Advertisement
Review Article| Volume 425, 117435, June 15, 2021

Diffusion weighted imaging in acute ischemic stroke: A review of its interpretation pitfalls and advanced diffusion imaging application

  • Nandakumar Nagaraja
    Correspondence
    Corresponding author at: Department of Neurology, University of Florida College of Medicine, 1149 Newell Drive Room, L3-100, PO Box 100236, Gainesville, FL 32610, USA.
    Affiliations
    Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
    Search for articles by this author
Published:April 03, 2021DOI:https://doi.org/10.1016/j.jns.2021.117435

      Highlights

      • DWI is useful to evaluate stroke mechanism, predict complications and outcome.
      • DWI reversal, DWI negative stroke and DWI stroke mimics are interpretation pitfalls.
      • Reversal of DWI lesion occurs in 26.5% of stroke and associated with reperfusion.
      • DWI negative stroke is noted in 6.8% to 21% of clinically diagnosed stroke.

      Abstract

      Diffusion weighted imaging (DWI) is a widely used imaging technique to evaluate patients with stroke. It can detect brain ischemia within minutes of stroke onset. However, DWI has few potential pitfalls that should be recognized during interpretation. DWI lesion could be reversible in the early hours of stroke and the entire lesion may not represent ischemic core. False negative DWI could lead to diagnosis of DWI negative stroke or to a missed stroke diagnosis. Ischemic stroke mimics can occur on DWI with non-cerebrovascular neurological conditions. In this article, the history of DWI, its clinical applications, and potential pitfalls for use in acute ischemic stroke are reviewed. Advanced diffusion imaging techniques with reference to Diffusion Kurtosis Imaging and Diffusion Tensor Imaging that has been studied to evaluate ischemic core are discussed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nagaraja N.
        • Forder J.R.
        • Warach S.
        • Merino J.G.
        Reversible diffusion-weighted imaging lesions in acute ischemic stroke: a systematic review.
        Neurology. 2020; 94: 571-587https://doi.org/10.1212/WNL.0000000000009173
        • Arch A.E.
        • Weisman D.C.
        • Coca S.
        • Nystrom K.V.
        • Wira III, C.R.
        • Schindler J.L.
        Missed ischemic stroke diagnosis in the emergency department by emergency medicine and neurology services.
        Stroke. 2016; 47: 668-673https://doi.org/10.1161/STROKEAHA.115.010613
        • Makin S.D.
        • Doubal F.N.
        • Dennis M.S.
        • Wardlaw J.M.
        Clinically confirmed stroke with negative diffusion-weighted imaging magnetic resonance imaging: longitudinal study of clinical outcomes, stroke recurrence, and systematic review.
        Stroke. 2015; 46: 3142-3148https://doi.org/10.1161/STROKEAHA.115.010665
        • Newman-Toker D.E.
        • Moy E.
        • Valente E.
        • Coffey R.
        • Hines A.L.
        Missed diagnosis of stroke in the emergency department: a cross-sectional analysis of a large population-based sample.
        Diagnosis (Berl). 2014; 1: 155-166https://doi.org/10.1515/dx-2013-0038
        • Edlow B.L.
        • Hurwitz S.
        • Edlow J.A.
        Diagnosis of DWI-negative acute ischemic stroke: a meta-analysis.
        Neurology. 2017; 89: 256-262https://doi.org/10.1212/WNL.0000000000004120
        • Kamalian S.
        • Kamalian S.
        • Boulter D.J.
        • Lev M.H.
        • Gonzalez R.G.
        • Schaefer P.W.
        Stroke differential diagnosis and mimics: part 1.
        Appl. Radiol. 2015; 44: 26-39
        • Kamalian S.
        • Kamalian S.
        • Boulter D.J.
        • Lev M.H.
        • Gonzalez R.G.
        • Schaefer P.W.
        Stroke differential diagnosis and mimics: part 2.
        Appl. Radiol. 2015; 44: 39A-I
        • Alegiani A.C.
        • MacLean S.
        • Braass H.
        • Gellissen S.
        • Cho T.H.
        • Derex L.
        • et al.
        Dynamics of water diffusion changes in different tissue compartments from acute to chronic stroke-a serial diffusion tensor imaging study.
        Front. Neurol. 2019; 10: 158https://doi.org/10.3389/fneur.2019.00158
        • Zhu L.H.
