Advertisement
Research Article| Volume 425, 117443, June 15, 2021

Preserved cholinergic forebrain integrity reduces structural connectome vulnerability in mild cognitive impairment

  • Rok Berlot
    Correspondence
    Corresponding author at: Department of Neurology, University Medical Centre Ljubljana, Zaloška 2a, 1000 Ljubljana, Slovenia.
    Affiliations
    Department of Neurology, University Medical Centre Ljubljana, Zaloška 2a, 1000 Ljubljana, Slovenia

    Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
    Search for articles by this author
  • Blaž Koritnik
    Affiliations
    Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia

    Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Zaloška 7, 1000 Ljubljana, Slovenia

    Institute of Radiology, University Medical Centre Ljubljana, Zaloška 7, 1000 Ljubljana, Slovenia
    Search for articles by this author
  • Zvezdan Pirtošek
    Affiliations
    Department of Neurology, University Medical Centre Ljubljana, Zaloška 2a, 1000 Ljubljana, Slovenia

    Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
    Search for articles by this author
  • Nicola J. Ray
    Affiliations
    Department of Psychology, Manchester Metropolitan University, 53 Bonsall St, Manchester M15 6GX, UK
    Search for articles by this author
Published:April 08, 2021DOI:https://doi.org/10.1016/j.jns.2021.117443

      Highlights

      • Using simulated lesions, vulnerability of the connectome to localised damage was assessed.
      • Cholinergic forebrain integrity correlates with global network efficiency in MCI.
      • Preserved cholinergic nuclei contribute to reduced global impact of limbic lesions.
      • Cholinergic nuclei influence the efficiency and vulnerability of the connectome.

      Abstract

      Neurodegeneration leads to redistribution of processing, which is reflected in a reorganisation of the structural connectome. This might affect its vulnerability to structural damage. Cortical acetylcholine allows favourable adaptation to pathology within the memory circuit. However, it remains unclear if it acts on a broader scale, affecting reconfiguration of whole-brain networks. To investigate the role of the cholinergic basal forebrain (CBFB) in strategic lesions, twenty patients with mild cognitive impairment (MCI) and twenty elderly controls underwent magnetic resonance imaging. Whole-brain tractograms were represented as network graphs. Lesions of individual nodes were simulated by removing a node and its connections from the graph. The impact of simulated lesions was quantified as the proportional change in global efficiency. Relationships between subregional CBFB volumes, global efficiency of intact connectomes and impacts of individual simulated lesions of network nodes were assessed. In MCI but not controls, larger CBFB volumes were associated with efficient network topology and reduced impact of hippocampal, thalamic and entorhinal lesions, indicating a protective effect against the global impact of simulated strategic lesions. This suggests that the cholinergic system shapes the configuration of the connectome, thereby reducing the impact of localised damage in MCI.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      Bibliography

