Advertisement

Timing stroke: A review on stroke pathophysiology and its influence over time on diffusion measures

  • A. Osa García
    Affiliations
    Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montréal, Québec, Canada

    École d'orthophonie et d'audiologie, Université de Montréal, Montréal, Québec, Canada
    Search for articles by this author
  • Simona Maria Brambati
    Affiliations
    Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montréal, Québec, Canada

    Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada

    Département de psychologie, Université de Montréal, Montréal, Québec, Canada
    Search for articles by this author
  • Alex Desautels
    Affiliations
    Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montréal, Québec, Canada

    Département de neurosciences, Université de Montréal, Montréal, Québec, Canada

    Centre d'études Avancées en médecine du sommeil, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada
    Search for articles by this author
  • Karine Marcotte
    Correspondence
    Corresponding author at: Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, 5400 Gouin Ouest, Montréal, Québec H4J 1C5, Canada.
    Affiliations
    Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montréal, Québec, Canada

    École d'orthophonie et d'audiologie, Université de Montréal, Montréal, Québec, Canada
    Search for articles by this author
Published:August 02, 2022DOI:https://doi.org/10.1016/j.jns.2022.120377

      Highlights

      • Water diffusion changes remain to be well profiled in each phase of stroke pathophysiology.
      • Mean Diffusivity (MD) seems the most sensitive measure of neuron body swelling in the hyperacute/acute phase of stroke.
      • Fractional Anisotropy (FA) has a stronger correlation with vasogenic edema, typical of the transition into subacute phase.
      • Diffusivity measures seem more reliable in earlier phases, but FA reflects better edema presence in later phases.
      • Alternative methods of measure extraction from fiber bundles are needed to ensure accurate interpretation of stroke imaging.

      Abstract

      Diffusion imaging (DWI) is considered an optimal technique to detect hyperacute cerebral ischemia and has thus enriched the clinical management of patients with suspected stroke. Researchers have taken this technique beyond with Diffusion Tensor Imaging (DTI)-extracted measures, which have been proposed as biomarkers of stroke progression. A large body of literature report on the correlates between pathophysiological events, such as cytotoxic and vasogenic edema, and diffusion changes in the brain. However, a unified picture of these changes, and their exploration as stroke pathology progression biomarkers, remains to be done. We present here a narrative review on the different pathophysiological events underlying stroke from onset until late subacute stages and its relation to different brain edema forms. Studies included in this review used either DWI and/or DTI analysis in hyperacute (<24 h), acute (1–7 days), early subacute (7–30 days) and/or late subacute (1–6 months) phase of stroke, including human and animal models. Our conclusions are that diffusion measures should be considered as a potential proxy measure for stroke neuroinflammation status, specially in early stages of the disease. Furthermore, we suggest that the choice of diffusion measures and the interpretation of their changes, in both research and clinical settings, need to be linked to the different stroke phases to account correctly for the progression, and eventual resolution, of neuroinflammation.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Soares J.M.
        • Marques P.
        • Alves V.
        • Sousa N.
        A hitchhiker's guide to diffusion tensor imaging.
        Front. Neurosci. 2013; https://doi.org/10.3389/fnins.2013.00031
        • Lin M.
        • Liebeskind D.S.
        Imaging of ischemic stroke.
        CONTINUUM Lifelong Learn. Neurol. 2016; 22: 1399-1423https://doi.org/10.1212/CON.0000000000000376
        • Curran K.M.
        • Emsell L.
        • Leemans A.
        Quantitative DTI measures.
        in: Diffusion Tensor Imaging: A Practical Handbook. 2016: 65-87https://doi.org/10.1007/978-1-4939-3118-7
        • Suk Tae W.
        • Ham B.J.
        • Pyun S.B.
        • Kang S.H.
        • Kim B.J.
        Current clinical applications of diffusion-tensor imaging in neurological disorders.
        J. Clin. Neurol. 2018; 14: 129-140https://doi.org/10.3988/jcn.2018.14.2.129
        • Duering M.