        • Zhang Z.P.
        • Wang F.N.
        • Cheng Q.H.
        • Guo G.
        Diffusion kurtosis imaging of microstructural changes in brain tissue affected by acute ischemic stroke in different locations.
        Neural Regen. Res. 2019; 14: 272-279https://doi.org/10.4103/1673-5374.244791
        • Lu D.
        • Jiang Y.
        • Ji Y.
        • Zhou I.Y.
        • Mandeville E.
        • Lo E.H.
        • et al.
        JOURNAL CLUB: evaluation of diffusion kurtosis imaging of stroke lesion with hemodynamic and metabolic MRI in a rodent model of acute stroke.
        AJR Am. J. Roentgenol. 2018; 210: 720-727https://doi.org/10.2214/AJR.17.19134
        • Wang E.
        • Wu Y.
        • Cheung J.S.
        • Zhou I.Y.
        • Igarashi T.
        • Zhang X.
        • et al.
        pH imaging reveals worsened tissue acidification in diffusion kurtosis lesion than the kurtosis/diffusion lesion mismatch in an animal model of acute stroke.
        J. Cereb. Blood Flow Metab. 2017; 37: 3325-3333https://doi.org/10.1177/0271678X17721431
        • Hansen B.
        • Lund T.E.
        • Sangill R.
        • Jespersen S.N.
        Experimentally and computationally fast method for estimation of a mean kurtosis.
        Magn. Reson. Med. 2013; 69: 1754-1760https://doi.org/10.1002/mrm.24743
        • Cheung J.S.
        • Wang E.
        • Lo E.H.
        • Sun P.Z.
        Stratification of heterogeneous diffusion MRI ischemic lesion with kurtosis imaging: evaluation of mean diffusion and kurtosis MRI mismatch in an animal model of transient focal ischemia.
        Stroke. 2012; 43: 2252-2254https://doi.org/10.1161/STROKEAHA.112.661926
        • Le Bihan D.
        • Breton E.
        • Lallemand D.
        • Grenier P.
        • Cabanis E.
        • Laval-Jeantet M.
        MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders.
        Radiology. 1986; 161: 401-407https://doi.org/10.1148/radiology.161.2.3763909
        • Moseley M.E.
        • Cohen Y.
        • Mintorovitch J.
        • Chileuitt L.
        • Shimizu H.
        • Kucharczyk J.
        • et al.
        Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy.
        Magn. Reson. Med. 1990; 14: 330-346
        • Warach S.
        • Chien D.
        • Li W.
        • Ronthal M.
        • Edelman R.R.
        Fast magnetic resonance diffusion-weighted imaging of acute human stroke.
        Neurology. 1992; 42: 1717-1723
        • Warach S.
        • Gaa J.
        • Siewert B.
        • Wielopolski P.
        • Edelman R.R.
        Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging.
        Ann. Neurol. 1995; 37: 231-241https://doi.org/10.1002/ana.410370214
        • Yuh W.T.
        • Crain M.R.
        • Loes D.J.
        • Greene G.M.
        • Ryals T.J.
        • Sato Y.
        MR imaging of cerebral ischemia: findings in the first 24 hours.
        AJNR Am. J. Neuroradiol. 1991; 12: 621-629
        • Easton J.D.
        • Saver J.L.
        • Albers G.W.
        • Alberts M.J.
        • Chaturvedi S.
        • Feldmann E.
        • et al.
        Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists.
        Stroke. 2009; 40: 2276-2293https://doi.org/10.1161/STROKEAHA.108.192218
        • Singer O.C.
        • Humpich M.C.
        • Fiehler J.
        • Albers G.W.
        • Lansberg M.G.
        • Kastrup A.
        • et al.
        Risk for symptomatic intracerebral hemorrhage after thrombolysis assessed by diffusion-weighted magnetic resonance imaging.
        Ann. Neurol. 2008; 63: 52-60https://doi.org/10.1002/ana.21222
        • Derex L.
        • Hermier M.
        • Adeleine P.
        • Pialat J.B.
        • Wiart M.
        • Berthezene Y.
        • et al.
        Clinical and imaging predictors of intracerebral haemorrhage in stroke patients treated with intravenous tissue plasminogen activator.
