Advertisement

Prognostic factors in Tumefactive demyelinating lesions: A retrospective study

  • R. Skipper Plowman
    Affiliations
    Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA

    Harvard Medical School, Boston, MA, USA
    Search for articles by this author
  • Hemant Varma
    Correspondence
    Corresponding author at: Beth Israel Deaconess Medical Center, Department of Pathology, 330 Brookline Ave, Boston, MA 02215, USA.
    Affiliations
    Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA

    Harvard Medical School, Boston, MA, USA
    Search for articles by this author

      Abstract

      Introduction

      Demyelinating lesions occasionally present as mass-like lesions on imaging, raising concern for malignancy. The disease course of such tumefactive demyelinating lesions (TDLs) is still being defined.

      Methods

      We retrospectively analyzed 21 patients with new-onset neurologic symptoms and mass-like lesions on brain magnetic resonance imaging (MRI), which resulted in biopsy-proven diagnoses of demyelination. 18 patients had a median follow-up of 52 months. The clinical, radiologic and histologic features were associated with disease course.

      Results

      An aggressive disease course (ADC) was noted in 33% of the patients and was associated with an initial largest lesion size ≥35 mm (p = 0.0007), mass effect (p = 0.01) and perilesional edema (p = 0.01) on MRI. Age 30 years and older, at presentation (p = 0.05), as well as the absence of a prior tonsillectomy (p = 0.0128) were also associated with an ADC.