        • Finsterwalder S.
        • Baykara E.
        • Tuladhar A.M.
        • Gesierich B.
        • Konieczny M.J.
        • et al.
        Free water determines diffusion alterations and clinical status in cerebral small vessel disease.
        Alzheimer's Dementia. 2018; 14: 764-774https://doi.org/10.1016/j.jalz.2017.12.007
        • De Figuereido E.H.M.S.G.
        • Borgonovi A.F.N.G.
        • Doring T.M.
        Basic concepts of MR imaging, diffusion MR imaging, and diffusion tensor imaging.
        Magnet. Resonance Imag. Clin. NA. 2011; 19: 1-22https://doi.org/10.1016/j.mric.2010.10.005
        • Rowe M.
        • Siow B.
        • Alexander D.C.
        • Ferizi U.
        • Richardson S.
        Concepts of diffusion in MRI.
        in: Diffusion Tensor Imaging: A Practical Handbook. 2016: 23-35https://doi.org/10.1007/978-1-4939-3118-7
        • Froeling M.
        • Pullens P.
        • Leemans A.
        DTI analysis methods : region of interest analysis.
        in: Diffusion Tensor Imaging: A Practical Handbook. 2016: 175-182https://doi.org/10.1007/978-1-4939-3118-7
        • Sotak C.H.
        The role of diffusion tensor imaging in the evaluation of ischemic brain injury - a review.
        NMR Biomed. 2002; 15: 561-569https://doi.org/10.1002/nbm.786
        • Le Bihan D.
        Apparent diffusion coefficient and beyond : what diffusion mr imaging can tell us about tissue structure.
        Radiology. 2013; 268: 318-322https://doi.org/10.1148/radiol.13130420
        • Moulton E.
        • Magno S.
        • Valabregue R.
        • Amor-sahli M.
        • Pires C.
        • Lehéricy S.
        • et al.
        Acute diffusivity biomarkers for prediction of motor and language outcome in mild-to-severe stroke patients.
        Stroke. 2019; 50: 1-7https://doi.org/10.1161/STROKEAHA.119.024946
        • Winklewski P.J.
        • Sabisz A.
        • Naumczyk P.
        • Jodzio K.
        • Szurowska E.
        • Szarmach A.
        Understanding the physiopathology behind axial and radial diffusivity changes-what do we know?.
        Front. Neurol. 2018; 9https://doi.org/10.3389/fneur.2018.00092
        • Ivanova M.V.
        • Yu D.
        • Dragoy O.V.
        • Shklovsky V.M.
        • Dronkers N.F.
        Diffusion-tensor imaging of major white matter tracts and their role in language processing in aphasia.
        Cortex. 2016; 85: 165-181https://doi.org/10.1016/j.cortex.2016.04.019
        • Montal V.
        • Vilaplana E.
        • Alcolea D.
        • Pegueroles J.
        • Pasternak O.
        • Gonz S.
        • et al.
        Cortical microstructural changes along the Alzheimer's disease continuum.
        Alzheimers Dement. 2017; 14: 340-351https://doi.org/10.1016/j.jalz.2017.09.013
        • Baril A.A.
        • Gagnon K.
        • Descoteaux M.
        • Bedetti C.
        • Chami S.
        • Sanchez E.
        • et al.
        Cerebral white matter diffusion properties and free-water with obstructive sleep apnea severity in older adults.
        Hum. Brain Mapp. 2020; 41: 2686-2701https://doi.org/10.1002/hbm.24971
        • Dumont M.
        • Roy M.
        • Jodoin P.M.
        • Morency F.C.
        • Houde J.C.
        • Xie Z.
        • et al.
        Free water in white matter differentiates MCI and AD from control subjects.
        Front. Aging Neurosci. 2019; 11: 1-9https://doi.org/10.3389/fnagi.2019.00270
        • Farquharson S.
        • Tournier J.D.
