. Lett. 2018 Oct; 685: 35-41https://doi.org/10.1016/j.neulet.2018.07.030
        • Hannson O.
        • Janelidze S.
        • Hall S.
        • Magdalinou N.
        • Lees A.J.
        • Andreasson U.
        • et al.
        Blood-based NfL: a biomarker for differential diagnosis of parkinsonian disorder.
        Neurology. 2017 Mar 7; 88: 930-937https://doi.org/10.1212/WNL.0000000000003680
        • Marques T.M.
        • van Rumund A.
        • Oeckl P.
        • Kuiperij H.B.
        • Esselink R.A.J.
        • Bloem B.R.
        • et al.
        Neurology. 2019 Mar 26; 92: e1479-e1486https://doi.org/10.1212/WNL.0000000000007179
        • Rojas J.C.
        • Bang J.
        • Lobach I.V.
        • Tsai R.M.
        • Rabinovici G.D.
        • Miller B.L.
        • et al.
        CSF neurofilament light chain and phosphorylated tau 181 predict disease progression in PSP.
        Neurology. 2018 Jan 23; 90: e273-e281https://doi.org/10.1212/WNL.0000000000004859
        • Donker Kaat L.
        • Meeter L.H.
        • Chiu W.Z.
        • Melhem S.
        • Boon A.J.W.
        • Blennow K.
        • et al.
        Serum neurofilament light chain in progressive supranuclear palsy.
        Parkinsonism Relat. Disord. 2018 Nov; 56: 98-101https://doi.org/10.1016/j.parkreldis.2018.06.018
        • Zhang L.
        • Cao B.
        • Hou Y.
        • Gu X.
        • Wei Q.
        • Ou R.
        • et al.
        Neurofilament light chain predicts disease severity and progression in multiple system atrophy.
        Mov. Disord. 2022 Feb; 37: 421-426https://doi.org/10.1002/mds.28847
        • Aamodt W.W.
        • Waligorska T.
        • Shen J.
        • Tropea T.F.
        • Siderowf A.
        • Weintraub D.
        • et al.
        Neurofilament light chain as a biomarker for cognitive decline in Parkinson disease.
        Mov. Disord. 2021 Dec; 36: 2945-2950https://doi.org/10.1002/mds.28779
        • Lin C.H.
        • Li C.H.
        • Yang K.C.
        • Lin F.J.
        • Wu C.C.
        • Chieh J.J.
        • et al.
        Blood NfL: a biomarker for disease severity and progression in Parkinson disease.
        Neurology. 2019 Sep 10; 93: e1104-e1111https://doi.org/10.1212/WNL.0000000000008088
        • Mollenhauer B.
        • Dakna M.
        • Kruse N.
        • Galasko D.
        • Foroud T.
        • Zetterberg H.
        • et al.
        Validation of serum neurofilament light chain as a biomarker for Parkinson's disease progression.
        Mov. Disord. 2020 Nov; 35: 1999-2008https://doi.org/10.1002/mds.28206
        • Ng A.S.L.
        • Tan Y.J.
        • Yong A.C.W.
        • Saffari S.E.
        • Lu Z.
        • Ng E.Y.
        • et al.
        Utility of plasma neurofilament light as a diagnostic and prognostic biomarker of the postural instability gait disorder motor subtype in early Parkinson's disease.
        Mol. Neurodegener. 2020 Jun 5; 15: 33https://doi.org/10.1186/s13024-020-00385-5
        • Pilotto A.
        • Imarisio A.
        • Conforti F.
        • Scalvini A.
        • Masciocchi S.
        • Nocivelli S.
        • et al.
        Plasma NfL, clinical subtypes and motor progression in Parkinson's disease.
        Parkinsonism Relat. Disord. 2021 Jun; 87: 41-47https://doi.org/10.1016/j.parkreldis.2021.04.016
        • Lassmann H.
        Pathogenic mechanisms associated with different clinical courses of multiple sclerosis.
        Front. Immunol. 2019 Jan 10; 9: 3116https://doi.org/10.3389/fimmu.2018.03116
        • Disanto G.
        • Barro C.
        • Benkert P.
        • Naegelin Y.
        • Schadelin S.
        • Giardiello A.
        • et al.
        Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis.
        Ann. Neurol. 2017 Jun; 81: 857-870https://doi.org/10.1002/ana.24954
        • Novakova L.
        • Axelsson M.
        • Khademi M.
        • Zetterberg H.
        • Blennow K.
        • Malmestrom C.
        • et al.
        Cerebrospinal fluid biomarkers as a measure of disease activity and treatment efficacy in relapsing remitting multiple sclerosis.
        J. Neurochem. 2017 Jan; 141: 296-304https://doi.org/10.1177/1352458516639384
        • Novakova L.
        • Zetterberg H.
        • Sundström P.
        • Axelsson M.
        • Khademi M.
        • Gunnarsson M.
        • et al.
        Monitoring disease activity in multiple sclerosis using serum neurofilament light protein.
        Neurology. 2017 Nov; 89: 2230-2237https://doi.org/10.1212/WNL.0000000000004683
        • Kuhle J.
        • Kropshofer H.
        • Haering D.A.
        • Kundu U.
        • Meinert R.
        • Barro C.
        • et al.
