Advertisement

Protective and anti-oxidative effects of curcumin and resveratrol on Aβ-oligomer-induced damage in the SH-SY5Y cell line

Published:August 01, 2022DOI:https://doi.org/10.1016/j.jns.2022.120356

      Highlights

      • Aβ-oligomer efficiently induced SH-SY5Y Alzheimer's disease cell model
      • Curcumin and resveratrol inhibited AβO-induced tau phosphorylation
      • Curcumin and resveratrol decreased ROS generation and oxidative stress
      • Curcumin and resveratrol therapeutic effect on AD

      Abstract

      Alzheimer's disease (AD) is a degenerative disorder characterized by the loss of synapses and neurons in the brain, and results in the accumulation of amyloid-based neurotic plaques. Amyloid-β oligomers (AβO) are widely accepted as the main neurotoxin that induces oxidative stress and neuronal loss in AD. In this study, an oxidative stress model of the neuroblastoma SH-SY5Y cell line exposed to AβO was established to simulate an AD cell model. Exposure to AβO significantly reduced the viability of cultured SH-SY5Y cells (p < 0.05) and significantly increased intracellular reactive oxygen species (ROS) (p < 0.01). AβO exposure also induced oxidative stress in SH-SY5Y cells. Furthermore, AβO significantly increased the level of hyperphosphorylation of tau at sites T181 and T205 in SH-SY5Y cells (p < 0.01). Using edaravone, a free radical scavenger with neuroprotective properties, as the control, the possible protective and anti-oxidative effects of curcumin (40 μM) and resveratrol (20 μM) were evaluated. The results suggest that curcumin and resveratrol decreased ROS generation, attenuated oxidative stress, inhibited tau hyperphosphorylation, and protected SH-SY5Y cells from AβO damage. Both curcumin and resveratrol are promising supplements or medicine as therapeutic agents for the treatment of AD.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mangialasche F.
        • Solomon A.
        • Winblad B.
        • Mecocci P.
        • Kivipelto M.
        Alzheimer’s disease: clinical trials and drug development.
        Lancet Neurol. 2010; 9: 702-716
        • Mucke L.
        • Selkoe D.J.
        Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction.
        Cold Spring Harb Perspect Med. 2012; 2a006338
        • Herrup K.
        The case for rejecting the amyloid cascade hypothesis.
        Nat. Neurosci. 2015; 18: 794-799
        • Lin M.T.
        • Beal M.F.
        Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases.
        Nature. 2006; 443: 787-795
        • Tonnies E.
        • Trushina E.
        Oxidative stress, synaptic dysfunction, and Alzheimer’s disease.
        J. Alzheimers Dis. 2017; 57: 1105-1121
        • Amalraj A.
        • Pius A.
        • Gopi S.
        • Gopi S.
        Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - a review.
        J. Tradit. Complement. Med. 2017; 7: 205-233
        • Kotha R.R.
        • Luthria D.L.
        Curcumin: biological, pharmaceutical, nutraceutical, and analytical aspects.
        Molecules. 2019; 24
        • Ono K.
        • Hasegawa K.
        • Naiki H.
        • Yamada M.
        Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro.
        J. Neurosci. Res. 2004; 75: 742-750
        • Lim G.P.
        • Chu T.
        • Yang F.
        • Beech W.
        • Frautschy S.A.
        • Cole G.M.
        The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse.
        J. Neurosci. 2001; 21: 8370-8377
        • Mithu V.S.
        • Sarkar B.
        • Bhowmik D.
        • Das A.K.
        • Chandrakesan M.
        • Maiti S.
        • Madhu P.K.
        Curcumin alters the salt bridge-containing turn region in amyloid beta(1-42) aggregates.
        J. Biol. Chem. 2014; 289: 11122-11131
        • Wei Q.Y.
        • Chen W.F.
        • Zhou B.
        • Yang L.
        • Liu Z.L.
        Inhibition of lipid peroxidation and protein oxidation in rat liver mitochondria by curcumin and its analogues.