        High angular resolution diffusion imaging.
        in: Diffusion Tensor Imaging: A Practical Handbook. 2016: 383-406https://doi.org/10.1007/978-1-4939-3118-7
        • Alegiani A.C.
        • MacLean S.
        • Braass H.
        • Gellißen S.
        • Cho T.H.
        • Derex L.
        • et al.
        Dynamics of water diffusion changes in different tissue compartments from acute to chronic stroke—a serial diffusion tensor imaging study.
        Front. Neurol. 2019; 10: 1-7https://doi.org/10.3389/fneur.2019.00158
        • Szczepankiewicz F.
        • Lätt J.
        • Wirestam R.
        • Leemans A.
        • Sundgren P.
        • van Westen D.
        • et al.
        NeuroImage variability in diffusion kurtosis imaging : impact on study design, statistical power and interpretation.
        Neuroimage [Internet]. 2013; 76: 145-154https://doi.org/10.1016/j.neuroimage.2013.02.078
        • Johnson C.O.
        • Nguyen M.
        • Roth G.A.
        • Nichols E.
        • Alam T.
        • Abate D.
        • et al.
        Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016.
        Lancet Neurol. 2019; 18: 439-458https://doi.org/10.1016/S1474-4422(19)30034-1
        • Bardutzky J.
        • Schwab S.
        Antiedema therapy in ischemic stroke.
        Stroke. 2007; 38: 3084-3094https://doi.org/10.1161/STROKEAHA.107.490193
        • Michinaga S.
        • Koyama Y.
        Pathogenesis of brain edema and investigation into anti-edema drugs.
        Int. J. Mol. Sci. 2015; 16: 9949-9975https://doi.org/10.3390/ijms16059949
        • Belov Kirdajova D.
        • Kriska J.
        • Tureckova J.
        • Anderova M.
        Ischemia-triggered glutamate excitotoxicity from the perspective of glial cells.
        Front. Cell. Neurosci. 2020; 14: 1-27https://doi.org/10.3389/fncel.2020.00051
        • Shereen A.
        • Nemkul N.
        • Yang D.
        • Adhami F.
        • Dunn R.S.
        • Hazen M.L.
        • et al.
        Ex vivo diffusion tensor imaging and neuropathological correlation in a murine model of hypoxia-ischemia-induced thrombotic stroke.
        J. Cereb. Blood Flow Metab. 2011; 31: 1155-1169https://doi.org/10.1038/jcbfm.2010.212
        • Song S.K.
        • Sun S.W.
        • Ju W.K.
        • Lin S.J.
        • Cross A.H.
        • Neufeld A.H.
        Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia.
        NeuroImage. 2003; 20: 1714-1722https://doi.org/10.1016/j.neuroimage.2003.07.005
        • Llan Baron C.A.
        • Kate M.
        • Gioia L.
        • Butcher K.
        • Emery D.
        • Budde M.
        • et al.
        Reduction of diffusion-weighted imaging contrast of acute ischemic stroke at short diffusion times.
        Stroke. 2015; 46: 2136-2141https://doi.org/10.1161/STROKEAHA.115.008815
        • Fu Y.
        • Liu Q.
        • Anrather J.
        • Shi F.
        • dong.
        Immune interventions in stroke.
        Nat. Rev. Neurol. 2015; 11: 524-535https://doi.org/10.1038/nrneurol.2015.144.Immune
        • Leinonen V.
        • Vanninen R.
        • Rauramaa T.
        Raised intracranial pressure and brain edema.
        in: Handbook of Clinical Neurology. 1st ed. Vol. 145. Elsevier B.V, 2018https://doi.org/10.1016/B978-0-12-802395-2.00004-3 (25–37 p)
        • Budde M.D.
        • Janes L.
        • Gold E.
        • Turtzo L.C.
        • Frank J.A.
        The contribution of gliosis to diffusion tensor anisotropy and tractography following traumatic brain injury: validation in the rat using Fourier analysis of stained tissue sections.
        Brain. 2011; 134: 2248-2260https://doi.org/10.1093/brain/awr161
        • Simard J.
        • Kent T.
