Advertisement
Review Article| Volume 425, 117433, June 15, 2021

Olfaction and anosmia: From ancient times to COVID-19

  • Stéphane Mathis
    Correspondence
    Corresponding author.
    Affiliations
    Department of Neurology (Nerve-Muscle Unit), University Hospital of Bordeaux (CHU Bordeaux), Pellegrin Hospital, 1 place Amélie Raba-Léon, 33076 Bordeaux, France

    Grand Sud-Ouest’ National Reference Center for neuromuscular disorders, University Hospital of Bordeaux (CHU Bordeaux), Pellegrin Hospital, 1 place Amélie Raba-Léon, 33076 Bordeaux, France

    ALS Center, University Hospital of Bordeaux (CHU Bordeaux), Pellegrin Hospital, 1 place Amélie Raba-Léon, 33076 Bordeaux, France
    Search for articles by this author
  • Gwendal Le Masson
    Affiliations
    Department of Neurology (Nerve-Muscle Unit), University Hospital of Bordeaux (CHU Bordeaux), Pellegrin Hospital, 1 place Amélie Raba-Léon, 33076 Bordeaux, France

    Grand Sud-Ouest’ National Reference Center for neuromuscular disorders, University Hospital of Bordeaux (CHU Bordeaux), Pellegrin Hospital, 1 place Amélie Raba-Léon, 33076 Bordeaux, France

    ALS Center, University Hospital of Bordeaux (CHU Bordeaux), Pellegrin Hospital, 1 place Amélie Raba-Léon, 33076 Bordeaux, France

    Neurocentre François Magendie, Unité INSERM 1215, 146 Rue Léo Saignat, 33077 Bordeaux Cedex, France
    Search for articles by this author
  • Antoine Soulages
    Affiliations
    Department of Neurology (Nerve-Muscle Unit), University Hospital of Bordeaux (CHU Bordeaux), Pellegrin Hospital, 1 place Amélie Raba-Léon, 33076 Bordeaux, France

    Grand Sud-Ouest’ National Reference Center for neuromuscular disorders, University Hospital of Bordeaux (CHU Bordeaux), Pellegrin Hospital, 1 place Amélie Raba-Léon, 33076 Bordeaux, France

    ALS Center, University Hospital of Bordeaux (CHU Bordeaux), Pellegrin Hospital, 1 place Amélie Raba-Léon, 33076 Bordeaux, France
    Search for articles by this author
  • Fanny Duval
    Affiliations
    Department of Neurology (Nerve-Muscle Unit), University Hospital of Bordeaux (CHU Bordeaux), Pellegrin Hospital, 1 place Amélie Raba-Léon, 33076 Bordeaux, France

    Grand Sud-Ouest’ National Reference Center for neuromuscular disorders, University Hospital of Bordeaux (CHU Bordeaux), Pellegrin Hospital, 1 place Amélie Raba-Léon, 33076 Bordeaux, France
    Search for articles by this author
  • Louis Carla
    Affiliations
    Department of Neurology (Nerve-Muscle Unit), University Hospital of Bordeaux (CHU Bordeaux), Pellegrin Hospital, 1 place Amélie Raba-Léon, 33076 Bordeaux, France
    Search for articles by this author
  • Jean-Michel Vallat
    Affiliations
    Department and Laboratory of Neurology, National Reference Center for ‘Rare Peripheral Neuropathies’, University Hospital of Limoges (CHU Limoges), Dupuytren Hospital, 2 avenue Martin Luther King, 87042 Limoges, France
    Search for articles by this author
  • Guilhem Solé
    Affiliations
    Department of Neurology (Nerve-Muscle Unit), University Hospital of Bordeaux (CHU Bordeaux), Pellegrin Hospital, 1 place Amélie Raba-Léon, 33076 Bordeaux, France

    Grand Sud-Ouest’ National Reference Center for neuromuscular disorders, University Hospital of Bordeaux (CHU Bordeaux), Pellegrin Hospital, 1 place Amélie Raba-Léon, 33076 Bordeaux, France
    Search for articles by this author
Published:April 03, 2021DOI:https://doi.org/10.1016/j.jns.2021.117433

      Highlights

      • Olfaction is an important physiological function, its impairment contributing to reduce quality of life.
      • For centuries, numerous anatomical and physiological studies have contributed to a better understanding of olfaction.
      • Olfactory dysfunction may be due to various causes, neurological or not.
      • A link between olfaction and neurodegenerative disorders was established.
      • With the current pandemic (COVID-19), new interests in olfaction and new hypothesis emerged.

      Abstract

      Olfaction, one of our five main qualitative sensory abilities, is the action of smelling or the capacity to smell. Olfactory impairment can be a sign of a medical problem, from a benign nasal/sinus problem up to a potentially serious brain injury. However, although clinicians (neurologists or not) usually test the olfactory nerves in specific clinical situations (for example, when a neurodegenerative disorder is suspected), they may omit such tests in many other situations. With the recent COVID-19 pandemic, the resurgence of anosmia has reminded us of the importance of testing this sensorineural function. We retrace here the main historical steps and discoveries concerning olfaction and anosmia.