        Biochim. Biophys. Acta. 2006; 1760: 70-77
        • Agnihotri N.
        • Mishra P.C.
        Scavenging mechanism of curcumin toward the hydroxyl radical: a theoretical study of reactions producing ferulic acid and vanillin.
        J. Phys. Chem. A. 2011; 115: 14221-14232
        • Sahu P.K.
        Design, structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives/analogues.
        Eur. J. Med. Chem. 2016; 121: 510-516
        • Baum L.
        • Ng A.
        Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models.
        J. Alzheimers Dis. 2004; 6 (discussion 443-9): 367-377
        • Nishinaka T.
        • Ichijo Y.
        • Ito M.
        • Kimura M.
        • Katsuyama M.
        • Iwata K.
        • Miura T.
        • Terada T.
        • Yabe-Nishimura C.
        Curcumin activates human glutathione S-transferase P1 expression through antioxidant response element.
        Toxicol. Lett. 2007; 170: 238-247
        • Banerjee R.
        Effect of curcumin on the metal ion induced fibrillization of amyloid-beta peptide.
        Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014; 117: 798-800
        • Ma T.
        • Tan M.S.
        • Yu J.T.
        • Tan L.
        Resveratrol as a therapeutic agent for Alzheimer’s disease.
        Biomed. Res. Int. 2014; 2014350516
        • Marambaud P.
        • Zhao H.
        • Davies P.
        Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides.
        J. Biol. Chem. 2005; 280: 37377-37382
        • Bastianetto S.
        • Menard C.
        • Quirion R.
        Neuroprotective action of resveratrol.
        Biochim. Biophys. Acta. 2015; 1852: 1195-1201
        • Richard T.
        • Poupard P.
        • Nassra M.
        • Papastamoulis Y.
        • Iglesias M.L.
        • Krisa S.
        • Waffo-Teguo P.
        • Merillon J.M.
        • Monti J.P.
        Protective effect of epsilon-viniferin on beta-amyloid peptide aggregation investigated by electrospray ionization mass spectrometry.
        Bioorg. Med. Chem. 2011; 19: 3152-3155
        • Zhuang H.
        • Kim Y.S.
        • Koehler R.C.
        • Dore S.
        Potential mechanism by which resveratrol, a red wine constituent, protects neurons.
        Ann. N Y Acad. Sci. 993. 2003; (discussion 287-8): 276-286
        • Candelario-Jalil E.
        • de Oliveira A.C.
        • Graf S.
        • Bhatia H.S.
        • Hull M.
        • Munoz E.
        • Fiebich B.L.
        Resveratrol potently reduces prostaglandin E2 production and free radical formation in lipopolysaccharide-activated primary rat microglia.
        J. Neuroinflammation. 2007; 4: 25
        • Jang J.H.
        • Surh Y.J.
        Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death.
        Free Radic. Biol. Med. 2003; 34: 1100-1110
        • Koukoulitsa C.
        • Villalonga-Barber C.
        • Csonka R.
        • Alexi X.
        • Leonis G.
        • Dellis D.
        • Hamelink E.
        • Belda O.
        • Steele B.R.
        • Micha-Screttas M.
        • Alexis M.N.
        • Papadopoulos M.G.
        • Mavromoustakos T.
        Biological and computational evaluation of resveratrol inhibitors against Alzheimer's disease.
        J. Enzyme Inhib. Med. Chem. 2016; 31: 67-77
        • Cao Z.
        • Li Y.
        Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: protection against oxidative and electrophilic injury.
        Eur. J. Pharmacol. 2004; 489: 39-48
        • Daverey A.
        • Agrawal S.K.
        Pre and post treatment with curcumin and resveratrol protects astrocytes after oxidative stress.
        Brain Res. 2018; 1692: 45-55
        • Kim J.
        • Lee H.J.
        • Lee K.W.
        Naturally occurring phytochemicals for the prevention of Alzheimer’s disease.
        J. Neurochem. 2010; 112: 1415-1430
        • Rothstein J.D.
        Edaravone: a new drug approved for ALS.
        Cell. 2017; 171: 725
        • Zhang L.
        • Guo Y.
        • Wang H.
        • Zhao L.
        • Ma Z.