        • Chen M.
        • Tarasov K.
        • Gerzanich V.
        Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications.
        Lancet Neurol. 2007; 6: 258-268https://doi.org/10.1016/S1474-4422(07)70055-8
        • Anrather J.
        • Iadecola C.
        Inflammation and stroke: an overview.
        Neurotherapeutics. 2016; 13: 661-670https://doi.org/10.1007/s13311-016-0483-x
        • Jayaraj R.L.
        • Azimullah S.
        • Beiram R.
        • Jalal F.Y.
        • Rosenberg G.A.
        Neuroinflammation: friend and foe for ischemic stroke.
        J. Neuroinflammation. 2019; 16: 1-24https://doi.org/10.1186/s12974-019-1516-2
        • Wanner I.B.
        • Anderson M.A.
        • Song B.
        • Levine J.
        • Fernandez A.
        • Gray-Thompson Z.
        • et al.
        Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury.
        J. Neurosci. 2013; 33: 12870-12886https://doi.org/10.1523/JNEUROSCI.2121-13.2013
        • Adams K.L.
        • Gallo V.
        The diversity and disparity of the glial scar.
        Nat. Neurosci. 2018; 21: 9-15https://doi.org/10.1038/s41593-017-0033-9
        • Ruiz F.
        • Vigne S.
        • Pot C.
        Resolution of inflammation during multiple sclerosis.
        Semin. Immunopathol. 2019; 41: 711-726https://doi.org/10.1007/s00281-019-00765-0
        • Carmichael S.T.
        • Kathirvelu B.
        • Schweppe C.A.
        • Nie E.H.
        Molecular, cellular and functional events in axonal sprouting after stroke.
        Exp. Neurol. 2017; 287: 384-394https://doi.org/10.1016/j.expneurol.2016.02.007.Molecular
        • Xing C.
        • Arai K.
        • Lo E.H.
        • Hommel M.
        Pathophysiologic cascades in ischemic stroke.
        Int. J. Stroke. 2012; 7: 378-385https://doi.org/10.1111/j.1747-4949.2012.00839.x
        • Li Y.
        Remyelination is critical for white matter stroke recovery.
        Eur. J. BioMed. Res. 2015; 1 (18–22): 18-22https://doi.org/10.18088/ejbmr.1.4.2015
        • Candelario-Jalil E.
        Injury and repair mechanisms in ischemic stroke: considerations for the development of novel neurotherapeutics.
        Curr. Opin. Investig. Drugs. 2009; 10: 644-654
        • Dziewulska D.
        • Mossakowski M.
        Cellular expression of tumor necrosis factor a and its receptors in human ischemic stroke.
        Clin. Neuropathol. 2003; 22: 35-40
        • Kliper E.
        • Ben Bashat D.
        • Bornstein N.M.
        • Shenhar-Tsarfaty S.
        • Hallevi H.
        • Auriel E.
        • et al.
        Cognitive decline after stroke: relation to inflammatory biomarkers and hippocampal volume.
        Stroke. 2013; 44: 1433-1435https://doi.org/10.1161/STROKEAHA.111.000536
        • Narasimhalu K.
        • Lee J.
        • Leong Y.L.
        • Ma L.
        • De Silva D.A.
        • Wong M.C.
        • et al.
        Inflammatory markers and their association with post stroke cognitive decline.
        Int. J. Stroke. 2015; 10: 513-518https://doi.org/10.1111/ijs.12001
        • Shi K.
        • Tian D.C.
        • Li Z.G.
        • Ducruet A.F.
        • Lawton M.T.
        • Shi F.D.
        Global brain inflammation in stroke.
        Lancet Neurol. 2019; 18: 1058-1066https://doi.org/10.1016/S1474-4422(19)30078-X
        • Bernhardt J.
        • Hayward K.S.
        • Kwakkel G.
        • Ward N.S.
        • Wolf S.L.
        • Borschmann K.
        • et al.
        Agreed definitions and a shared vision for new standards in stroke recovery research: the Stroke Recovery and Rehabilitation Roundtable taskforce.