        Blood neurofilament light chain as a biomarker of MS disease activity and treatment response.
        Neurology. 2019 Mar 5; 92: e1007-e1015https://doi.org/10.1212/WNL.0000000000007032
        • Calabresi P.A.
        • Arnold D.L.
        • Sangurdekar D.
        • Singh C.M.
        • Altincatal A.
        • de Moor C.
        • et al.
        Temporal profile of serum neurofilament light in multiple sclerosis: Implications for patient monitoring.
        Mult. Scler. 2021 Sep; 27: 1497-1505https://doi.org/10.1177/1352458520972573
        • Kuhle J.
        • Plavina T.
        • Barro C.
        • Disanto G.
        • Sangurdekar D.
        • Singh C.M.
        • et al.
        Neurofilament light levels are associated with long-term outcomes in multiple sclerosis.
        Mult. Scler. 2020 Nov; 26: 1691-1699https://doi.org/10.1177/1352458519885613
        • Thebault S.
        • Abdoli M.
        • Fereshtehnejad S.M.
        • Tessier D.
        • Tabard-Cossa V.
        • Freedman M.S.
        Serum neurofilament light chain predicts long term clinical outcomes in multiple sclerosis.
        Sci. Rep. 2020 Jun 25; 10: 10381https://doi.org/10.1038/s41598-020-67504-6
        • Thebault S.
        • Reaume M.
        • Marrie R.A.
        • Marriott J.J.
        • Furlan R.
        • Laroni A.
        • et al.
        High or increasing serum NfL is predictive of impending multiple sclerosis relapses.
        Mult. Scler. Relat. Disord. 2022 Mar; 59103535https://doi.org/10.1016/j.msard.2022.103535
        • Kuhle J.
        • Nourbakhsh B.
        • Grant D.
        • Morant S.
        • Barro C.
        • Yaldizli O.
        • et al.
        Serum neurofilament is associated with progression of brain atrophy and disability in early MS.
        Neurology. 2017 Feb 28; 88: 826-831https://doi.org/10.1212/WNL.0000000000003653
        • Kuhle J.
        • Daizadeh N.
        • Benkert P.
        • Maceski A.
        • Barro C.
        • Michalak Z.
        • et al.
        Sustained reduction of serum neurofilament light chain over 7 years by alemtuzumab in early relapsing-remitting MS.
        Mult. Scler. 2022 Apr; 28: 573-582https://doi.org/10.1177/13524585211032348
        • Dalla Costa G.
        • Martinelli V.
        • Sangalli F.
        • Moiola L.
        • Colombo B.
        • Radaelli M.
        • et al.
        Prognostic value of serum neurofilaments in patients with clinically isolated syndromes.
        Neurology. 2019 Feb 12; 92: e733-e741https://doi.org/10.1212/WNL.0000000000006902
        • Vavasour I.M.
        • Becquart P.
        • Gill J.
        • Zhao G.
        • Yik J.T.
        • Traboulsee A.
        • et al.
        Diffusely abnormal white matter in clinically isolated syndrome is associated with parenchymal loss and elevated neurofilament levels.
        Mult. Scler. Relat. Disord. 2022 Jan; 57103422https://doi.org/10.1016/j.msard.2021.103422
        • Plavina T.
        • Singh C.M.
        • Sangurdekar D.
        • de Moor C.
        • Engle B.
        • Gafson A.
        • et al.
        Association of serum neurofilament light levels with long-term brain atrophy in patients with a first multiple sclerosis episode.
        JAMA Netw. Open. 2020 Nov 2; 3e2016278https://doi.org/10.1001/jamanetworkopen.2020.16278
        • Bjornevik K.
        • Munger K.L.
        • Cortese M.
        • Barro C.
        • Healy B.C.
        • Niebuhr D.W.
        • et al.
        Serum neurofilament light chain levels in patients with presymptomatic multiple sclerosis.
        JAMA Neurol. 2020 Jan 1; 77: 58-64https://doi.org/10.1001/jamaneurol.2019.3238
        • Häring D.A.
        • Kropshofer H.
        • Kappos L.
        • Cohen J.A.
        • Shah A.
        • Meinert R.
        • et al.
        Long-term prognosic value of longitudinal measurements of blood neurofilament levels.
        Neurol. Neuroimmunol. Neuroinflamm. 2020 Aug 12; 7e856https://doi.org/10.1212/NXI.0000000000000856
        • Manouchehrinia A.
        • Stridh P.
        • Khademi M.
        • Leppert D.
        • Barro C.
        • Michalak Z.
        • et al.
        Plasma neurofilament light levels are associated with risk of disability in multiple sclerosis.
        Neurology. 2020 Jun 9; 94: e2457-e2467https://doi.org/10.1212/WNL.0000000000009571
        • Bhan A.
        • Jacobsen C.
        • Myhr K.M.
        • Dalen I.
        • Lode K.
        • Farbu E.
        Neurofilaments and 10-year follow-up in multiple sclerosis.
        Mult. Scler. 2018 Sep; 24: 1301-1307https://doi.org/10.1177/1352458518782005
        • Szilasiová J.
        • Mikula P.
        • Rosenberger J.
        • Fedičová M.
        • Gdovinová Z.
        • Urban P.
        • et al.
