Research Article| Volume 425, 117442, June 15, 2021

Bedside video-oculographic evaluation of eye movements in acute supratentorial stroke patients: A potential biomarker for hemispatial neglect

Published:April 08, 2021DOI:


      • Hemispatial neglect (HN) adversely affects functional outcome in stroke patients.
      • HN has been largely underdiagnosed in acute stroke patients.
      • Video-oculography (VOG) can easily evaluate eye movements even in bedside.
      • VOG measurement may be a simple biomarker for HN in acute stroke patients


      Background and purpose

      The presence of hemispatial neglect adversely affects functional outcomes in stroke patients; consequently, it warrants early targeted rehabilitative intervention. Nevertheless, hemispatial neglect in the acute phase of stroke has often been underdiagnosed. In this study, we aimed to detect hemispatial neglect at the bedside in acute stroke patients by measuring eye movements using video-oculography (VOG).


      Forty-seven patients with acute unilateral supratentorial stroke were enrolled. We quantitatively measured horizontal saccade (latency, velocity, and amplitude) and smooth pursuit (gain) at the bedside using VOG and compared these variables with scores on the Behavioral Inattention Test (BIT), a screening battery to assess hemispatial neglect.


      Contralesional saccade latency, velocity, and amplitude, and ipsilesional smooth pursuit gain were suppressed compared with those in the opposite directions (p = 0.08, 0.02, 0.04, and 0.02, respectively). These directional ocular hypokinesia values correlated with the total BIT score (correlation coefficients −0.53, 0.48, 0.51, and 0.39, respectively). The association was significant even after adjusting for age and stroke severity.