        J. Neurol. Neurosurg. Psychiatry. 2005; 76: 70-75https://doi.org/10.1136/jnnp.2004.038158
        • Hand P.J.
        • Wardlaw J.M.
        • Rivers C.S.
        • Armitage P.A.
        • Bastin M.E.
        • Lindley R.I.
        • et al.
        MR diffusion-weighted imaging and outcome prediction after ischemic stroke.
        Neurology. 2006; 66: 1159-1163https://doi.org/10.1212/01.wnl.0000202524.43850.81
        • Rocha M.
        • Desai S.M.
        • Jadhav A.P.
        • Jovin T.G.
        Prevalence and temporal distribution of fast and slow progressors of infarct growth in large vessel occlusion stroke.
        Stroke. 2019; 50: 2238-2240https://doi.org/10.1161/STROKEAHA.118.024035
        • Simpkins A.N.
        • Dias C.
        • Norato G.
        • Kim E.
        • Leigh R.
        Early change in stroke size performs best in predicting response to therapy.
        Cerebrovasc. Dis. 2017; 44: 141-149https://doi.org/10.1159/000477945
        • Soize S.
        • Tisserand M.
        • Charron S.
        • Turc G.
        • Ben Hassen W.
        • Labeyrie M.A.
        • et al.
        How sustained is 24-hour diffusion-weighted imaging lesion reversal? Serial magnetic resonance imaging in a patient cohort thrombolyzed within 4.5 hours of stroke onset.
        Stroke. 2015; 46: 704-710https://doi.org/10.1161/strokeaha.114.008322
        • Sakamoto Y.
        • Kimura K.
        • Shibazaki K.
        • Inoue T.
        • Uemura J.
        • Aoki J.
        • et al.
        Early ischaemic diffusion lesion reduction in patients treated with intravenous tissue plasminogen activator: infrequent, but significantly associated with recanalization.
        Int. J. Stroke. 2013; 8: 321-326https://doi.org/10.1111/j.1747-4949.2012.00902.x
        • Albach F.N.
        • Brunecker P.
        • Usnich T.
        • Villringer K.
        • Ebinger M.
        • Fiebach J.B.
        • et al.
        Complete early reversal of diffusion-weighted imaging hyperintensities after ischemic stroke is mainly limited to small embolic lesions.
        Stroke. 2013; 44: 1043-1048https://doi.org/10.1161/strokeaha.111.676346
        • Labeyrie M.A.
        • Turc G.
        • Hess A.
        • Hervo P.
        • Mas J.L.
        • Meder J.F.
        • et al.
        Diffusion lesion reversal after thrombolysis: a MR correlate of early neurological improvement.
        Stroke. 2012; 43: 2986-2991https://doi.org/10.1161/strokeaha.112.661009
        • Yoo J.
        • Choi J.W.
        • Lee S.J.
        • Hong J.M.
        • Hong J.H.
        • Kim C.H.
        • et al.
        Ischemic diffusion lesion reversal after endovascular treatment.
        Stroke. 2019; 50: 1504-1509https://doi.org/10.1161/STROKEAHA.118.024263
        • Luby M.
        • Warach S.J.
        • Nadareishvili Z.
        • Merino J.G.
        Immediate changes in stroke lesion volumes post thrombolysis predict clinical outcome.
        Stroke. 2014; 45: 3275-3279https://doi.org/10.1161/strokeaha.114.006082
        • Asdaghi N.
        • Campbell B.C.
        • Butcher K.S.
        • Coulter J.I.
        • Modi J.
        • Qazi A.
        • et al.
        DWI reversal is associated with small infarct volume in patients with TIA and minor stroke.
        AJNR Am. J. Neuroradiol. 2014; 35: 660-666https://doi.org/10.3174/ajnr.A3733
        • Cho K.H.
        • Kwon S.U.
        • Lee D.H.
        • Shim W.
        • Choi C.
        • Kim S.J.
        • et al.
        Early infarct growth predicts long-term clinical outcome after thrombolysis.
        J. Neurol. Sci. 2012; 316: 99-103https://doi.org/10.1016/j.jns.2012.01.015
        • Tisserand M.
        • Turc G.
        • Charron S.
        • Legrand L.
        • Edjlali M.
        • Seners P.
        • et al.
        Does diffusion lesion volume above 70 mL preclude favorable outcome despite post-thrombolysis recanalization?.