        Plasma neurofilament light chain levels are predictors of disease activity in multiple sclerosis as measured by four-domain NEDA status, including brain volume loss.
        Mult. Scler. 2021 Nov; 27: 2023-2030https://doi.org/10.1177/1352458521998039
        • Szilasiová J.
        • Rosenberger J.
        • Fedičová M.
        • Mikula P.
        • Urban P.
        • Gdovinová Z.
        • et al.
        Neurofilament light chain levels are associated with disease activity determined by no evident disease activity in multiple sclerosis patients.
        Eur. Neurol. 2021; 84: 272-279https://doi.org/10.1159/000515806
        • Hyun J.W.
        • Kim Y.
        • Kim G.
        • Kim S.H.
        • Kim H.J.
        Longitudinal analysis of serum neurofilament light chain: a potential therapeutic monitoring biomarker for multiple sclerosis.
        Mult. Scler. 2020 May; 26: 659-667https://doi.org/10.1177/1352458519840757
        • Walo-Delgado P.E.
        • Sainz de la Maza S.
        • Villarrubia N.
        • Monreal E.
        • Medina S.
        • Espiño M.
        • et al.
        Low serum neurofilament light chain values identify optimal responders to dimethyl fumarate in multiple sclerosis treatment.
        Sci. Rep. 2021 Apr 29; 11: 9299https://doi.org/10.1038/s41598-021-88624-7
        • Williams T.
        • Zetterberg H.
        • Chataway J.
        Neurofilaments in progressive multiple sclerosis: a systematic review.
        J. Neurol. 2021; 268: 3212-3222https://doi.org/10.1007/s00415-020-09917-x
        • Bridel C.
        • van Wieringen W.N.
        • Zetterberg H.
        • Tijms B.M.
        • Teunissen C.E.
        • the NFL Group
        • et al.
        Diagnostic value of cerebrospinal fluid neurofilament light protein in neurology: a systematic review and meta-analysis.
        JAMA Neurol. 2019 Sep; 76: 1035-1048https://doi.org/10.1001/jamaneurol.2019.1534
        • Harp C.
        • Thanei G.A.
        • Jia X.
        • Kuhle J.
        • Leppert D.
        • Schaedelin S.
        • et al.
        Development of an age-adjusted model for blood neurofilament light chain.
        Ann. Clin. Transl. Neurol. 2022 Apr; 9: 444-453https://doi.org/10.1002/acn3.51524
        • Uphaus T.
        • Steffen F.
        • Muthuraman M.
        • Ripfel N.
        • Fleischer V.
        • Groppa S.
        • et al.
        NfL predicts relapse-free progression in a longitudinal multiple sclerosis cohort study.
        EBioMedicine. 2021 Oct; 72103590https://doi.org/10.1016/j.ebiom.2021.103590
        • Leppert D.
        • Kropshofer H.
        • Häring D.A.
        • Dahlke F.
        • Patil A.
        • Meinert R.
        • et al.
        Blood neurofilament light in progressive multiple sclerosis: Post hoc analysis of 2 randomized controlled trials.
        Neurology. 2022 May 24; 98: e2120-e2131https://doi.org/10.1212/WNL.0000000000200258
        • Alcalá C.
        • Cubas L.
        • Carratalá S.
        • Gascón F.
        • Quintanilla-Bordás C.
        • Gil-Perotín S.
        • et al.
        NFL during acute spinal cord lesions in MS: a hurdle for the detection of inflammatory activity.
        J. Neurol. 2022 Jul; 269: 3495-3500https://doi.org/10.1007/s00415-021-10926-7
        • Bridel C.
        • Verberk I.M.W.
        • Heijst J.J.A.
        • Killestein J.
        • Teunissen C.E.
        Variations in consecutive serum neurofilament light levels in healthy controls and multiple sclerosis patients.
        Mult. Scler. Relat. Disord. 2021 Jan; 47102666https://doi.org/10.1016/j.msard.2020.102666
        • Valentino P.
        • Marnetto F.
        • Martire S.
        • Malucchi S.
        • Bava C.I.
        • Popovic M.
        • et al.
        Serum neurofilament light chain levels in healthy individuals: a proposal of cut-off values for use in multiple sclerosis clinical practice.
        Mult. Scler. Relat. Disord. 2021 Sep; 54103090https://doi.org/10.1016/j.msard.2021.103090
        • Benkert P.
        • Meier S.
        • Schaedelin S.
        • Manouchehrinia A.
        • Yaldizli O.
        • Maceski A.
        • et al.
        Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: a retrospective modelling and validation study.
        Lancet Neurol. 2022 Mar; 21: 246-257https://doi.org/10.1016/S1474-4422(22)00009-6
        • Weimar C.
        • Konig I.R.
        • Kraywinkel K.
        • Ziegler A.
        • Diener H.C.
        • German Stroke Study Collaboration
        Age and National Institutes of Health Stroke Scale score within 6 hours after onset are accurate predictors of outcome after cerebral ischemia: development and external validation of prognostic models.
        Stroke. 2004 Jan; 35: 158-162https://doi.org/10.1161/01.STR.0000106761.94985.8B
        • Vogt G.
        • Laage R.
        • Shuaib A.
        • Schneider A.
        VISTA Collaboration, Initial lesion volume is an independent predictor of clinical stroke outcome at day 90: an analysis of the virtual international stroke trials archive (VISTA) database.