      Conclusions

      We identified several factors, including initial larger lesion size, mass effect and perilesional edema on MRI, presentation after 30 years of age and the absence of a prior tonsillectomy, that predict an ADC in patients presenting with TDLs. These predictors of disease course can help guide patient follow-up and stratification for intervention.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Poser S.
        • Lüer W.
        • Bruhn H.
        • Frahm J.
        • Brück Y.
        • Felgenhauer K.
        Acute demyelinating disease. Classification and non-invasive diagnosis.
        Acta Neurol. Scand. Dec. 1992; 86: 579-585https://doi.org/10.1111/j.1600-0404.1992.tb05490.x
        • Sánchez P.
        • Meca-Lallana V.
        • Barbosa A.
        • Manzanares R.
        • Palmí I.
        • Vivancos J.
        Tumefactive demyelinating lesions of 15 patients: clinico-radiological features, management and review of the literature.
        J. Neurol. Sci. 2017; 381: 32-38https://doi.org/10.1016/j.jns.2017.08.005
        • Patriarca L.
        • et al.
        Is size an essential criterion to define tumefactive plaque? MR features and clinical correlation in multiple sclerosis.
        Neuroradiol. J. 2016; 5: 384-389https://doi.org/10.1177/1971400916665385
        • Masdeu J.C.
        • Quinto C.
        • Olivera C.
        • Tenner M.
        • Leslie D.
        • Visintainer P.
        Open-ring imaging sign: highly specific for atypical brain demyelination.
        Neurology. Apr. 2000; 54: 1427-1433https://doi.org/10.1212/WNL.54.7.1427
        • Algahtani H.
        • Shirah B.
        • Alassiri A.
        Tumefactive demyelinating lesions: a comprehensive review.
        Mult. Scler. Relat. Disord. May 2017; 14: 72-79https://doi.org/10.1016/j.msard.2017.04.003
        • Hardy T.A.
        • Chataway J.
        Tumefactive demyelination: an approach to diagnosis and management.
        J. Neurol. Neurosurg. Psychiatry. Sep. 2013; 84: 1047-1053https://doi.org/10.1136/jnnp-2012-304498
        • Lucchinetti C.F.
        • et al.
        Clinical and radiographic spectrum of pathologically confirmed tumefactive multiple sclerosis.
        Brain. Jul. 2008; 131: 1759-1775https://doi.org/10.1093/brain/awn098
        • Hardy T.A.
        Pseudotumoral demyelinating lesions: diagnostic approach and long-term outcome.
        Curr. Opin. Neurol. 2019; 32: 467-474https://doi.org/10.1097/WCO.0000000000000683
        • Thompson A.J.
        • et al.
        Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria.
        Lancet Neurol. Feb. 2018; 17: 162-173https://doi.org/10.1016/S1474-4422(17)30470-2
        • Compston A.
        • Coles A.
        Multiple sclerosis.
        Lancet. Oct. 2008; 372: 1502-1517https://doi.org/10.1016/S0140-6736(08)61620-7
        • Karussis D.
        The diagnosis of multiple sclerosis and the various related demyelinating syndromes: a critical review.
        J. Autoimmun. Feb. 2014; 48–49: 134-142https://doi.org/10.1016/j.jaut.2014.01.022
        • Walton C.
        • et al.
        Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition.
        Mult. Scler. J. Dec. 2020; 26: 1816-1821https://doi.org/10.1177/1352458520970841
        • Dobson R.
        • Giovannoni G.
        Multiple sclerosis – a review.
        Eur. J. Neurol. Jan. 2019; 26: 27-40https://doi.org/10.1111/ene.13819
        • Jakimovski D.
        • Ahmed M.K.
        • Vaughn C.B.
        • Zivadinov R.
        • Weinstock-Guttman B.
        Tonsillectomy in multiple sclerosis patients: Retrospective, case-controlled, exploratory study.
        Mult. Scler. Relat. Disord. Jul. 2020; 42https://doi.org/10.1016/j.msard.2020.102131
        • Kamm C.P.
        • Uitdehaag B.M.
        • Polman C.H.
        Multiple sclerosis: current knowledge and future outlook.
        Eur. Neurol. Jul. 2014; 72: 132-141https://doi.org/10.1159/000360528
        • Deisenhammer F.
        • Zetterberg H.
        • Fitzner B.
        • Zettl U.K.
        The cerebrospinal fluid in multiple sclerosis.
        Front. Immunol. Apr. 2019; 10https://doi.org/10.3389/fimmu.2019.00726
        • Popescu B.F.G.
        • Pirko I.
        • Lucchinetti C.F.
        Pathology of multiple sclerosis: where do we stand?.
        Contin. Lifelong Learn. Neurol. Aug. 2013; 19: 901-921https://doi.org/10.1212/01.CON.0000433291.23091.65
        • Mader S.
        • et al.
        Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders.
        J. Neuroinflamm. 2011; 8https://doi.org/10.1186/1742-2094-8-184
        • Shu Y.
        • et al.
        Brain histopathological study and prognosis in MOG antibody-associated demyelinating pseudotumor.
        Ann. Clin. Transl. Neurol. 2019; 6: 392-396https://doi.org/10.1002/acn3.712