        Stroke. 2016; 47: 1005-1011https://doi.org/10.1161/strokeaha.115.012518
        • Inoue M.
        • Mlynash M.
        • Christensen S.
        • Wheeler H.M.
        • Straka M.
        • Tipirneni A.
        • et al.
        Early diffusion-weighted imaging reversal after endovascular reperfusion is typically transient in patients imaged 3 to 6 hours after onset.
        Stroke. 2014; 45: 1024-1028https://doi.org/10.1161/strokeaha.113.002135
        • Olivot J.M.
        • Mlynash M.
        • Thijs V.N.
        • Purushotham A.
        • Kemp S.
        • Lansberg M.G.
        • et al.
        Relationships between cerebral perfusion and reversibility of acute diffusion lesions in DEFUSE: insights from RADAR.
        Stroke. 2009; 40: 1692-1697https://doi.org/10.1161/strokeaha.108.538082
        • Albers G.W.
        • Marks M.P.
        • Kemp S.
        • Christensen S.
        • Tsai J.P.
        • Ortega-Gutierrez S.
        • et al.
        Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging.
        N. Engl. J. Med. 2018; 378: 708-718https://doi.org/10.1056/NEJMoa1713973
        • Nogueira R.G.
        • Jadhav A.P.
        • Haussen D.C.
        • Bonafe A.
        • Budzik R.F.
        • Bhuva P.
        • et al.
        Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct.
        N. Engl. J. Med. 2018; 378: 11-21https://doi.org/10.1056/NEJMoa1706442
        • Campbell B.C.
        • Purushotham A.
        • Christensen S.
        • Desmond P.M.
        • Nagakane Y.
        • Parsons M.W.
        • et al.
        The infarct core is well represented by the acute diffusion lesion: sustained reversal is infrequent.
        J. Cereb. Blood Flow Metab. 2012; 32: 50-56https://doi.org/10.1038/jcbfm.2011.102
        • Chemmanam T.
        • Campbell B.C.
        • Christensen S.
        • Nagakane Y.
        • Desmond P.M.
        • Bladin C.F.
        • et al.
        Ischemic diffusion lesion reversal is uncommon and rarely alters perfusion-diffusion mismatch.
        Neurology. 2010; 75: 1040-1047https://doi.org/10.1212/WNL.0b013e3181f39ab6
        • Fiehler J.
        • Knudsen K.
        • Kucinski T.
        • Kidwell C.S.
        • Alger J.R.
        • Thomalla G.
        • et al.
        Predictors of apparent diffusion coefficient normalization in stroke patients.
        Stroke. 2004; 35: 514-519https://doi.org/10.1161/01.STR.0000114873.28023.C2
        • Olivot J.M.
        • Mlynash M.
        • Thijs V.N.
        • Purushotham A.
        • Kemp S.
        • Lansberg M.G.
        • et al.
        Geography, structure, and evolution of diffusion and perfusion lesions in Diffusion and perfusion imaging Evaluation For Understanding Stroke Evolution (DEFUSE).
        Stroke. 2009; 40: 3245-3251https://doi.org/10.1161/strokeaha.109.558635
        • Leigh R.
        • Knutsson L.
        • Zhou J.
        • van Zijl P.C.
        Imaging the physiological evolution of the ischemic penumbra in acute ischemic stroke.
        J. Cereb. Blood Flow Metab. 2017; (271678X17700913)https://doi.org/10.1177/0271678X17700913
        • Heiss W.D.
        • Zaro Weber O.
        Validation of MRI determination of the penumbra by PET measurements in ischemic stroke.
        J. Nucl. Med. 2017; 58: 187-193https://doi.org/10.2967/jnumed.116.185975
        • Markus H.S.
        Cerebral perfusion and stroke.
        J. Neurol. Neurosurg. Psychiatry. 2004; 75: 353-361
        • Guadagno J.V.
        • Warburton E.A.
        • Jones P.S.
        • Day D.J.
        • Aigbirhio F.I.
        • Fryer T.D.
        • et al.
        How affected is oxygen metabolism in DWI lesions?: a combined acute stroke PET-MR study.
        Neurology. 2006; 67: 824-829https://doi.org/10.1212/01.wnl.0000233984.66907.db
        • Guadagno J.V.
        • Warburton E.A.
        • Jones P.S.
        • Fryer T.D.