        Stroke. 2012 May; 43: 1266-1272https://doi.org/10.1161/STROKEAHA.111.646570
        • Tiedt S.
        • Duering M.
        • Barro C.
        • Kaya A.G.
        • Boeck J.
        • Bode F.J.
        • et al.
        Serum neurofilament light: a biomarker of neuroaxonal injury after ischemic stroke.
        Neurology. 2018 Oct 2; 91: e1338-e1347https://doi.org/10.1212/WNL.0000000000006282
        • Gendron T.F.
        • Badi M.K.
        • Heckman M.G.
        • Jansen-West K.R.
        • Vilanilam G.K.
        • Johnson P.W.
        • et al.
        Plasma neurofilament light predicts mortality in patients with stroke.
        Sci. Transl. Med. 2020 Nov 11; 12 (eaay1913)https://doi.org/10.1126/scitranslmed.aay1913
        • Pujol-Calderón F.
        • Portelius E.
        • Zetterberg H.
        • Blennow K.
        • Rosengren L.E.
        • Höglund K.
        Neurofilament changes in serum and cerebrospinal fluid after acute ischemic stroke.
        Neurosci. Lett. 2019 Apr 17; 698: 58-63https://doi.org/10.1016/j.neulet.2018.12.042
        • Pedersen A.
        • Stanne T.M.
        • Nilsson S.
        • Klasson S.
        • Rosengren L.
        • Holmegaard L.
        • et al.
        Circulating neurofilament light in ischemic stroke: temporal profile and outcome prediction.
        J. Neurol. 2019 Nov; 266: 2796-2806https://doi.org/10.1007/s00415-019-09477-9
        • Chen C.H.
        • Chu H.J.
        • Hwang Y.T.
        • Lin Y.H.
        • Lee C.W.
        • Tang S.C.
        • et al.
        Plasma neurofilament light chain level predicts outcomes in stroke patients receiving endovascular thrombectomy.
        J. Neuroinflammation. 2021 Sep 12; 18: 195https://doi.org/10.1186/s12974-021-02254-4
        • Nielsen H.H.
        • Soares C.B.
        • Høgedal S.S.
        • Madsen J.S.
        • Hansen R.B.
        • Christensen A.A.
        • et al.
        Acute neurofilament light chain plasma levels correlate with stroke severity and clinical outcome in ischemic stroke patients.
        Front. Neurol. 2020 Jun 11; 11: 448https://doi.org/10.3389/fneur.2020.00448
        • Uphaus T.
        • Bittner S.
        • Groschel S.
        • Steffen F.
        • Muthuraman M.
        • Wasser K.
        • et al.
        NfL (Neurofilament light chain) levels as a predictive marker for long-term outcoem after ischemic stroke.
        Stroke. 2019 Nov; 50: 3077-3084https://doi.org/10.1161/STROKEAHA.119.026410
        • Stokowska A.
        • Bunketorp Kall L.
        • Blomstrand C.
        • Simrén J.
        • Nilsson M.
        • Zetterberg H.
        • et al.
        Plasma neurofilament light chain levels predict improvement in late phase after stroke.
        Eur. J. Neurol. 2021 Jul; 28: 2218-2228https://doi.org/10.1111/ene.14854
        • Kalaria R.N.
        • Kenny R.A.
        • Ballard C.G.
        • Perry R.
        • Ince P.
        • Polvikoski T.
        Towards defining the neuropathological substrates of vascular dementia.
        J. Neurol. Sci. 2004 Nov 15; 226: 75-80https://doi.org/10.1016/j.jns.2004.09.019
        • Qu Y.
        • Tan C.C.
        • Shen X.N.
        • Li H.Q.
        • Cui M.
        • Tan L.
        • et al.
        Association of plasma neurofilament light with small vessel disease burden in nondemented elderly: a longitudinal study.
        Stroke. 2021 Mar; 52: 896-904https://doi.org/10.1161/STROKEAHA.120.030302
        • Peters N.
        • van Leijsen E.
        • Tuladhar A.M.
        • Barro C.
        • Konieczny M.J.
        • Ewers M.
        • et al.
        Serum neurofilament light chain is associated with incident lacunes in progressive cerebral small vessel disease.
        J. Stroke. 2020 Sep; 22: 369-376https://doi.org/10.5853/jos.2019.02845
        • Egle M.
        • Loubiere L.
        • Maceski A.
        • Kuhle J.
        • Peters N.
        • Markus H.S.
        Neurofilament light chain predicts future dementia risk in cerebral small vessel disease.
        J. Neurol. Neurosurg. Psychiatry. 2021 Feb 8; 92: 582-589https://doi.org/10.1136/jnnp-2020-325681
        • Duering M.
        • Konieczy M.J.
        • Tiedt S.
        • Baykara E.
        • Tuladhar A.M.
        • Leijsen E.V.
        • et al.
        Serum neurofilament light chain levels are related to small vessel disease burden.
        J. Stroke. 2018 May; 20: 228-238https://doi.org/10.5853/jos.2017.02565
        • Gravesteijn G.
        • Rutten J.W.
        • Verberk I.M.W.
        • Böhringer S.
        • Liem M.K.
        • van der Grond J.
        • et al.