        • Hooper M.W.
        • Vogel F.S.
        The limbic system in Alzheimer’s disease. A neuropathologic investigation.
        Am. J. Pathol. 1976; 85: 1-20
        • Mesulam M.M.
        • Van Hoesen G.W.
        Acetylcholinesterase-rich projections from the basal forebrain of the rhesus monkey to neocortex.
        Brain Res. 1976; 109: 152-157https://doi.org/10.1016/0006-8993(76)90385-1
        • Whitehouse P.J.
        • Price D.L.
        • Clark A.W.
        • Coyle J.T.
        • DeLong M.R.
        Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis.
        Ann. Neurol. 1981; 10: 122-126https://doi.org/10.1002/ana.410100203
        • Stam C.J.
        Modern network science of neurological disorders.
        Nat. Rev. Neurosci. 2014; 15: 683-695https://doi.org/10.1038/nrn3801
        • Croxson P.L.
        • Browning P.G.F.
        • Gaffan D.
        • Baxter M.G.
        Acetylcholine facilitates recovery of episodic memory after brain damage.
        J. Neurosci. 2012; 32: 13787-13795https://doi.org/10.1523/JNEUROSCI.2947-12.2012
        • Ray N.J.
        • Metzler-Baddeley C.
        • Khondoker M.R.
        • Grothe M.J.
        • Teipel S.
        • Wright P.
        • Heinsen H.
        • Jones D.K.
        • Aggleton J.P.
        • O’Sullivan M.J.
        Cholinergic basal forebrain structure influences the reconfiguration of white matter connections to support residual memory in mild cognitive impairment.
        J. Neurosci. 2015; 35: 739-747https://doi.org/10.1523/JNEUROSCI.3617-14.2015
        • Kondo H.
        • Zaborszky L.
        Topographic organization of the basal forebrain projections to the perirhinal, postrhinal, and entorhinal cortex in rats.
        J. Comp. Neurol. 2016; 524: 2503-2515https://doi.org/10.1002/cne.23967
        • Mesulam M.M.
        • Mufson E.J.
        • Levey A.I.
        • Wainer B.H.
        Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (Substantia innominata), and hypothalamus in the rhesus monkey.
        J. Comp. Neurol. 1983; 214: 170-197https://doi.org/10.1002/cne.902140206
        • Berlot R.
        • O’Sullivan M.J.
        What can the topology of white matter structural networks tell us about mild cognitive impairment?.
        Future Neurol. 2017; 12https://doi.org/10.2217/fnl-2016-0022
        • Berlot R.
        • Metzler-Baddeley C.
        • Ikram M.A.
        • Jones D.K.
        • O’Sullivan M.J.
        Global efficiency of structural networks mediates cognitive control in mild cognitive impairment.
        Front. Aging Neurosci. 2016; 8https://doi.org/10.3389/fnagi.2016.00292
        • Honey C.J.
        • Sporns O.
        Dynamical consequences of lesions in cortical networks.
        Hum. Brain Mapp. 2008; 29: 802-809https://doi.org/10.1002/hbm.20579
        • de Reus M.A.
        • van den Heuvel M.P.
        Simulated rich club lesioning in brain networks: a scaffold for communication and integration?.
        Front. Hum. Neurosci. 2014; 8: 1-5https://doi.org/10.3389/fnhum.2014.00647
        • Aggleton J.P.
        • Pralus A.
        • Nelson A.J.D.
        • Hornberger M.
        Thalamic pathology and memory loss in early Alzheimer’s disease: moving the focus from the medial temporal lobe to Papez circuit.
        Brain. 2016; 139: 1877-1890https://doi.org/10.1093/brain/aww083
        • Biesbroek J.M.
        • Weaver N.A.
        • Biessels G.J.
        Lesion location and cognitive impact of cerebral small vessel disease.
        Clin. Sci. 2017; 131: 715-728https://doi.org/10.1042/CS20160452
        • Ott B.R.
        • Saver J.L.
        Unilateral amnesic stroke: six new cases and a review of the literature.
        Stroke. 1993; 24: 1033-1042https://doi.org/10.1161/01.STR.24.7.1033
        • Bullmore E.T.
        • Sporns O.
        • Solla S.A.
        Complex brain networks: graph theoretical analysis of structural and functional systems.
        Nat. Rev. Neurosci. 2009; 10: 186-198https://doi.org/10.1038/nrn2575
        • Lo C.Y.
        • Wang P.N.
        • Chou K.H.
        • Wang J.
        • He Y.
        • Lin C.P.
        Diffusion tensor tractography reveals abnormal topological organization in structural cortical networks in Alzheimer’s disease.