        • Day D.J.
        • Gillard J.H.
        • et al.
        The diffusion-weighted lesion in acute stroke: heterogeneous patterns of flow/metabolism uncoupling as assessed by quantitative positron emission tomography.
        Cerebrovasc. Dis. 2005; 19: 239-246https://doi.org/10.1159/000084087
        • Kohno K.
        • Hoehn-Berlage M.
        • Mies G.
        • Back T.
        • Hossmann K.A.
        Relationship between diffusion-weighted MR images, cerebral blood flow, and energy state in experimental brain infarction.
        Magn. Reson. Imaging. 1995; 13: 73-80
        • Entwisle T.
        • Perchyonok Y.
        • Fitt G.
        Thin section magnetic resonance diffusion-weighted imaging in the detection of acute infratentorial stroke.
        J. Med. Imaging Radiat. Oncol. 2016; 60: 616-623https://doi.org/10.1111/1754-9485.12490
        • Felfeli P.
        • Wenz H.
        • Al-Zghloul M.
        • Groden C.
        • Forster A.
        Combination of standard axial and thin-section coronal diffusion-weighted imaging facilitates the diagnosis of brainstem infarction.
        Brain Behav. 2017; 7e00666https://doi.org/10.1002/brb3.666
        • Schonfeld M.H.
        • Ritzel R.M.
        • Kemmling A.
        • Ernst M.
        • Fiehler J.
        • Gellissen S.
        Improved detectability of acute and subacute brainstem infarctions by combining standard axial and thin-sliced sagittal DWI.
        PLoS One. 2018; 13e0200092https://doi.org/10.1371/journal.pone.0200092
        • Ract I.
        • Ferre J.C.
        • Ronziere T.
        • Leray E.
        • Carsin-Nicol B.
        • Gauvrit J.Y.
        Improving detection of ischemic lesions at 3 tesla with optimized diffusion-weighted magnetic resonance imaging.
        J. Neuroradiol. 2014; 41: 45-51https://doi.org/10.1016/j.neurad.2013.04.003
        • Lettau M.
        • Laible M.
        3-T high-b-value diffusion-weighted MR imaging of hyperacute ischemic stroke in the vertebrobasilar territory.
        J. Neuroradiol. 2012; 39: 243-253https://doi.org/10.1016/j.neurad.2011.09.005
        • Rosso C.
        • Drier A.
        • Lacroix D.
        • Mutlu G.
        • Pires C.
        • Lehericy S.
        • et al.
        Diffusion-weighted MRI in acute stroke within the first 6 hours: 1.5 or 3.0 Tesla?.
        Neurology. 2010; 74: 1946-1953https://doi.org/10.1212/WNL.0b013e3181e396d1
        • Kosior R.K.
        • Wright C.J.
        • Kosior J.C.
        • Kenney C.
        • Scott J.N.
        • Frayne R.
        • et al.
        3-Tesla versus 1.5-Tesla magnetic resonance diffusion and perfusion imaging in hyperacute ischemic stroke.
        Cerebrovasc. Dis. 2007; 24: 361-368https://doi.org/10.1159/000106983
        • Havsteen I.
        • Ovesen C.
        • Willer L.
        • Nybing J.D.
        • AE K.
        • Marstrand J.
        • et al.
        Comparison of 3- and 20-gradient direction diffusion-weighted imaging in a clinical subacute cohort of patients with transient ischemic attack: application of standard vendor protocols for lesion detection and final infarct size projection.
        Front. Neurol. 2017; 8: 691https://doi.org/10.3389/fneur.2017.00691
        • Moulin S.
        • Leys D.
        Stroke mimics and chameleons.
        Curr. Opin. Neurol. 2019; 32: 54-59https://doi.org/10.1097/WCO.0000000000000620
        • Le Bihan D.
        • Iima M.
        Diffusion magnetic resonance imaging: what water tells us about biological tissues.
        PLoS Biol. 2015; 13e1002203https://doi.org/10.1371/journal.pbio.1002203
        • Obertino LB S.
        • Galazzo I. Boscolo
        • Zucchelli M.
        • Granziera C.
        • Cristani M.
        • Menegaz G.
        SHORE-based biomarkers allow patients versus control classification in stroke.
        IEEE. 2016; (1097-100)https://doi.org/10.1109/ISBI.2016.7493457
        • Brusini L.