        Serum neurofilament light correlates with CADASIL disease severity and survival.
        Ann. Clin. Transl. Neurol. 2018 Nov; 6: 46-56https://doi.org/10.1002/acn3.678
        • Jacob M.A.
        • Nils P.
        • Cai M.
        • Duering M.
        • Engelter S.T.
        • Kuhle J.
        • et al.
        Increased neurofilament light chain is associated with increased risk of long-term mortality in cerebral small vessel disease.
        J. Stroke. 2022 May; 24: 296-299https://doi.org/10.5853/jos.2021.04385
        • Li Y.
        • Li Y.
        • Li X.
        • Zhang S.
        • Zhao J.
        • Zhu X.
        • et al.
        Head injury as a risk factor for dementia and Alzheimer's disease: a systematic review and meta-analysis of 32 observational studies.
        PLoS One. 2017 Jan 9; 12e0169650https://doi.org/10.1371/journal.pone.0169650
        • Falcon B.
        • Zivanov J.
        • Zhang W.
        • Murzin A.G.
        • Garringer H.J.
        • Vidal R.
        • et al.
        Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophic molecules.
        Nature. 2019 Apr; 568: 420-423https://doi.org/10.1038/s41586-019-1026-5
        • Shahim P.
        • Zetterberg H.
        • Tegner Y.
        • Blennow K.
        Serum neurofilament light as a biomarker for mild traumatic brain injury in contact sports.
        Neurology. 2017 May 9; 88: 1788-1794https://doi.org/10.1212/WNL.0000000000003912
        • Shahim P.
        • Politis A.
        • van der Merwe A.
        • Moore B.
        • Chou Y.Y.
        • Pham D.L.
        • et al.
        Neurofilament light as a biomarker in traumatic brain injury.
        Neurology. 2020 Aug 11; 95: e610-e622https://doi.org/10.1212/WNL.0000000000009983
        • Shahim P.
        • Gren M.
        • Liman V.
        • Andreasson U.
        • Norgren N.
        • Tegner Y.
        • et al.
        Serum neurofilament light protein predicts clinical outcome in traumatic brain injury.
        Sci. Rep. 2016 Nov 7; 6: 36791https://doi.org/10.1038/srep36791
        • Al Nimer F.
        • Thelin E.
        • Nystrom H.
        • Dring A.M.
        • Svenningsson A.
        • Piehl F.
        • et al.
        Comparative assessment of the prognostic value of biomarkers in traumatic brain injury reveals an independent role for serum levels of neurofilament light.
        PLoS One. 2015 Jul 2; 10e0132177https://doi.org/10.1371/journal.pone.0132177
        • Graham N.S.N.
        • Zimmerman K.A.
        • Moro F.
        • Heslegrave A.
        • Maillard S.A.
        • Bernini A.
        • et al.
        Axonal marker neurofilament light predicts long-term outcomes and progressive neurodegeneration after traumatic brain injury.
        Sci. Transl. Med. 2021 Sep 29; 13 (eabg9922)https://doi.org/10.1126/scitranslmed.abg9922
        • Newcombe V.F.J.
        • Ashton N.J.
        • Posti J.P.
        • Glocker B.
        • Manktelow A.
        • Chatfield D.A.
        • et al.
        Post-acute blood biomarkers and disease progression in traumatic brain injury.
        Brain. 2022 Jun 30; 145: 2064-2076https://doi.org/10.1093/brain/awac126
        • Otani N.
        • Morimoto Y.
        • Kinoshita M.
        • Ogata T.
        • Mori K.
        • Kobayashi M.
        • et al.
        Serial changes in serum phosphorylated neurofilament and value for prediction of clinical outcome after traumatic brain injury.
        Surg. Neurol. Int. 2020 Nov 11; 11: 387https://doi.org/10.25259/SNI_696_2020
        • Johnson-Kerner B.L.
        • Roth L.
        • Greene J.P.
        • Wichterle H.
        • Sproule D.M.
        Giant axonal neuropathy: an updated perspective on its pathology and pathogenesis.
        Muscle Nerve. 2014 Oct; 50: 467-476https://doi.org/10.1002/mus.24321
        • Mahammad S.
        • Murthy S.N.
        • Didonna A.
        • Grin B.
        • Israeli E.
        • Perrot R.
        • et al.
        Giant axonal neuropathy-associated gigaxonin mutations impair intermediate filament protein degration.
        J. Clin. Invest. 2013 May; 123: 1964-1975https://doi.org/10.1172/JCI66387
        • Fabrizi G.M.
        • Cavallaro T.
        • Angiari C.
        • Bertolasi L.
        • Cabrini I.
        • Ferrarini M.
        • et al.
        Giant axon and neurofilament accumulation in Charcot-Marie-Tooth disease type 2E.
        Neurology. 2004 Apr 27; 62: 1429-1431https://doi.org/10.1212/01.wnl.0000120664.07186.3c
        • Stone E.J.
        • Kolb S.J.
        • Brown A.
        A review and analysis of the clinical literature on Charcot-Marie-Tooth disease caused by mutations in neurofilament protein L.
        Cytoskeleton (Hoboken). 2021 Mar; 78: 97-110https://doi.org/10.1002/cm.21676
        • Azzedine H.
        • Ravise N.
        • Verny C.
        • Gabreels-Festen A.