        J. Neurosci. 2010; 30: 16876-16885https://doi.org/10.1523/JNEUROSCI.4136-10.2010
        • Reijmer Y.D.
        • Leemans A.
        • Caeyenberghs K.
        • Heringa S.M.
        • Koek H.L.
        • Biessels G.J.
        Disruption of cerebral networks and cognitive impairment in Alzheimer disease.
        Neurology. 2013; 80: 1370-1377https://doi.org/10.1212/WNL.0b013e31828c2ee5
        • Albert M.S.
        • DeKosky S.T.
        • Dickson D.
        • Dubois B.
        • Feldman H.H.
        • Fox N.C.
        • Gamst A.
        • Holtzman D.M.
        • Jagust W.J.
        • Petersen R.C.
        • Snyder P.J.
        • Carrillo M.C.
        • Thies B.
        • Phelps C.H.
        The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease.
        Alzheimers Dement. 2011; 7: 270-279https://doi.org/10.1016/j.jalz.2011.03.008
        • Molinuevo J.L.
        • Rabin L.A.
        • Amariglio R.
        • Buckley R.
        • Dubois B.
        • Ellis K.A.
        • Ewers M.
        • Hampel H.
        • Klöppel S.
        • Rami L.
        • Reisberg B.
        • Saykin A.J.
        • Sikkes S.
        • Smart C.M.
        • Snitz B.E.
        • Sperling R.
        • van der Flier W.M.
        • Wagner M.
        • Jessen F.
        Implementation of subjective cognitive decline criteria in research studies.
        Alzheimers Dement. 2017; 13: 296-311https://doi.org/10.1016/j.jalz.2016.09.012
        • Leemans A.
        • Jones D.K.
        The B-matrix must be rotated when correcting for subject motion in DTI data.
        Magn. Reson. Med. 2009; 61: 1336-1349https://doi.org/10.1002/mrm.21890
        • Jones D.K.
        • Cercignani M.
        Twenty-five pitfalls in the analysis of diffusion MRI data.
        NMR Biomed. 2010; 23: 803-820https://doi.org/10.1002/nbm.1543
        • Chang L.C.
        • Walker L.
        • Pierpaoli C.
        Informed RESTORE: a method for robust estimation of diffusion tensor from low redundancy datasets in the presence of physiological noise artifacts.
        Magn. Reson. Med. 2012; 68: 1654-1663https://doi.org/10.1002/mrm.24173
        • Reuter M.
        • Schmansky N.J.
        • Rosas H.D.
        • Fischl B.
        Within-subject template estimation for unbiased longitudinal image analysis.
        Neuroimage. 2012; 61: 1402-1418https://doi.org/10.1016/j.neuroimage.2012.02.084
        • Desikan R.S.
        • Ségonne F.
        • Fischl B.
        • Quinn B.T.
        • Dickerson B.C.
        • Blacker D.
        • Buckner R.L.
        • Dale A.M.
        • Maguire R.P.
        • Hyman B.T.
        • Albert M.S.
        • Killiany R.J.
        An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.
        Neuroimage. 2006; 31: 968-980https://doi.org/10.1016/j.neuroimage.2006.01.021
        • Fischl B.
        • Salat D.H.
        • Busa E.
        • Albert M.
        • Dieterich M.
        • Haselgrove C.
        • Van Der Kouwe A.
        • Killiany R.
        • Kennedy D.
        • Klaveness S.
        • Montillo A.
        • Makris N.
        • Rosen B.
        • Dale A.M.
        Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain.
        Neuron. 2002; 33: 341-355https://doi.org/10.1016/S0896-6273(02)00569-X
        • Wardlaw J.M.
        • Smith E.E.
        • Biessels G.J.
        • Cordonnier C.
        • Fazekas F.
        • Frayne R.
        • Lindley R.I.
        • O’Brien J.T.
        • Barkhof F.
        • Benavente O.R.
        • Black S.E.
        • Brayne C.
        • Breteler M.
        • Chabriat H.
        • DeCarli C.
        • de Leeuw F.E.
        • Doubal F.
        • Duering M.
        • Fox N.C.
        • Greenberg S.
        • Hachinski V.
        • Kilimann I.
        • Mok V.
        • van Oostenbrugge R.
        • Pantoni L.
        • Speck O.
        • Stephan B.C.M.
        • Teipel S.
        • Viswanathan A.
        • Werring D.
        • Chen C.
        • Smith C.
        • van Buchem M.
        • Norrving B.
        • Gorelick P.B.
        • Dichgans M.
        Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration.