        • Obertino S.
        • Galazzo I.B.
        • Zucchelli M.
        • Krueger G.
        • Granziera C.
        • et al.
        Ensemble average propagator-based detection of microstructural alterations after stroke.
        Int. J. Comput. Assist. Radiol. Surg. 2016; 11: 1585-1597https://doi.org/10.1007/s11548-016-1442-z
        • Yin J.
        • Sun H.
        • Wang Z.
        • Ni H.
        • Shen W.
        • Sun P.Z.
        Diffusion kurtosis imaging of acute infarction: comparison with routine diffusion and follow-up MR imaging.
        Radiology. 2018; 287: 651-657https://doi.org/10.1148/radiol.2017170553
        • Chou M.C.
        • Ko C.W.
        • Chiu Y.H.
        • Chung H.W.
        • Lai P.H.
        Effects of B value on quantification of rapid diffusion kurtosis imaging in normal and acute ischemic brain tissues.
        J. Comput. Assist. Tomogr. 2017; 41: 868-876https://doi.org/10.1097/RCT.0000000000000621
      1. Wu O, Grant P, Koroshetz W, G R Gonzalez, Rosen B, P J Synnott et al., Reversal of DWI lesions may be associated with increases in anisotropy. Proc. Int. Soc. Magn. Reson. Med. 8th Scientific Meeting; April 3–7, 2000 April; Denver, Colorado, USA.

        • Bhagat Y.A.
        • Emery D.J.
        • Shuaib A.
        • Sher F.
        • Rizvi N.H.
        • Akhtar N.
        • et al.
        The relationship between diffusion anisotropy and time of onset after stroke.
        J. Cereb. Blood Flow Metab. 2006; 26: 1442-1450https://doi.org/10.1038/sj.jcbfm.9600294
        • Ringer T.M.
        • Neumann-Haefelin T.
        • Sobel R.A.
        • Moseley M.E.
        • Yenari M.A.
        Reversal of early diffusion-weighted magnetic resonance imaging abnormalities does not necessarily reflect tissue salvage in experimental cerebral ischemia.
        Stroke. 2001; 32: 2362-2369
        • Li F.
        • Liu K.F.
        • Silva M.D.
        • Omae T.
        • Sotak C.H.
        • Fenstermacher J.D.
        • et al.
        Transient and permanent resolution of ischemic lesions on diffusion-weighted imaging after brief periods of focal ischemia in rats : correlation with histopathology.
        Stroke. 2000; 31: 946-954
        • Marks M.P.
        • Tong D.C.
        • Beaulieu C.
        • Albers G.W.
        • de Crespigny A.
        • Moseley M.E.
        Evaluation of early reperfusion and i.v. tPA therapy using diffusion- and perfusion-weighted MRI.
        Neurology. 1999; 52: 1792-1798
        • Winzeck S.
        • Mocking S.J.T.
        • Bezerra R.
        • Bouts M.
        • McIntosh E.C.
        • Diwan I.
        • et al.
        Ensemble of convolutional neural networks improves automated segmentation of acute ischemic lesions using multiparametric diffusion-weighted MRI.
        AJNR Am. J. Neuroradiol. 2019; 40: 938-945https://doi.org/10.3174/ajnr.A6077
        • Woo I.
        • Lee A.
        • Jung S.C.
        • Lee H.
        • Kim N.
        • Cho S.J.
        • et al.
        Fully automatic segmentation of acute ischemic lesions on diffusion-weighted imaging using convolutional neural networks: comparison with conventional algorithms.
        Korean J. Radiol. 2019; 20: 1275-1284https://doi.org/10.3348/kjr.2018.0615
        • Thomalla G.
        • Simonsen C.Z.
        • Boutitie F.
        • Andersen G.
        • Berthezene Y.
        • Cheng B.
        • et al.
        MRI-guided thrombolysis for stroke with unknown time of onset.
        N. Engl. J. Med. 2018; 379: 611-622https://doi.org/10.1056/NEJMoa1804355
        • Lee H.
        • Lee E.J.
        • Ham S.
        • Lee H.B.
        • Lee J.S.
        • Kwon S.U.
        • et al.
        Machine learning approach to identify stroke within 4.5 hours.
        Stroke. 2020; 51: 860-866https://doi.org/10.1161/STROKEAHA.119.027611