        • Lammens M.
        • Grid D.
        • et al.
        Spine deformities in Charcot-Marie-Tooth 4C caused by SH3TC2 gene mutations.
        Neurology. 2006 Aug 22; 67: 602-606https://doi.org/10.1212/01.wnl.0000230225.19797.93
        • Sandelius A.
        • Zetterberg H.
        • Blennow K.
        • Adiutori R.
        • Malaspina A.
        • Laura M.
        • et al.
        Plasma neurofilament light chain concentration in the inherited peripheral neuropathies.
        Neurology. 2018 Feb 6; 90: e518-e524https://doi.org/10.1212/WNL.0000000000004932
        • Millere E.
        • Rots D.
        • Simrén J.
        • Ashton N.J.
        • Kupats E.
        • Micule I.
        • et al.
        Plasma neurofilament light chain as a potential biomarker in Charcot-Marie-Tooth disease.
        Eur. J. Neurol. 2021 Mar; 28: 974-981https://doi.org/10.1111/ene.14689
        • van der Knaap M.S.
        • Schiffmann R.
        • Mochel F.
        • Wolf N.I.
        Diagnosis, prognosis, and treatment of leukodystrophies.
        Lancet Neurol. 2019 Oct; 18: 962-972https://doi.org/10.1016/S1474-4422(19)30143-7
        • Turk B.R.
        • Theda C.
        • Fatemi A.
        • Moser A.B.
        X-linked adrenoleukodystrophy: Pathology, pathophysiology, diagnostic testing, newborn screening and therapies.
        Int. J. Dev. Neurosci. 2020 Feb; 80: 52-72https://doi.org/10.1002/jdn.10003
        • Weinhofer I.
        • Rommer P.
        • Zierfuss B.
        • Altmann P.
        • Foiani M.
        • Heslegrave A.
        • et al.
        Neurofilament light chain as a potential biomarker for monitoring neurodegeneration in X-linked adrenoleukodystrophy.
        Nat. Commun. 2021 Mar 22; 12: 1816https://doi.org/10.1038/s41467-021-22114-2
        • Shaimardanova A.A.
        • Chulpanova D.S.
        • Solovyeva V.V.
        • Mullagulova A.I.
        • Kitaeva K.V.
        • Allegrucci C.
        • et al.
        Metachromatic leukodystrophy: diagnosis, modeling and treatment approaches.
        Front. Med. (Lausanne). 2020 Oct 20; 7: 576221https://doi.org/10.3389/fmed.2020.576221
        • Beerepoot S.
        • Heijst H.
        • Roos B.
        • Wamelink M.M.C.
        • Boelens J.J.
        • Lindemans C.A.
        • et al.
        Neurofilament light chain and glial fibrillary acidic protein levels in metachromatic leukodystrophy.
        Brain. 2022 Mar 29; 145: 105-118https://doi.org/10.1093/brain/awab304
        • Vázquez-Mojena Y.
        • Leon-Arcia K.
        • González-Zaldivar Y.
        • Rodríguez-Labrada R.
        • Velázquez-Pérez L.
        Gene therapy for polyglutamine spinocerebellar ataxias: Advances, challenges, and perspectives.
        Mov. Disord. 2021 Dec; 36: 2731-2744https://doi.org/10.1002/mds.28819
        • Shin H.R.
        • Moon J.
        • Lee W.J.
        • Lee H.S.
        • Kim E.Y.
        • Shin S.
        • et al.
        Serum neurofilament light chain as a severity marker for spinocerebellar ataxia.
        Sci. Rep. 2021 Jun 29; 11: 13517https://doi.org/10.1038/s41598-021-92855-z
        • Coarelli G.
        • Darios F.
        • Petit E.
        • Dorgham K.
        • Adanyeguh I.
        • Petit E.
        • et al.
        Plasma neurofilament light chain predicts cerebellar atrophy and clinical progression in spinocerebellar ataxia.
        Neurobiol. Dis. 2021 Jun; 153105311https://doi.org/10.1016/j.nbd.2021.105311
        • Garcia-Moreno H.
        • Prudencio M.
        • Thomas-Black G.
        • Solanky N.
        • Jansen-West K.R.
        • Hanna Al-Shaikh R.
        • et al.
        Tau and neurofilament light-chain as fluid biomarkers in spinocerebellar ataxia type 3.
        Eur. J. Neurol. 2022 Apr 28; https://doi.org/10.1111/ene.15373
        • Peng Y.
        • Zhang Y.
        • Chen Z.
        • Peng H.
        • Wan N.
        • Zhang J.
        • et al.
        Association of serum neurofilament light and disease severity in patients with spinocerebellar ataxia type 3.
        Neurology. 2020 Dec 1; 95: e2977-e2987https://doi.org/10.1212/WNL.0000000000010671
        • Wilke C.
        • Haas E.
        • Reetz K.
        • Faber J.
        • Garcia-Moreno H.
        • Santana M.M.
        • et al.
        Neurofilament in spinocerebellar ataxia type 3: blood biomarkers at the preataxic and ataxic stage in humans and mice.
        EMBO Mol. Med. 2020 Jul 7; 12e11803https://doi.org/10.15252/emmm.201911803
        • Yang L.
        • Shao Y.R.
        • Li X.Y.