        Int. J. Stroke. 2017; 12: 444-450https://doi.org/10.1177/1747493017711816
        • Song S.K.
        • Sun S.W.
        • Ramsbottom M.J.
        • Chang C.
        • Russell J.
        • Cross A.H.
        Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water.
        NeuroImage. 2002; https://doi.org/10.1006/nimg.2002.1267
        • Sun S.W.
        • Liang H.F.
        • Trinkaus K.
        • Cross A.H.
        • Armstrong R.C.
        • Song S.K.
        Noninvasive detection of cuprizone induced axonal damage and demyelination in the mouse corpus callosum.
        Magn. Reson. Med. 2006; 55: 302-308https://doi.org/10.1002/mrm.20774
        • Pitkonen M.
        • Abo-Ramadan U.
        • Marinkovic I.
        • Pedrono E.
        • Hasan K.M.
        • Strbian D.
        • et al.
        Long-term evolution of diffusion tensor indices after temporary experimental ischemic stroke in rats.
        Brain Res. 2012; 1445: 103-110https://doi.org/10.1016/j.brainres.2012.01.043
        • Nael K.
        • Trouard T.P.
        • Lafleur S.R.
        • Krupinski E.A.
        • Salamon N.
        • Kidwell C.S.
        White matter ischemic changes in hyperacute ischemic stroke: voxel-based analysis using diffusion tensor imaging and MR perfusion.
        Stroke. 2015; 46: 413-418https://doi.org/10.1161/STROKEAHA.114.007000
        • Concha L.
        A macroscopic view of microstructure: using diffusion-weighted images to infer damage, repair, and plasticity of white matter.
        Neuroscience. 2014; 276: 14-28https://doi.org/10.1016/j.neuroscience.2013.09.004
        • Harris A.D.
        • Pereira R.S.
        • Mitchell J.R.
        • Hill M.D.
        • Sevick R.J.
        • Frayne R.
        A comparison of images generated from diffusion-weighted and diffusion-tensor imaging data in hyper-acute stroke.
        J. Magn. Reson. Imaging. 2004; 20: 193-200https://doi.org/10.1002/jmri.20116
        • Bhagat Y.A.
        • Hussain M.S.
        • Stobbe R.W.
        • Butcher K.S.
        • Emery D.J.
        • Shuaib A.
        • et al.
        Elevations of diffusion anisotropy are associated with hyper-acute stroke: a serial imaging study.
        Magn. Reson. Imaging. 2008; 26: 683-693https://doi.org/10.1016/j.mri.2008.01.015
        • Liu Y.
        • D'Arceuil H.E.
        • Westmoreland S.
        • He J.
        • Duggan M.
        • Gonzalez R.G.
        • et al.
        Serial diffusion tensor MRI after transient and permanent cerebral ischemia in nonhuman primates.
        Stroke. 2007; 38: 138-145https://doi.org/10.1161/01.STR.0000252127.07428.9c
        • Alexander A.L.
        • Lee J.E.
        • Lazar M.
        • Field A.S.
        Diffusion tensor imaging of the brain.
        Neurotherapeutics. 2007; 4: 316-329https://doi.org/10.1016/j.nurt.2007.05.011
        • Beaulieu C.
        The biological basis of diffusion anisotropy.
        in: Diffusion MRI: From Quantitative Measurement to In vivo Neuroanatomy: Second Edition. Second Edi. Elsevier, 2013https://doi.org/10.1016/B978-0-12-396460-1.00008-1 (155–183 p)
        • Pinter D.
        • Gattringer T.
        • Fandler-Höfler S.
        • Kneihsl M.
        • Eppinger S.
        • Deutschmann H.
        • et al.
        Early progressive changes in white matter integrity are associated with stroke recovery.
        Transl. Stroke Res. 2020; https://doi.org/10.1007/s12975-020-00797-x
        • Cho A.H.
        • Il Sohn S.
        • Han M.K.
        • Lee D.H.
        • Kim J.S.