        Lancet Neurol. 2013; 12: 822-838https://doi.org/10.1016/S1474-4422(13)70124-8
        • Smith S.M.
        • Jenkinson M.
        • Woolrich M.W.
        • Beckmann C.F.
        • Behrens T.E.J.
        • Johansen-Berg H.
        • Bannister P.R.
        • De Luca M.
        • Drobnjak I.
        • Flitney D.E.
        • Niazy R.K.
        • Saunders J.
        • Vickers J.
        • Zhang Y.
        • De Stefano N.
        • Brady J.M.
        • Matthews P.M.
        Advances in functional and structural MR image analysis and implementation as FSL, in: Neuroimage.
        Neuroimage. 2004; https://doi.org/10.1016/j.neuroimage.2004.07.051
        • de Reus M.A.
        • van den Heuvel M.P.
        Estimating false positives and negatives in brain networks.
        Neuroimage. 2013; 70: 402-409https://doi.org/10.1016/j.neuroimage.2012.12.066
        • Rubinov M.
        • Sporns O.
        Complex network measures of brain connectivity: uses and interpretations.
        Neuroimage. 2010; 52: 1059-1069https://doi.org/10.1016/j.neuroimage.2009.10.003
        • Ashburner J.
        A fast diffeomorphic image registration algorithm.
        Neuroimage. 2007; 38: 95-113https://doi.org/10.1016/j.neuroimage.2007.07.007
        • Teipel S.J.
        • Flatz W.H.
        • Heinsen H.
        • Bokde A.L.W.
        • Schoenberg S.O.
        • Stöckel S.
        • Dietrich O.
        • Reiser M.F.
        • Möller H.-J.
        • Hampel H.
        Measurement of basal forebrain atrophy in Alzheimer’s disease using MRI.
        Brain. 2005; 128: 2626-2644https://doi.org/10.1093/brain/awh589
        • Mesulam M.M.
        • Mufson E.J.
        • Wainer B.H.
        • Levey A.I.
        Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6).
        Neuroscience. 1983; 10: 1185-1201https://doi.org/10.1016/0306-4522(83)90108-2
        • Muir J.L.
        Acetylcholine, aging, and Alzheimer’s disease.
        Pharmacol. Biochem. Behav. 1997; 56: 687-696https://doi.org/10.1016/s0091-3057(96)00431-5
        • Ashburner J.
        Computational anatomy with the SPM software.
        Magn. Reson. Imaging. 2009; 27: 1163-1174https://doi.org/10.1016/j.mri.2009.01.006
        • O’Brien L.M.
        • Ziegler D.A.
        • Deutsch C.K.
        • Frazier J.A.
        • Herbert M.R.
        • Locascio J.J.
        Statistical adjustments for brain size in volumetric neuroimaging studies: some practical implications in methods.
        Psychiatry Res. Neuroimaging. 2011; 193: 113-122https://doi.org/10.1016/j.pscychresns.2011.01.007
        • Le Carret N.
        • Auriacombe S.
        • Letenneur L.
        • Bergua V.
        • Dartigues J.F.
        • Fabrigoule C.
        Influence of education on the pattern of cognitive deterioration in AD patients: the cognitive reserve hypothesis.
        Brain Cogn. 2005; 57: 120-126https://doi.org/10.1016/j.bandc.2004.08.031
        • Jeong S.H.
        • Ahn S.S.
        • Baik M.
        • Kim K.H.
        • Yoo J.S.
        • Kim K.
        • Lee H.S.
        • Ha J.
        • Kim Y.D.
        • Heo J.H.
        • Nam H.S.
        Impact of white matter hyperintensities on the prognosis of cryptogenic stroke patients.
        PLoS One. 2018; 13https://doi.org/10.1371/journal.pone.0196014
        • Veldsman M.
        • Werden E.
        • Egorova N.
        • Khlif M.S.
        • Brodtmann A.
        Microstructural degeneration and cerebrovascular risk burden underlying executive dysfunction after stroke.
        Sci. Rep. 2020; 10https://doi.org/10.1038/s41598-020-75074-w
        • O’Sullivan M.
        • Summers P.E.
        • Jones D.K.
        • Jarosz J.M.
        • Williams S.C.R.
        • Markus H.S.
        Normal-appearing white matter in ischemic leukoaraiosis: a diffusion tensor MRI study.
        Neurology. 2001; 57: 2307-2310https://doi.org/10.1212/WNL.57.12.2307
        • Yao Z.
        • Zhang Y.
        • Lin L.
        • Zhou Y.
        • Xu C.
        • Jiang T.
        Abnormal cortical networks in mild cognitive impairment and Alzheimer’s disease.
        PLoS Comput. Biol. 2010; 6https://doi.org/10.1371/journal.pcbi.1001006
        • Bai F.
        • Shu N.
        • Yuan Y.
        • Shi Y.