        • Anilkumar A.C.
        • Foris L.A.
        • Tadi P.
        Acute disseminated encephalomyelitis.
        in: StatPearls [Internet]. StatPearls Publishing, Treasure Island, FL2020
        • Cole J.
        • Evans E.
        • Mwangi M.
        • Mar S.
        Acute disseminated encephalomyelitis in children: an updated review based on current diagnostic criteria.
        Pediatr. Neurol. Nov. 2019; 100: 26-34https://doi.org/10.1016/j.pediatrneurol.2019.06.017
        • Jaster J.H.
        • et al.
        Solitary focal demyelination in the brain as a paraneoplastic disorder.
        Med. Pediatr. Oncol. Feb. 1996; 26: 111-115https://doi.org/10.1002/(SICI)1096-911X(199602)26:2<111::AID-MPO8>3.0.CO;2-O
        • Van Haver A.S.
        • Debruyne F.
        • Sanders K.
        • Verstappen A.
        Paraneoplastic tumefactive demyelination in a 47-year-old man with underlying seminoma.
        Mult. Scler. Relat. Disord. Jul. 2020; 42https://doi.org/10.1016/j.msard.2020.102060
        • Verma R.
        • Kumar C.
        Tumefactive demyelination associated with bilateral optic neuritis in neuromyelitis optica spectrum disorders.
        J. Neurosci. Rural Pract. 2019; : 693-696https://doi.org/10.1055/s-0039-3399614
        • Ikeda K.
        • et al.
        Repeated non-enhancing tumefactive lesions in a patient with a neuromyelitis optica spectrum disorder.
        Intern. Med. 2011; 50: 1061-1064https://doi.org/10.2169/internalmedicine.50.4295
        • Kurtzke J.F.
        Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS).
        Neurology. Nov. 1983; 33: 1444-1452https://doi.org/10.1212/wnl.33.11.1444
        • Seewann A.
        • et al.
        MRI characteristics of atypical idiopathic inflammatory demyelinating lesions of the brain: a review of reported findings.
        J. Neurol. 2008; 255: 1-10https://doi.org/10.1007/s00415-007-0754-x
        • Wallner-Blazek M.
        • et al.
        Atypical idiopathic inflammatory demyelinating lesions: prognostic implications and relation to multiple sclerosis.
        J. Neurol. 2013; 260: 2016-2022https://doi.org/10.1007/s00415-013-6918-y
        • Lucchinetti C.F.
        • Guo Y.
        • Popescu B.F.G.
        • Fujihara K.
        • Itoyama Y.
        • Misu T.
        The pathology of an autoimmune astrocytopathy: lessons learned from neuromyelitis optica.
        Brain Pathol. Jan. 2014; 24: 83-97https://doi.org/10.1111/bpa.12099
        • Capello E.
        • Mancardi G.L.
        Marburg type and Balò’s concentric sclerosis: rare and acute variants of multiple sclerosis.
        Neurol. Sci. Nov. 2004; 25: S361-S363https://doi.org/10.1007/s10072-004-0341-1
        • Hardy T.A.
        • Miller D.H.
        Baló’s concentric sclerosis.
        Lancet Neurol. Jul. 2014; 13: 740-746https://doi.org/10.1016/S1474-4422(14)70052-3
        • Hampshire-Araújo F.
        • Bergmann A.
        • Alvarenga R.M.P.
        • Vasconcelos C.C.F.
        Malignant multiple sclerosis: clinical and demographic prognostic factors.
        Arq. Neuropsiquiatr. Mar. 2017; 75: 139-141https://doi.org/10.1590/0004-282x20170010
        • Maraş Genç H.
        • Kara B.
        • Uyur Yalçın E.
        • Sakarya Güneş A.
        • Deniz A.
        • Anık Y.
        Long-term clinical and radiologic follow-up of Schilder’s disease.
        Mult. Scler. Relat. Disord. Apr. 2017; 13: 47-51https://doi.org/10.1016/j.msard.2017.02.007
        • Yilmaz Y.
        • Kocaman C.
        • Karabagli H.
        • Ozek M.
        Is the brain biopsy obligatory or not for the diagnosis of Schilder’s disease? Review of the literature.
        Childs Nerv. Syst. Jan. 2008; 24: 3-6https://doi.org/10.1007/s00381-007-0411-9
        • Metz L.M.
        Clinically isolated syndrome and early relapsing multiple sclerosis.
        Contin. Lifelong Learn. Neurol. Jun. 2019; 25: 670-688https://doi.org/10.1212/CON.0000000000000729
        • Kepes J.J.
        Large focal tumor-like demyelinating lesions of the brain: intermediate entity between multiple sclerosis and acute disseminated encephalomyelitis? A study of 31 patients.
        Ann. Neurol. Jan. 1993; 33: 18-27https://doi.org/10.1002/ana.410330105
        • Jeong I.H.
        • Kim S.H.
        • Hyun J.W.
        • Joung A.R.
        • Cho H.J.
        • Kim H.J.
        Tumefactive demyelinating lesions as a first clinical event: clinical, imaging, and follow-up observations.
        J. Neurol. Sci. Nov. 2015; 358: 118-124https://doi.org/10.1016/j.jns.2015.08.034
        • Altintas A.
        • et al.
        Clinical and radiological characteristics of tumefactive demyelinating lesions: follow-up study.
        Mult. Scler. J. Oct. 2012; 18: 1448-1453https://doi.org/10.1177/1352458512438237
