Advertisement

Possible role of neutrophils in astrocyte injury in neuromyelitis optica spectrum disorder

      Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune, inflammatory astrocytopathy associated with anti-aquaporin-4 (AQP4) IgG antibodies. NMOSD is typically characterized by recurrent optic neuritis and longitudinal extensive transverse myelitis, although neurological involvement in other regions, such as the brain stem, hypothalamus and cerebral white matter, is known [
      • Pereira W.L.
      • Reiche E.M.
      • Kallaur A.P.
      • Kaimen-Maciel D.R.
      Epidemiological, clinical, and immunological characteristics of neuromyelitis optica: a review.
      ]. The primary target of immune attack in NMOSD is considered to be AQP4 on the cell surface of astrocytes. Anti-AQP4 IgG activates the complement cascade, and complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity are considered the main pathophysiological mechanisms of astrocyte cytotoxicity in NMOSD [
      • Misu T.
      • Höftberger R.
      • Fujihara K.
      • Wimmer I.
      • Takai Y.
      • Nishiyama S.
      • Nakashima I.
      • Konno H.
      • Bradl M.
      • Garzuly F.
      • Itoyama Y.
      • Aoki M.
      • Lassmann H.
      Presence of six different lesion types suggests diverse mechanisms of tissue injury in neuromyelitis optica.
      ]. In contrast, the presence of neutrophils is one of the characteristics of acute NMOSD lesions. However, its role is still unclear.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pereira W.L.
        • Reiche E.M.
        • Kallaur A.P.
        • Kaimen-Maciel D.R.
        Epidemiological, clinical, and immunological characteristics of neuromyelitis optica: a review.
        J. Neurol. Sci. 2015; 355: 7-17https://doi.org/10.1016/j.jns.2015.05.034
        • Misu T.
        • Höftberger R.
        • Fujihara K.
        • Wimmer I.
        • Takai Y.
        • Nishiyama S.
        • Nakashima I.
        • Konno H.
        • Bradl M.
        • Garzuly F.
        • Itoyama Y.
        • Aoki M.
        • Lassmann H.
        Presence of six different lesion types suggests diverse mechanisms of tissue injury in neuromyelitis optica.
        Acta Neuropathol. 2013; 125: 815-827https://doi.org/10.1007/s00401-013-1116-7
        • Misu T.
        • Fujihara K.
        • Nakamura M.
        • Murakami K.
        • Endo M.
        • Konno H.
        • Itoyama Y.
        Loss of aquaporin-4 in active perivascular lesions in neuromyelitis optica: a case report.
        Tohoku J. Exp. Med. 2006; 209: 269-275https://doi.org/10.1620/tjem.209.269
        • Winkler A.
        • Wrzos C.
        • Haberl M.
        • Weil M.T.
        • Gao M.
        • Möbius W.
        • Odoardi F.
        • Thal D.R.
        • Chang M.
        • Opdenakker G.
        • Bennett J.L.
        • Nessler S.
        • Stadelmann C.
        Blood-brain barrier resealing in neuromyelitis optica occurs independently of astrocyte regeneration.
        J. Clin. Invest. 2021; 131e141694https://doi.org/10.1172/JCI141694
        • Saadoun S.
        • Waters P.
        • MacDonald C.
        • Bell B.A.
        • Vincent A.
        • Verkman A.S.
        • Papadopoulos M.C.
        Neutrophil protease inhibition reduces neuromyelitis optica-immunoglobulin G-induced damage in mouse brain.
        Ann. Neurol. 2012; 71: 323-333https://doi.org/10.1002/ana.22686
        • Piatek P.
        • Domowicz M.
        • Lewkowicz N.
        • Przygodzka P.
        • Matysiak M.
        • Dzitko K.
        • Lewkowicz P.
        C5a-Preactivated neutrophils are critical for autoimmune-induced astrocyte dysregulation in neuromyelitis optica spectrum disorder.
        Front. Immunol. 2018; 9: 1694https://doi.org/10.1002/ana.22686
        • Guo Y.
        • Lennon V.A.
        • Parisi J.E.
        • Popescu B.
        • Vasquez C.
        • Pittock S.J.
        • Howe C.L.
        • Lucchinetti C.F.
        Spectrum of sublytic astrocytopathy in neuromyelitis optica.
        Brain. 2021; (awab394)https://doi.org/10.1093/brain/awab394
        • Shimizu F.
        • Sano Y.
        • Takahashi T.
        • Haruki H.
        • Saito K.
        • Koga M.
        • Kanda T.
        Sera from neuromyelitis optica patients disrupt the blood-brain barrier.
        J. Neurol. Neurosurg. Psychiatry. 2012; 83: 288-297https://doi.org/10.1136/jnnp-2011-300434
        • Vincent T.
        • Saikali P.
        • Cayrol R.
        • Roth A.D.
        • Bar-or A.
        • Prat A.
        • Antel J.P.
        Functional consequences of neuromyelitis optica-IgG astrocyte interactions on blood-brain barrier permeability and granulocyte recruitment.
        J. Immunol. 2008; 181: 5730-5737https://doi.org/10.4049/jimmunol.181.8.5730
        • Shimizu F.
        • Schaller K.L.
        • Owens G.P.
        • Cotleur A.C.
        • Kellner D.
        • Takeshita Y.
        • Obermeier B.
        • Kryzer T.J.
        • Sano Y.
        • Kanda T.
        • Lennon V.A.
        • Ransohoff R.M.
        • Bennett J.L.
        Glucose-regulated protein 78 autoantibody associates with blood-brain barrier disruption in neuromyelitis optica.
        Sci. Transl. Med. 2017; 9https://doi.org/10.1126/scitranslmed.aai9111