        • Yu H.
        • Wu D.
        • Wang J.
        • Xia M.
        • He Y.
        • Zhang Z.
        Topologically convergent and divergent structural connectivity patterns between patients with remitted geriatric depression and amnestic mild cognitive impairment.
        J. Neurosci. 2012; 32: 4307-4318https://doi.org/10.1523/JNEUROSCI.5061-11.2012
        • Segal M.
        • Auerbach J.M.
        Muscarinic receptors involved in hippocampal plasticity.
        Life Sci. 1997; : 1085-1091https://doi.org/10.1016/S0024-3205(97)00051-9
        • Drever B.D.
        • Riedel G.
        • Platt B.
        The cholinergic system and hippocampal plasticity.
        Behav. Brain Res. 2011; 221: 505-514https://doi.org/10.1016/j.bbr.2010.11.037
        • Rasmusson D.D.
        • Dykes R.W.
        Long-term enhancement of evoked potentials in cat somatosensory cortex produced by co-activation of the basal forebrain and cutaneous receptors.
        Exp. Brain Res. 1988; 70: 276-286https://doi.org/10.1007/BF00248353
        • O’Sullivan M.
        • Jones D.K.
        • Summers P.E.
        • Morris R.G.
        • Williams S.C.R.
        • Markus H.S.
        Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline.
        Neurology. 2001; 57: 632-638https://doi.org/10.1212/WNL.57.4.632
        • Prins N.D.
        • Van Dijk E.J.
        • Den Heijer T.
        • Vermeer S.E.
        • Jolles J.
        • Koudstaal P.J.
        • Hofman A.
        • Breteler M.M.B.
        Cerebral small-vessel disease and decline in information processing speed, executive function and memory.
        Brain. 2005; 128: 2034-2041https://doi.org/10.1093/brain/awh553
        • Lanna M.E.D.O.
        • Alves C.E.O.
        • Sudo F.K.
        • Alves G.
        • Valente L.
        • Moreira D.M.
        • Cavalcanti J.L.S.
        • Engelhardt E.
        Cognitive disconnective syndrome by single strategic strokes in vascular dementia.
        J. Neurol. Sci. 2012; 322: 176-183https://doi.org/10.1016/j.jns.2012.08.004
        • Benjamin P.
        • Lawrence A.J.
        • Lambert C.
        • Patel B.
        • Chung A.W.
        • Mackinnon A.D.
        • Morris R.G.
        • Barrick T.R.
        • Markus H.S.
        Strategic lacunes and their relationship to cognitive impairment in cerebral small vessel disease.
        NeuroImage Clin. 2014; 4: 828-837https://doi.org/10.1016/j.nicl.2014.05.009
        • Das A.S.
        • Regenhardt R.W.
        • Vernooij M.W.
        • Blacker D.
        • Charidimou A.
        • Viswanathan A.
        Asymptomatic cerebral small vessel disease: insights from population-based studies.
        J. Stroke. 2019; 21: 121-138https://doi.org/10.5853/jos.2018.03608
        • Snowdon D.
        Aging and Alzheimer’s disease: lessons from the Nun study.
        Gerontologist. 1997; 37: 150-156https://doi.org/10.1093/geront/37.2.150
        • Iadecola C.
        • Gorelick P.B.
        Converging pathogenic mechanisms in vascular and neurodegenerative dementia.
        Stroke. 2003; 34: 335-337https://doi.org/10.1161/01.STR.0000054050.51530.76
        • Barrett K.M.
        • Brott T.G.
        • Brown R.D.
        • Carter R.E.
        • Geske J.R.
        • Graff-Radford N.R.
        • McNeil R.B.
        • Meschia J.F.
        Enhancing recovery after acute ischemic stroke with donepezil as an adjuvant therapy to standard medical care: results of a phase IIA clinical trial.
        J. Stroke Cerebrovasc. Dis. 2011; 20: 177-182https://doi.org/10.1016/j.jstrokecerebrovasdis.2010.12.009
        • Sinke M.R.T.
        • Otte W.M.
        • Christiaens D.
        • Schmitt O.
        • Leemans A.
        • van der Toorn A.
        • Sarabdjitsingh R.A.
        • Joëls M.
        • Dijkhuizen R.M.
        Diffusion MRI-based cortical connectome reconstruction: dependency on tractography procedures and neuroanatomical characteristics.
        Brain Struct. Funct. 2018; 223: 2269-2285https://doi.org/10.1007/s00429-018-1628-y
        • Maier-Hein K.H.
        • Neher P.F.
        • Houde J.C.
        • Côté M.A.
        • Garyfallidis E.
        • Zhong J.
        • Chamberland M.
        • Yeh F.C.