        • Scalfari A.
        • et al.
        The natural history of multiple sclerosis, a geographically based study 10: relapses and long-term disability.
        Brain. 2010; 133: 1914-1929https://doi.org/10.1093/brain/awq118
        • Siri A.
        • et al.
        Isolated tumefactive demyelinating lesions: diagnosis and long-term evolution of 16 patients in a multicentric study.
        J. Neurol. Jul. 2015; 262: 1637-1645https://doi.org/10.1007/s00415-015-7758-8
        • Tremblay M.A.
        • Villanueva-Meyer J.E.
        • Cha S.
        • Tihan T.
        • Gelfand J.M.
        Clinical and imaging correlation in patients with pathologically confirmed tumefactive demyelinating lesions.
        J. Neurol. Sci. Oct. 2017; 381: 83-87https://doi.org/10.1016/j.jns.2017.08.015
        • Brod S.A.
        • Lindsey J.W.
        • Nelson F.
        Tumefactive demyelination: clinical outcomes, lesion evolution and treatments.
        Mult. Scler. J. 2019; https://doi.org/10.1177/2055217319855755
        • Kiriyama T.
        • et al.
        Characteristic neuroimaging in patients with tumefactive demyelinating lesions exceeding 30 mm.
        J. Neuroimaging. 2011; 21: e69-e77https://doi.org/10.1111/j.1552-6569.2010.00502.x
        • Wingerchuk D.M.
        • et al.
        International consensus diagnostic criteria for neuromyelitis optica spectrum disorders.
        Neurology. 2015; 85: 177-189https://doi.org/10.1212/WNL.0000000000001729
        • Lucchinetti C.F.
        • et al.
        A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica.
        Brain. Jul. 2002; 125: 1450-1461https://doi.org/10.1093/brain/awf151
        • Kira J.I.
        Autoimmunity in neuromyelitis optica and opticospinal multiple sclerosis: Astrocytopathy as a common denominator in demyelinating disorders.
        J. Neurol. Sci. 2011; 311: 69-77https://doi.org/10.1016/j.jns.2011.08.043
        • Patterson S.L.
        • Goglin S.E.
        Neuromyelitis optica.
        Rheum. Dis. Clin. N. Am. Nov. 2017; 43: 579-591https://doi.org/10.1016/j.rdc.2017.06.007
        • Takai Y.
        • et al.
        Myelin oligodendrocyte glycoprotein antibody-associated disease: an immunopathological study.
        Brain. 2020; 143: 1431-1446https://doi.org/10.1093/brain/awaa102
        • Höftberger R.
        • et al.
        The pathology of central nervous system inflammatory demyelinating disease accompanying myelin oligodendrocyte glycoprotein autoantibody.
        Acta Neuropathol. 2020; 139: 875-892https://doi.org/10.1007/s00401-020-02132-y
        • Raus J.C.M.
        Multiple sclerosis.
        in: Encyclopedia of Immunology (Second Edition). Elsevier, 1998: 1786-1789https://doi.org/10.1006/rwei.1999.0450
        • Meyer-Moock S.
        • Feng Y.S.
        • Maeurer M.
        • Dippel F.W.
        • Kohlmann T.
        Systematic literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple sclerosis.
        BMC Neurol. 2014; 14: 1-10https://doi.org/10.1186/1471-2377-14-58
        • Cohen R.A.
        • Kessler H.R.
        • Fischer M.
        The extended disability status scale (EDSS) as a predictor of impairments of functional activities of daily living in multiple sclerosis.
        J. Neurol. Sci. 1993; 115: 132-135https://doi.org/10.1016/0022-510X(93)90215-K
        • Ontaneda D.
        Progressive multiple sclerosis.
        Contin. Lifelong Learn. Neurol. 2019; 25: 736-752https://doi.org/10.1212/CON.0000000000000727
        • Lorscheider J.
        • et al.
        Defining secondary progressive multiple sclerosis.
        Brain. 2016; 139: 2395-2405https://doi.org/10.1093/brain/aww173
        • Filippi M.
        • et al.
        Identifying progression in multiple sclerosis: new perspectives.
        Ann. Neurol. 2020; 88: 438-452https://doi.org/10.1002/ana.25808
        • Confavreux C.
        • Vukusic S.
        • Adeleine P.
        Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process.
        Brain. 2003; 126: 770-782https://doi.org/10.1093/brain/awg081
        • Rush Carolina A.
        • MacLean Heather J.
        • Freedman Mark S.
        Aggressive multiple sclerosis: Proposed definition and treatment algorithm.
        Nat. Rev. Neurol. 2015; 11: 379-389
        • Vázquez-Marrufo M.
        • et al.
        Altered individual behavioral and EEG parameters are related to the EDSS score in relapsing-remitting multiple sclerosis patients.
        PLoS One. 2019; 14https://doi.org/10.1371/journal.pone.0219594
        • Atkins H.L.
        • et al.
        Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial.
        Lancet. 2016; 388: 576-585https://doi.org/10.1016/S0140-6736(16)30169-6
        • McFarland H.F.
        Correlation between MR and clinical findings of disease activity in multiple sclerosis.