      Eye movement measurements performed using VOG significantly correlated with the tendency for hemispatial neglect in acute supratentorial stroke patients. Bedside VOG measurement may be a simple biomarker for detecting hemispatial neglect even in patients in the supine position during the acute phase of stroke.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Heilman K.M.
        • Valenstein E.
        Mechanisms underlying hemispatial neglect.
        Ann. Neurol. 1979; 5: 166-170
        • Stone S.P.
        • Halligan P.W.
        • Greenwood R.J.
        The incidence of neglect phenomena and related disorders in patients with an acute right or left hemisphere stroke.
        Age Ageing. 1993; 22: 46-52
        • Corbetta M.
        • Shulman G.L.
        Spatial neglect and attention networks.
        Annu. Rev. Neurosci. 2011; 34: 569-599
        • Luvizutto G.J.
        • Moliga A.F.
        • Rizzatti G.R.S.
        • Fogaroli M.O.
        • Neto E.M.
        • Nunes H.R.C.
        • Resende L.A.L.
        • Bazan R.
        Unilateral spatial neglect in the acute phase of ischemic stroke can predict long-term disability and functional capacity.
        Clinics. 2018; 21: e131
        • Gerafi J.
        • Samuelsson H.
        • Viken J.I.
        • Blomgren C.
        • Claesson L.
        • Kallio S.
        • Jern C.
        • Blomstrand C.
        • Jood K.
        Neglect and aphasia in the acute phase as predictors of functional outcome 7 years after ischemic stroke.
        Eur. J. Neurol. 2017; 24: 1407-1415
        • Turgut N.
        • Möller L.
        • Dengler K.
        • Steinberg K.
        • Sprenger A.
        • Eling P.
        • Kastrup A.
        • Hildebrandt H.
        Adaptive cueing treatment of neglect in stroke patients leads to improvements in activities of daily living: a randomized controlled, crossover trial.
        Neurorehabil. Neural Repair. 2018; 32: 988-998
        • Pijoan A.P.
        • Steinhauer E.G.
        • Torres A.Z.
        • Borràs R.M.M.
        • Sánchez-Benavides G.
        • Escobar G.G.
        • Enríquez C.P.
        • Gómez-González A.
        • Ois A.
        • Rodríguez-Campello A.
        • Cuadrado-Godía E.
        • Jiménez-Conde J.
        • Peña-Casanova J.
        • Roquer J.
        Underdiagnosis of unilateral spatial neglect in stroke unit.
        Acta Neurol. Scand. 2018; 138: 441-446
        • Wilson B.
        • Cockburn J.
        • Halligan P.
        Development of a behavioral test of visuospatial neglect.
        Arch. Phys. Med. Rehabil. 1987; 68: 98-102
        • Klinke M.E.
        • Hjaltason H.
        • Hafsteinsdóttir T.B.
        • Jónsdóttir H.
        Spatial neglect in stroke patients after discharge from rehabilitation to own home: a mixed method study.
        Disabil. Rehabil. 2016; 38: 2429-2444
        • Behrmann M.
        • Ghiselli-Crippa T.
        • Dimatteo I.
        Impaired initiation but not execution of contralesional saccades in hemispatial neglect.
        Behav. Neurol. 2001-2002; 13: 39-60
        • Walle K.M.
        • Nordvik J.E.
        • Becker F.
        • Espeseth T.
        • Sneve M.H.
        • Laeng B.
        Unilateral neglect post stroke: Eye movement frequencies indicate directional hypokinesia while fixation distributions suggest compensational mechanism.
        Brain Behav. 2019; 9e01170
        • Ptak R.
        • Schnider A.
        • Golay L.
        • Müri R.
        A non-spatial bias favouring fixated stimuli revealed in patients with spatial neglect.
        Brain. 2007; 130: 3211-3222
        • Johkura K.
        • Kawabata Y.
        • Amano Y.
        • Kudo Y.
        • Murata H.
        • Kirimura S.
        • Funabiki K.
        Bedside evaluation of smooth pursuit eye movements in acute sensory stroke patients.
        J. Neurol. Sci. 2015; 348: 269-271
        • Takahashi K.
        • Tanaka O.
        • Kudo Y.
        • Sugawara E.
        • Johkura K.
        Adduction-abduction asymmetry in saccades during video-oculographic monocular recording: a word of caution.
        Neuroophthalmology. 2019; 43: 284-288
        • Brott T.
        • Adams Jr., H.P.
        • Olinger C.P.
        • Marler J.R.
        • Barsan W.G.
        • Biller J.
        • Spilker J.
        • Holleran R.
        • Eberle R.
        • Hertzberg V.
        • Rorick M.
        • Moomaw C.J.
        • Walker M.
        Measurements of acute cerebral infarction: a clinical examination scale.
        Stroke. 1989; 20: 864-870
        • Ishiai S.
        Behavioural Inattention Test: Japanese Edition.
        Shinkoh IgakuShuppan, Tokyo1999
        • Robin X.
        • Turck N.
        • Hainard A.
        • Tiberti N.
        • Lisacek F.
        • Sanchez J.C.
        • Müller M.
        pROC: an open-source package for R and S+ to analyze and compare ROC curves.
        BMC Bioinformatics. 2011; 12: 77
        • Funabiki K.
        • Naito Y.
        • Matsuda K.
        • Honjo I.
        A new vestibulo-ocular reflex recording system designed for routine vestibular clinical use.
        Acta Otolaryngol. 1999; 119: 413-419
        • Johkura K.
        • Yoshida T.N.
        • Kudo Y.
        • Nakae Y.
        • Momoo T.
        • Kuroiwa Y.
        Cilostazol versus aspirin therapy in patients with chronic dizziness after ischemic stroke.
        Clin. Neurol. Neurosurg. 2012; 114: 876-880
        • Murai N.
        • Funabiki K.
        • Naito Y.
        • Ito J.
        • Fukuyama H.
        Validity and Limitation of Manual Rotational Test to Detect Impaired Visual-Vestibular Interaction Due to Cerebellar Disorders Auris Nasus Larynx.
        32. 2005: 23-28
        • Dowiasch S.
        • Marx S.
        • Einhäuser W.
        • Bremmer F.
        Effects of aging on eye movements in the real world.
        Front. Hum. Neurosci. 2015; 10: 46
        • Leigh R.J.
        • Zee D.S.
        The Neurology of Eye Movements.
        5th Ed. Oxford University Press, New York, NY2015
        • Pierrot-Deseilligny C.
        • Rivaud S.
        • Gaymard B.
        • Müri R.
        • Vermersch A.I.
        Cortical control of saccades.
        Ann. Neurol. 1995; 37: 557-567
        • Lekwuwa G.U.
        • Barnes G.R.
        Cerebral control of eye movements.
        Brain. 1996; 119: 473-505
        • Sharpe J.A.
        Neurophysiology and Neuroanatomy of smooth pursuit: lesion studies.
        Brain Cogn. 2008; 68: 241-254
        • Kerkhoff G.
        • Bucher L.
        • Brasse M.
        • Leonhart E.
        • Holzgraefe M.
        • Völzke V.
        • Keller I.
        • Reinhart S.
        Smooth pursuit “bedside” training reduces disability and unawareness during the activities of daily living in neglect: a randomized controlled trial.
        Neurorehabil. Neural Repair. 2014; 28: 554-563
        • Sharpe J.A.
        • Morrow M.J.
        • Johnston J.L.
        Smooth pursuit: anatomy, physiology and disorders.
        Bull Soc Belge Ophralmol. 1989; 237: 113-144
        • Fletcher W.A.
        • Sharpe J.A.
        Smooth pursuit dysfunction in Alzheimer’s disease.
        Neurology. 1988; 38: 272-277
        • Clementz B.A.
        • McDowell J.E.
        • Dobkins K.R.
        Compromised speed discrimination among schizophrenia patients when viewing smooth pursuit targets.
        Schizophr. Res. 2007; 95: 61-64