        • Lin Y.C.
        • Ji Q.
        • Reddick W.E.
        • Glass J.O.
        • Chen D.Q.
        • Feng Y.
        • Gao C.
        • Wu Y.
        • Ma J.
        • Renjie H.
        • Li Q.
        • Westin C.F.
        • Deslauriers-Gauthier S.
        • González J.O.O.
        • Paquette M.
        • St-Jean S.
        • Girard G.
        • Rheault F.
        • Sidhu J.
        • Tax C.M.W.
        • Guo F.
        • Mesri H.Y.
        • Dávid S.
        • Froeling M.
        • Heemskerk A.M.
        • Leemans A.
        • Boré A.
        • Pinsard B.
        • Bedetti C.
        • Desrosiers M.
        • Brambati S.
        • Doyon J.
        • Sarica A.
        • Vasta R.
        • Cerasa A.
        • Quattrone A.
        • Yeatman J.
        • Khan A.R.
        • Hodges W.
        • Alexander S.
        • Romascano D.
        • Barakovic M.
        • Auría A.
        • Esteban O.
        • Lemkaddem A.
        • Thiran J.P.
        • Cetingul H.E.
        • Odry B.L.
        • Mailhe B.
        • Nadar M.S.
        • Pizzagalli F.
        • Prasad G.
        • Villalon-Reina J.E.
        • Galvis J.
        • Thompson P.M.
        • Requejo F.D.S.
        • Laguna P.L.
        • Lacerda L.M.
        • Barrett R.
        • Dell’Acqua F.
        • Catani M.
        • Petit L.
        • Caruyer E.
        • Daducci A.
        • Dyrby T.B.
        • Holland-Letz T.
        • Hilgetag C.C.
        • Stieltjes B.
        • Descoteaux M.
        The challenge of mapping the human connectome based on diffusion tractography.
        Nat. Commun. 2017; 8https://doi.org/10.1038/s41467-017-01285-x
        • Grothe M.
        • Zaborszky L.
        • Atienza M.
        • Gil-Neciga E.
        • Rodriguez-Romero R.
        • Teipel S.J.
        • Amunts K.
        • Suarez-Gonzalez A.
        • Cantero J.L.
        Reduction of basal forebrain cholinergic system parallels cognitive impairment in patients at high risk of developing Alzheimer’s disease.
        Cereb. Cortex. 2010; 20: 1685-1695https://doi.org/10.1093/cercor/bhp232
        • Zhang H.
        • Trollor J.N.
        • Wen W.
        • Zhu W.
        • Crawford J.D.
        • Kochan N.A.
        • Slavin M.J.
        • Brodaty H.
        • Reppermund S.
        • Kang K.
        • Mather K.A.
        • Sachdev P.S.
        Grey matter atrophy of basal forebrain and hippocampus in mild cognitive impairment.
        J. Neurol. Neurosurg. Psychiatry. 2011; 82: 487-493https://doi.org/10.1136/jnnp.2010.217133
        • Ferreira D.
        • Pereira J.B.
        • Volpe G.
        • Westman E.
        Subtypes of Alzheimer’s disease display distinct network abnormalities extending beyond their pattern of brain atrophy.
        Front. Neurol. 2019; 10https://doi.org/10.3389/fneur.2019.00524
        • Machado A.
        • Ferreira D.
        • Grothe M.J.
        • Eyjolfsdottir H.
        • Almqvist P.M.
        • Cavallin L.
        • Lind G.
        • Linderoth B.
        • Seiger Å.
        • Teipel S.
        • Wahlberg L.U.
        • Wahlund L.O.
        • Westman E.
        • Eriksdotter M.
        The cholinergic system in subtypes of Alzheimer’s disease: an in vivo longitudinal MRI study.
        Alzheimers Res. Ther. 2020; 12https://doi.org/10.1186/s13195-020-00620-7
        • Nemy M.
        • Cedres N.
        • Grothe M.J.
        • Muehlboeck J.S.
        • Lindberg O.
        • Nedelska Z.
        • Stepankova O.
        • Vyslouzilova L.
        • Eriksdotter M.
        • Barroso J.
        • Teipel S.
        • Westman E.
        • Ferreira D.
        Cholinergic white matter pathways make a stronger contribution to attention and memory in normal aging than cerebrovascular health and nucleus basalis of Meynert.
        Neuroimage. 2020; 211https://doi.org/10.1016/j.neuroimage.2020.116607
        • Liu Q.
        • Zhu Z.
        • Teipel S.J.
        • Yang J.
        • Xing Y.
        • Tang Y.
        • Jia J.
        White matter damage in the cholinergic system contributes to cognitive impairment in subcortical vascular cognitive impairment, no dementia.
        Front. Aging Neurosci. 2017; 9https://doi.org/10.3389/fnagi.2017.00047