        • Ma Y.
        • Dong Y.
        • Wu Z.Y.
        Association of the level of neurofilament light with disease severity in patients with spinocerebellar ataxia type 2.
        Neurology. 2021 Dec 14; 97: e2402-e2413https://doi.org/10.1212/WNL.0000000000012945
        • Wilke C.
        • Mengel D.
        • Schöls L.
        • Hengel H.
        • Rakowicz M.
        • Klockgether T.
        • et al.
        Levels of neurofilament light at the preataxic and ataxic stages of spinocerebellar ataxia type 1.
        Neurology. 2022 May 17; 98: e1985-e1996https://doi.org/10.1212/WNL.0000000000200257
        • Bobos M.
        • Hytiroglou P.
        • Kostopoulos I.
        • Karkavelas G.
        • Papadimitriou C.S.
        Immunohistochemical distinction between merkel cell carcinoma and small cell carcinoma of the lung.
        Am. J. Dermatopathol. 2006 Apr; 28: 99-104https://doi.org/10.1097/01.dad.0000183701.67366.c7
        • Moll R.
        • Osborn M.
        • Hartschuh W.
        • Moll I.
        • Mahrle G.
        • Weber K.
        Variability of expression and arrangement of cytokeratin and neurofilaments in cutaneous neuroendocrine carcinomas (Merkel cell tumors): immunocytochemical and biochemical analysis of twelve cases.
        Ultrastruct. Pathol. 1986 Apr 24; 10: 473-495https://doi.org/10.3109/01913128609007206
        • Stanoszek L.M.
        • Chan M.P.
        • Palanisamy N.
        • Carskadon S.
        • Siddiqui J.
        • Patel R.M.
        • et al.
        Neurofilament is superior to cytokeratin 20 in supporting cutaneous origin for neuroendocrine carcinoma.
        Histopathology. 2019 Feb; 74: 504-513https://doi.org/10.1111/his.13758
        • Lowery A.J.
        • Walsh S.
        • McDermott E.W.
        • Prichard R.S.
        Molecular and therapeutic advances in the diagnosis and management of malignant pheochromocytomas and paragangliomas.
        Oncologist. 2013; 18: 391-407https://doi.org/10.1634/theoncologist.2012-0410
        • Mukai M.
        • Torikata C.
        • Iri H.
        • Morikawa Y.
        • Shimizu K.
        • Shimoda T.
        • et al.
        Expression of neurofilament triplet proteins in human neural tumors. An immunohistochemical study of paraganglioma, ganglioneurona, ganglioneuroblastoma and neuroblastoma.
        Am. J. Pathol. 1986 Jan; 122: 28-35
        • Osborn M.
        • Altmannsberger M.
        • Shaw G.
        • Schauer A.
        • Weber K.
        Various sympathetic derived human tumors differ in neurofilament expression. Use in diagnosis of neuroblastoma, ganglioneuroblastoma and pheochromocytoma.
        Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 1982 Aug; 40: 141-156https://doi.org/10.1007/BF02932859
        • Miettinen M.
        Synaptophysin and neurofilament proteins as markers for neuroendocrine tumors.
        Arch. Pathol. Lab. Med. 1987 Sep; 111: 813-818
        • Perez M.A.
        • Saul S.H.
        • Trojanowski J.Q.
        Neurofilament and chromogranin expression in normal and neoplastic neuroendocrine cells of the human gastrointestinal tract and pancreas.
        Cancer. 1990 Mar 1; 65: 1219-1227https://doi.org/10.1002/1097-0142(19900301)65:5<1219::aid-cncr2820650531>3.0.co;2-w
        • Schultz A.
        • Hoffacker V.
        • Wilisch A.
        • Nix W.
        • Gold R.
        • Schalke B.
        • et al.
        Neurofilament is an autoantigenic determinant in myasthenia gravis.
        Ann. Neurol. 1999 Aug; 46: 167-175https://doi.org/10.1002/1531-8249(199908)46:2<167::aid-ana5>3.0.co;2-3
        • Marx A.
        • Kirchner T.
        • Greiner A.
        • Muller-Hermelink H.K.
        • Schalke B.
        • Osborn M.
        Neurofilament epitopes in thymoma and antiaxonal autoantibodies in myasthenia gravis.
        Lancet. 1992 Mar 21; 339: 707-708https://doi.org/10.1016/0140-6736(92)90601-x
        • Yang K.
        • Reddy K.
        • Wang B.H.
        • Cenic A.
        • Provias J.
        • Popovic S.
        • et al.
        Immunohistochemical markers in the diagnosis of calcifying pseudoneoplasm of the neuraxis.
        Can. J. Neurol. Sci. 2021 Mar; 48: 259-266https://doi.org/10.1017/cjn.2020.175
        • Lu J.Q.
        • Al Mohammadi W.J.B.
        • Fong C.
        • Yang K.
        • Moodley J.
        • Provias J.
        • et al.
        Spinal calcifying pseudoneoplasm of the neuraxis (CAPNON) and CAPNON-like lesions: CAPNON overlapping with calcified synovial cysts.
        Pathology. 2022 Apr 11; (00108-00108)https://doi.org/10.1016/j.pathol.2022.01.003
        • Yang K.
        • Reddy K.
        • Chebib I.
        • Hammond R.