        • Choi C.G.
        • et al.
        Safety and efficacy of MRI-based thrombolysis in unclear-onset stroke: a preliminary report.
        Cerebrovasc. Dis. 2008; 25: 572-579https://doi.org/10.1159/000132204
        • Strbian D.
        • Meretoja A.
        • Putaala J.
        • Kaste M.
        • Tatlisumak T.
        • Ville A.
        • et al.
        Cerebral edema in acute ischemic stroke patients treated with intravenous thrombolysis.
        Int. J. Stroke. 2013; 8: 529-534https://doi.org/10.1111/j.1747-4949.2012.00781.x
        • Battey T.W.K.
        • Karki M.
        • Singhal A.B.
        • Wu O.
        • Sadaghiani S.
        • Campbell B.C.V.
        • et al.
        Brain edema predicts outcome after nonlacunar ischemic stroke.
        Stroke. 2014; 45: 3643-3648https://doi.org/10.1161/STROKEAHA.114.006884
        • Zhang X.
        • Yan Y.
        • Tong F.
        • Li C.X.
        • Jones B.
        • Wang S.
        • et al.
        Progressive assessment of ischemic injury to white matter using diffusion tensor imaging: a preliminary study of a Macaque model of stroke.
        Open Neuroimag. J. 2018; 12: 30-41https://doi.org/10.2174/1874440001812010030
        • van Gelderen P.
        • de Vleeschouwer M.H.M.
        • DesPres D.
        • Pekar J.
        • van Zijl P.C.M.
        • Moonen C.T.W.
        Water diffusion and acute stroke.
        Magn. Reson. Med. 1994; 31: 154-163https://doi.org/10.1002/mrm.1910310209
        • Vargas M.E.
        • Barres B.A.
        Why is Wallerian degeneration in the CNS so slow?.
        Annu. Rev. Neurosci. 2007; 30: 153-179https://doi.org/10.1146/annurev.neuro.30.051606.094354
        • Albach F.N.
        • Brunecker P.
        • Usnich T.
        • Villringer K.
        • Ebinger M.
        • Fiebach J.B.
        • et al.
        Complete early reversal of diffusion-weighted imaging hyperintensities after ischemic stroke is mainly limited to small embolic lesions.
        Stroke. 2013; 44: 1043-1048https://doi.org/10.1161/STROKEAHA.111.676346
        • Tsai Y.H.
        • Hsu L.M.
        • Weng H.H.
        • Lee M.H.
        • Yang J.T.
        • Lin C.P.
        Functional diffusion map as an imaging predictor of functional outcome in patients with primary intracerebral haemorrhage.
        Br. J. Radiol. 2013; 86: 1-8https://doi.org/10.1259/bjr.20110644
        • Tipirneni-Sajja A.
        • Christensen S.
        • Straka M.
        • Inoue M.
        • Lansberg M.G.
        • Mlynash M.
        • et al.
        Prediction of final infarct volume on subacute MRI by quantifying cerebral edema in ischemic stroke.
        J. Cereb. Blood Flow Metab. 2017; 37: 3077-3084https://doi.org/10.1177/0271678X16683960
        • Broocks G.
        • Faizy T.D.
        • Flottmann F.
        • Schön G.
        • Langner S.
        • Fiehler J.
        • et al.
        Subacute infarct volume with edema correction in computed tomography is equivalent to final infarct volume after ischemic stroke: improving the comparability of infarct imaging endpoints in clinical trials.
        Investig. Radiol. 2018; 53: 472-476https://doi.org/10.1097/RLI.0000000000000475
        • Axer H.
        • Gräßel D.
        • Brämer D.
        • Fitzek S.
        • Kaiser W.A.
        • Witte O.W.
        • et al.
        Time course of diffusion imaging in acute brainstem infarcts.
        J. Magn. Reson. Imaging. 2007; 26: 905-912https://doi.org/10.1002/jmri.21088
        • Srivastava A.K.
        • Mehrotra G.
        • Bhargava S.K.