        Am. J. Neuroradiol. 1999; 20: 1777-1778
        • Daumer M.
        • Neuhaus A.
        • Morrissey S.
        • Hintzen R.
        • Ebers G.C.
        MRI as an outcome in multiple sclerosis clinical trials.
        Neurology. 2009; 72: 705-711https://doi.org/10.1212/01.wnl.0000336916.38629.43
        • Tse K.H.
        • Herrup K.
        DNA damage in the oligodendrocyte lineage and its role in brain aging.
        Mech. Ageing Dev. Jan. 2017; 161: 37-50https://doi.org/10.1016/j.mad.2016.05.006
        • Guillemin F.
        • et al.
        Older age at multiple sclerosis onset is an independent factor of poor prognosis: a population-based cohort study.
        Neuroepidemiology. Aug. 2017; 48: 179-187https://doi.org/10.1159/000479516
        • Ontaneda D.
        • Tallantyre E.
        • Kalincik T.
        • Planchon S.M.
        • Evangelou N.
        Early highly effective versus escalation treatment approaches in relapsing multiple sclerosis.
        Lancet Neurol. Oct. 2019; 18: 973-980https://doi.org/10.1016/S1474-4422(19)30151-6
        • Nicholas R.
        • Rashid W.
        Multiple sclerosis.
        Am. Fam. Physician. May 2013; 87: 712-714
        • Ji J.
        • Sundquist J.
        • Sundquist K.
        Tonsillectomy associated with an increased risk of autoimmune diseases: a national cohort study.
        J. Autoimmun. Aug. 2016; 72: 1-7https://doi.org/10.1016/j.jaut.2016.06.007
        • Kato A.
        • Hulse K.E.
        • Tan B.K.
        • Schleimer R.P.
        B-lymphocyte lineage cells and the respiratory system.
        J. Allergy Clin. Immunol. Apr. 2013; 131: 933-957https://doi.org/10.1016/j.jaci.2013.02.023
        • Apuzzo M.L.J.
        • Chandrasoma P.T.
        • Cohen D.
        • Zee C.S.
        • Zelman V.
        Computed imaging stereotaxy: experience and perspective related to 500 procedures applied to brain masses.
        Neurosurgery. 1987; 20: 930-937https://doi.org/10.1227/00006123-198706000-00019
        • Can S.M.
        • et al.
        Computerized tomography-guided stereotactic biopsy of intracranial lesions: report of 500 consecutive cases.
        Turk. Neurosurg. 2017; 27: 395-400https://doi.org/10.5137/1019-5149.JTN.16280-15.1
        • Dammers R.
        • Haitsma I.K.
        • Schouten J.W.
        • Kros J.M.
        • Avezaat C.J.J.
        • Vincent A.J.P.E.
        Safety and efficacy of frameless and frame-based intracranial biopsy techniques.
        Acta Neurochir. 2008; 150: 23-29https://doi.org/10.1007/s00701-007-1473-x
        • Air E.L.
        • Leach J.L.
        • Warnick R.E.
        • Mcpherson C.M.
        Comparing the risks of frameless stereotactic biopsy in eloquent and noneloquent regions of the brain: a retrospective review of 284 cases - clinical article.
        J. Neurosurg. 2009; 111: 820-824https://doi.org/10.3171/2009.3.JNS081695
        • Waters J.D.
        • Gonda D.D.
        • Reddy H.
        • Kasper E.M.
        • Warnke P.C.
        • Chen C.C.
        Diagnostic yield of stereotactic needle-biopsies of sub-cubic centimeter intracranial lesions.
        Surg. Neurol. Int. 2013; 4: S176-S181https://doi.org/10.4103/2152-7806.110677
        • Silsby M.
        • et al.
        Investigation of tumefactive demyelination is associated with higher economic burden and more adverse events compared with conventional multiple sclerosis.
        Mult. Scler. Relat. Disord. 2019; 35: 104-107https://doi.org/10.1016/j.msard.2019.07.013
        • Shoemaker T.J.
        • Mowry E.M.
        A review of vitamin D supplementation as disease-modifying therapy.
        Mult. Scler. Jan. 2018; 24: 6-11https://doi.org/10.1177/1352458517738131
        • Ebers G.C.
        • et al.
        A population-based study of multiple sclerosis in twins.
        N. Engl. J. Med. Dec. 1986; 315: 1638-1642https://doi.org/10.1056/nejm198612253152603
        • Hollenbach J.A.
        • Oksenberg J.R.
        The immunogenetics of multiple sclerosis: a comprehensive review.
        J. Autoimmun. Nov. 2015; 64: 13-25https://doi.org/10.1016/j.jaut.2015.06.010
        • Axisa P.P.
        • Hafler D.A.
        Multiple sclerosis: genetics, biomarkers, treatments.
        Curr. Opin. Neurol. Jun. 2016; 29: 345-353https://doi.org/10.1097/WCO.0000000000000319
        • Kroner A.
        • et al.
        A PD-1 polymorphism is associated with disease progression in multiple sclerosis.
        Ann. Neurol. Jul. 2005; 58: 50-57https://doi.org/10.1002/ana.20514
        • Benedek G.
        • et al.
        MIF and D-DT are potential disease severity modifiers in male MS subjects.
        Proc. Natl. Acad. Sci. U. S. A. Oct. 2017; 114: E8421-E8429https://doi.org/10.1073/pnas.1712288114