        • Lu J.Q.
        Calcifying pseudoneoplasm of the neuraxis: from pathogenesis to diagnostic and therapeutic considerations.
        World Neurosurg. 2021 Apr; 148: 165-176https://doi.org/10.1016/j.wneu.2021.01.076
        • Quick Q.
        • Paul M.
        • Skalli O.
        Roles and potential clinical applications of intermediate filament proteins in brain tumors.
        Semin. Pediatr. Neurol. 2015 Mar; 22: 40-48https://doi.org/10.1016/j.spen.2014.12.005
        • Achrol A.S.
        • Rennert R.C.
        • Anders C.
        • Soffietti R.
        • Ahluwalia M.S.
        • Nayak L.
        • et al.
        Brain metastases.
        Nat. Rev. Dis. Primers. 2019 Jan 17; 5: 5https://doi.org/10.1038/s41572-018-0055-y
        • Hendrix M.J.
        • Seftor E.A.
        • Chu Y.W.
        • Trevor K.T.
        • Seftor R.E.
        Role of intermediate filaments in migration, invasion and metastasis.
        Cancer Metastasis Rev. 1996 Dec; 15: 507-525https://doi.org/10.1007/BF00054016
        • Ehrmann J.
        • Kolar Z.
        • Mokry J.
        Nestin as a diagnostic and prognostic marker: immunohistochemical analysis of its expression in different tumours.
        J. Clin. Pathol. 2005 Feb; 58: 222-223https://doi.org/10.1136/jcp.2004.021238
        • Sharma P.
        • Alsharif S.
        • Fallatah A.
        • Chung B.M.
        Intermediate filaments as effectors of cancer development and metastasis: a focus on keratins, vimentin and nestin.
        Cells. 2019 May 23; 8: 497https://doi.org/10.3390/cells8050497
        • Zhang M.
        • Olsson Y.
        Hematogenous metastases of the human brain - characteristics of peritumoral brain changes: a review.
        J. Neuro-Oncol. 1997 Oct; 35: 81-89https://doi.org/10.1023/a:1005799805335
        • Darlix A.
        • Hirtz C.
        • Mollevi C.
        • Ginestet N.
        • Tiers L.
        • Jacot W.
        • et al.
        Serum glial fibrillary acidic protein is a predictor of brain metastases in patients with metastatic breast cancer.
        Int. J. Cancer. 2021 Oct 15; 149: 1605-1618https://doi.org/10.1002/ijc.33724
        • Hepner A.
        • Porter J.
        • Hare F.
        • Nasir S.S.
        • Zetterberg H.
        • Blennow K.
        • et al.
        Serum neurofilament light, glial fibrillary acidic protein and tau are possible serum biomarkers for activity of brain metastases and gliomas.
        World J. Oncol. 2019 Oct; 10 (10.14740/wjon1228): 169-175
        • Lin X.
        • Lu T.
        • Deng H.
        • Liu C.
        • Yang Y.
        • Chen T.
        • et al.
        Serum neurofilament light chain or glial fibrillary acidic protein in the diagnosis and prognosis of brain metastases.
        J. Neurol. 2022 Feb; 269: 815-823https://doi.org/10.1007/s00415-021-10660-0
        • Winther-Larsen A.
        • Hviid C.V.B.
        • Meldgaard P.
        • Sorensen B.S.
        • Sandfeld-Paulsen B.
        Neurofilament light chain as a biomarker for brain metastases.
        Cancers (Basel). 2020 Oct 2; 12: 2852https://doi.org/10.3390/cancers12102852
        • Wisniewski H.M.
        • Soifer D.
        Neurofibrillary pathology: current status and research perspectives.
        Mech. Ageing Dev. 1979 Jan; 9: 119-142https://doi.org/10.1016/0047-6374(79)90125-8
        • Ducray F.
        • Criniere E.
        • Idbaih A.
        • Mokhtari K.
        • Marie Y.
        • Paris S.
        • et al.
        alpha-Internexin expression identified 1p19q codeleted gliomas.
        Neurology. 2009 Jan 13; 72: 156-161https://doi.org/10.1212/01.wnl.0000339055.64476.cb
        • Ducray F.
        • Mokhtari K.
        • Criniere E.
        • Idbaih A.
        • Marie Y.
        • Dehais C.
        • et al.
        Diagnostic and prognostic value of alpha internexin expression in a series of 409 glioms.
        Eur. J. Cancer. 2011 Mar; 47: 802-808https://doi.org/10.1016/j.ejca.2010.11.031
        • Pallud J.
        • Dezamis E.
        • Audureau E.
        • Devaux B.
        • Souillard-Scemama R.
        • Sanai N.
        • et al.
        Neuronal immunoexpression and a distinct subtype of adult primary supratentorial glioblastoma with a better prognosis.
        J. Neurosurg. 2012 Sep; 117: 476-485https://doi.org/10.3171/2012.5.JNS111670
        • Varlet P.
        • Soni D.
        • Miquel C.
        • Roux F.X.
        • Meder J.F.
        • Chneiweiss H.
        • et al.
        New variants of malignant glioneuronal tumors: a clinicopathological study of 40 cases.
        Neurosurgery. 2004 Dec; 55: 1377-1391https://doi.org/10.1227/01.neu.0000143033.36582.40