        • Agarwal S.
        • Tripathi R.P.
        Studies on the time course of apparent diffusion coefficient and signal intensities on T2- and diffusion-weighted MR Imaging in acute cerebral ischemic stroke.
        J. Med. Phys. 2008; 33: 162-170https://doi.org/10.4103/0971-6203.44479
        • Fragata I.
        • Alves M.
        • Papoila A.L.
        • Ferreira P.
        • Nunes A.P.
        • Moreira N.C.
        • et al.
        Prediction of clinical outcome in subacute subarachnoid hemorrhage using diffusion tensor imaging.
        J. Neurosurg. 2019; 130: 550-558https://doi.org/10.3171/2017.10.JNS171793.550
        • Kimura-Ohba S.
        • Yang Y.
        • Thompson J.
        • Kimura T.
        • Salayandia V.M.
        • Cosse M.
        • et al.
        Transient increase of fractional anisotropy in reversible vasogenic edema.
        J. Cereb. Blood Flow Metab. 2016; 36: 1731-1743https://doi.org/10.1177/0271678X16630556
        • Ho M.L.
        • Rojas R.
        • Eisenberg R.L.
        Cerebral edema.
        Am. J. Roentgenol. 2012; 199: 3https://doi.org/10.2214/AJR.11.8081
        • Nagaraja N.
        • Forder J.R.
        • Warach S.
        • Merino J.G.
        Reversible diffusion-weighted imaging lesions in acute ischemic stroke: a systematic review.
        Neurology. 2020; 94: 571-587https://doi.org/10.1212/WNL.0000000000009173
        • Kidwell C.S.
        • Saver J.L.
        • Mattiello J.
        • Starkman S.
        • Vinuela F.
        • Duckwiler G.
        • et al.
        Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging.
        Ann. Neurol. 2000; 47: 462-469https://doi.org/10.1002/1531-8249(200004)47:4<462::aid-ana9>3.3.co;2-p
        • Rivers C.S.
        • Wardlaw J.M.
        • Armitage P.A.
        • Bastin M.E.
        • Carpenter T.K.
        • Cvoro V.
        • et al.
        Persistent infarct hyperintensity on diffusion-weighted imaging late after stroke indicates heterogeneous, delayed, infarct evolution.
        Stroke. 2006; 37: 1418-1423https://doi.org/10.1161/01.STR.0000221294.90068.c4
        • Ringer T.M.
        • Neumann-Haefelin T.
        • Sobel R.A.
        • Moseley M.E.
        • Yenari M.A.
        Reversal of early diffusion-weighted magnetic resonance imaging abnormalities does not necessarily reflect tissue salvage in experimental cerebral ischemia.
        Stroke. 2001; 32: 2362-2369https://doi.org/10.1161/hs1001.096058
        • Alia C.
        • Spalletti C.
        • Lai S.
        • Panarese A.
        • Lamola G.
        • Bertolucci F.
        • et al.
        Neuroplastic changes following brain ischemia and their contribution to stroke recovery: novel approaches in neurorehabilitation.
        Front. Cell. Neurosci. 2017; 11: 1-22https://doi.org/10.3389/fncel.2017.00076
        • Wardlaw J.M.
        • Chappell F.M.
        • Valdés Hernández M.D.C.
        • Makin S.D.J.
        • Staals J.
        • Shuler K.
        • et al.
        White matter hyperintensity reduction and outcomes after minor stroke.
        Neurology. 2017; 89: 1003-1010https://doi.org/10.1212/WNL.0000000000004328
        • Jones D.K.
        • Knösche T.R.
        • Turner R.
        White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI.
        NeuroImage. 2012; https://doi.org/10.1016/j.neuroimage.2012.06.081
        • Visser M.M.
        • Yassi N.
        • Campbell B.C.V.
        • Desmond P.M.
        • Davis S.M.
        • Spratt N.
        • et al.
        White matter degeneration after ischemic stroke: a longitudinal diffusion tensor imaging study.