        • Li T.
        • Liu J.
        • Sun M.
        • Jian Y.
        • Yao L.
        • Du Y.
        • Zhang G.
        Edaravone reduces Abeta-induced oxidative damage in SH-SY5Y cells by activating the Nrf2/ARE signaling pathway.
        Life Sci. 2019; 221: 259-266
        • Kikuchi K.
        • Tancharoen S.
        • Takeshige N.
        • Yoshitomi M.
        • Morioka M.
        • Murai Y.
        • Tanaka E.
        The efficacy of edaravone (radicut), a free radical scavenger, for cardiovascular disease.
        Int. J. Mol. Sci. 2013; 14: 13909-13930
        • Jiao S.S.
        • Yao X.Q.
        • Liu Y.H.
        • Wang Q.H.
        • Zeng F.
        • Lu J.J.
        • Liu J.
        • Zhu C.
        • Shen L.L.
        • Liu C.H.
        • Wang Y.R.
        • Zeng G.H.
        • Parikh A.
        • Chen J.
        • Liang C.R.
        • Xiang Y.
        • Bu X.L.
        • Deng J.
        • Li J.
        • Xu J.
        • Zeng Y.Q.
        • Xu X.
        • Xu H.W.
        • Zhong J.H.
        • Zhou H.D.
        • Zhou X.F.
        • Wang Y.J.
        Edaravone alleviates Alzheimer’s disease-type pathologies and cognitive deficits.
        Proc. Natl. Acad. Sci. U. S. A. 2015; 112: 5225-5230
        • Lambert M.P.
        • Barlow A.K.
        • Chromy B.A.
        • Edwards C.
        • Freed R.
        • Liosatos M.
        • Morgan T.E.
        • Rozovsky I.
        • Trommer B.
        • Viola K.L.
        • Wals P.
        • Zhang C.
        • Finch C.E.
        • Krafft G.A.
        • Klein W.L.
        Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins.
        Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 6448-6453
        • Chunhui H.
        • Dilin X.
        • Ke Z.
        • Jieyi S.
        • Sicheng Y.
        • Dapeng W.
        • Qinwen W.
        • C.
        Wei, A11-positive beta-amyloid oligomer preparation and assessment using dot blotting analysis.
        J. Vis. Exp. 2018; 135
        • Kovalevich J.
        • Langford D.
        Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology.
        Methods Mol. Biol. 2013; 1078: 9-21
        • Martinez M.A.
        • Rodriguez J.L.
        • Lopez-Torres B.
        • Martinez M.
        • Martinez-Larranaga M.R.
        • Maximiliano J.E.
        • Anadon A.
        • Ares I.
        Use of human neuroblastoma SH-SY5Y cells to evaluate glyphosate-induced effects on oxidative stress, neuronal development and cell death signaling pathways.
        Environ. Int. 2020; 135105414
        • Drummond N.J.
        • Davies N.O.
        • Lovett J.E.
        • Miller M.R.
        • Cook G.
        • Becker T.
        • Becker C.G.
        • McPhail D.B.
        • Kunath T.
        A synthetic cell permeable antioxidant protects neurons against acute oxidative stress.
        Sci. Rep. 2017; 7: 11857
        • Deshpande A.
        • Mina E.
        • Glabe C.
        • Busciglio J.
        Different conformations of amyloid beta induce neurotoxicity by distinct mechanisms in human cortical neurons.
        J. Neurosci. 2006; 26: 6011-6018
        • Klein W.L.
        Abeta toxicity in Alzheimer’s disease: globular oligomers (ADDLs) as new vaccine and drug targets.
        Neurochem. Int. 2002; 41: 345-352
        • Katzmarski N.
        • Ziegler-Waldkirch S.
        • Scheffler N.
        • Witt C.
        • Abou-Ajram C.
        • Nuscher B.
        • Prinz M.
        • Haass C.
        • Meyer-Luehmann M.
        Abeta oligomers trigger and accelerate Abeta seeding.
        Brain Pathol. 2020; 30: 36-45
        • Swerdlow R.H.
        • Burns J.M.
        • Khan S.M.
        The Alzheimer’s disease mitochondrial cascade hypothesis.
        J. Alzheimers Dis. 2010; 20: S265-S279
        • Sarkar S.
        • Jun S.
        • Simpkins J.W.
        Estrogen amelioration of Abeta-induced defects in mitochondria is mediated by mitochondrial signaling pathway involving ERbeta, AKAP and Drp1.
        Brain Res. 2015; 1616: 101-111