        J. Neuroimaging. 2019; 29: 111-118https://doi.org/10.1111/jon.12556
        • Schirmer M.D.
        • Giese A.K.
        • Fotiadis P.
        • Etherton M.R.
        • Cloonan L.
        • Viswanathan A.
        • et al.
        Spatial signature of white matter hyperintensities in stroke patients.
        Front. Neurol. 2019; 10: 1-10https://doi.org/10.3389/fneur.2019.00208
        • Lee J.K.
        • Ko M.H.
        • Park S.H.
        • Kim G.W.
        Prediction of aphasia severity in patients with stroke using diffusion tensor imaging.
        Brain Sci. 2021; 11
        • Lin L.Y.
        • Ramsey L.
        • Metcalf N.V.
        • Rengachary J.
        • Shulman G.L.
        • Shimony J.S.
        • et al.
        Stronger prediction of motor recovery and outcome post-stroke by cortico-spinal tract integrity than functional connectivity.
        PLoS One. 2018; 13: 1-13https://doi.org/10.1371/journal.pone.0202504
        • Moura L.M.
        • Luccas R.
        • de Paiva J.P.Q.
        • Amaro E.
        • Leemans A.
        • da Leite C.C.
        • et al.
        Diffusion tensor imaging biomarkers to predict motor outcomes in stroke: a narrative review.
        Front. Neurol. 2019; 10https://doi.org/10.3389/fneur.2019.00445
        • Descoteaux M.
        High angular resolution diffusion imaging (HARDI).
        in: Webster J.G. Wiley Encyclopedia of Electrical and Electronics Engineering. Wiley, Hoboken, NJ2015: 1-25https://doi.org/10.1002/047134608x.w8258
        • Theaud G.
        • Houde J.C.
        • Boré A.
        • Rheault F.
        • Morency F.
        • Descoteaux M.
        TractoFlow: a robust, efficient and reproducible diffusion MRI pipeline leveraging Nextflow & singularity.
        NeuroImage. 2020; 218https://doi.org/10.1016/j.neuroimage.2020.116889
        • Boukadi M.
        • Marcotte K.
        • Bedetti C.
        • Houde J.C.
        • Desautels A.
        • Deslauriers-Gauthier S.
        • et al.
        Test-retest reliability of diffusion measures extracted along white matter language fiber bundles using HARDI-based tractography.
        Front. Neurosci. 2019; 12: 1055https://doi.org/10.3389/fnins.2018.01055
        • Moffat B.A.
        • Chenevert T.L.
        • Meyer C.R.
        • Mckeevery P.E.
        • Hall D.E.
        • Hoff B.A.
        • et al.
        The functional diffusion map: an imaging biomarker for the early prediction of cancer treatment outcome.
        Neoplasia. 2006; 8: 259-267https://doi.org/10.1593/neo.05844
        • Borich M.R.
        • Mackay A.L.
        • Vavasour I.M.
        • Rauscher A.
        • Boyd L.A.
        NeuroImage : clinical evaluation of white matter myelin water fraction in chronic stroke.
        NeuroImage: Clinical [Internet]. 2013; 2: 569-580https://doi.org/10.1016/j.nicl.2013.04.006
        • Maillard P.
        • Mitchell G.F.
        • Himali J.J.
        • Beiser A.
        • Fletcher E.
        • Tsao C.W.
        • et al.
        Aortic stiffness, increased white matter free water and altered microstructural integrity: a continuum of injury.
        Stroke. 2017; 48: 1567-1573https://doi.org/10.1161/STROKEAHA.116.016321.Aortic
        • Schellinger P.D.
        • Bryan R.N.
        • Caplan L.R.
        • Detre J.A.
        • Edelman R.R.
        • Jaigobin C.
        • et al.
        Evidence-based guideline: the role of diffusion and perfusion mri for the diagnosis of acute ischemic stroke: report of the therapeutics and technology subcommittee of the American Academy of Neurology.
        Neurology. 2010; 75: 175-185https://doi.org/10.1212/WNL.0b013e318219a0b4