      Graphical abstract

      Keywords

      Abbreviations:

      ACE2 (angiotensin-converting enzyme 2), ApoE4 (apolipoprotein E4), BBB (blood-brain barrier), BMEC (brain microvascular endothelial cells), CHD7 (chromodomain helicase DNA-binding protein 7), COVID-19 (coronavirus disease 2019), CNS (central nervous system), CSF (cerebrospinal fluid), EEG (elektroenkephalogram (electroencephalogram)), EOG (electro-olfactogram), FGF8 (fibroblast growth factor 8), KAL1/ANOS1 (Kall syndrome 1/Anosmic hypogonadism 1), KAL2/FGFR1 (Kallmann syndrome 2/fibroblast growth factor receptor-1), MM (molecular mimicry), MRI (magnetic resonance imaging), CP (cribriform plate), OR7D4 (olfactory receptor, family 7, subfamily D, member 4), ORF (Open Reading Frames), PARP9 (Poly-ADP-Ribose-Polymerase Family Member 9), PROK2 (prokineticin 2), QoL (quality of life), RBD (receptor-binding), RNA (ribonucleic acid), SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), SCN9A (sodium voltage-gated channel, alpha subunit 9), SLC12A6 (Solute Carrier Family 12 Member 6), TMPRSS2 (transmembrane serine protease 2)

      1. Introduction

      Since time immemorial, the basic survival mechanism of smell (‘olfaction’) alerts individuals to dangers such as fire or spoiled foods, but also greatly contributes to the sensation of flavor. When eating, smell is first perceived anteriorly (orthonasal olfaction), followed by the perception of ‘gustation’, before retronasal olfaction (referred to the oral cavity rather than to the olfactory epithelium); so patients with loss of smell regularly complain as having lost the sense of taste [
      • Doty R.L.
      Handbook of Olfaction and Gustation.
      ]. The first step in olfaction is the activation (by odorant molecules) of ciliated olfactory receptors (‘fila olfactoria’) located at the olfactory clefts. The pseudostratified columnar olfactory neuroepithelium (neural and supporting cells), characterized by its unique ability to regenerate, is lined with mucus largely produced by Bowman's glands [
      • Doty R.L.
      Handbook of Olfaction and Gustation.
      ]. The remaining part of the nasal cavity and pharynx is not covered by the olfactory neuroepithelium, but contribute to the detection of some molecules through the activation of the trigeminal, glossopharyngeal and vagus nerves. The “cribriform plate” (CP) is the horizontal portion of the ethmoid bone where filia olfactoria (fascicles of thin, unmyelinated axons of the bipolar olfactory receptor cells) go up through the CP to synapse in the olfactory bulbs (both a relay station and a complex center where sensory input is filtered and modified by neural elements intrinsic and extrinsic to the bulb). They are then transmitted along complex olfactory pathways, the signal reaches the “olfactory cortex” which has many axonal projections to other parts of the brain (Fig. 1) [
      • Doty R.L.
      Handbook of Olfaction and Gustation.
      ].
      Fig. 1
      Fig. 1Schematic and simplified representation of the olfactory circuitry. Examples of the localization of some neuropathological changes due to Alzheimer's disease and COVID-19 are showed (stars) (COVID-19: coronavirus disease 2019; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2).

      2. First anatomical descriptions of the nasal cavities and the basis of olfaction

      The first detailed anatomical descriptions of the nasal fossae seems to date at least back to ancient Greece, mainly with Hippocrates of Kos (460 BCE–370 BCE) and Aristotle (384 BCE–322 BCE) [
      • Chauveau C.
      Recherches sur l'histoire de l'anatomie et de la physiologie des fosses nasales depuis Hippocrates jusqu'à la période spécialistique.
      ]. Hippocrates observed the CP and thought that played a role in olfaction [
      • Hirsch A.
      De Collectionis Hippocraticae Auctorum Anatomia.
      ]. He described it as “soft like a sponge”, falsely considering this structure as cartilage [
      • Chauveau C.
      Recherches sur l'histoire de l'anatomie et de la physiologie des fosses nasales depuis Hippocrates jusqu'à la période spécialistique.
      ]. He believed that the mucus observed inside the nose was secreted by the brain (he described as a “gland at the origin of all catarrhal troubles”) penetrate the nasal fossae (through this “spongious bone”) to be expelled from the body [
      • Wright J.
      A History of Laryngology and Rhinology.
      ]: this was part of the “humoral theory” (“humorism”) of Hippocrates, later revived and expanded by Claudius Galenus (129–200) who was the first to describe this “spongious bone” as “cribrum” (meaning “sieve” in Latin) [
      • Turliuc D.M.
      • Sava A.
      • Cucu A.I.
      • Turliuc S.
      • Dumitrescu A.M.
      • Costea C.F.
      Cribriform plate and Galen's Cribrum Romanum.
      ]. However, the ethmoid bone was clearly identified later, by Andreas Vesalius (1514–1564), Realdo Colombo (1510–1559), then Giovanni Filippo Ingrassia (1510–1580) who proposed the term “cribriform plate” [
      • Cappello F.
      • Gerbino A.
      • Zummo G.
      Giovanni Filippo Ingrassia: a five-hundred year-long lesson.
      ]. Finally, Gabriele Fallopio (1510–1580) was the first to argue that the CP was not a separate ossicle, but an integral structure of the ethmoid bone [
      • Falloppio G.
      Mutinensis Physici Praeclarissimi, ac nostrotum temporum eximij Anatomici Expositio in librum Galeni de ossibus huic accesserunt observationes eiusdem authoris, Simonem Galignanum de Karera, Venetiis.
      ].
      Oribasius (320–403) clearly designated the “mammillary processes” (olfactive bulbs) as the “organ of olfaction” [
      • Oribasius
      De l'organe de l'odorat.
      ]. At that time, the catarrhal secretion of the nose was called “pituite”, a “large viscous sputum whose whitish tint and consistency was roughly reminiscent of the brain substance” [
      • Chauveau C.
      Recherches sur l'histoire de l'anatomie et de la physiologie des fosses nasales depuis Hippocrates jusqu'à la période spécialistique.
      ]. So the nature of the brain was considered as being “pituitous”: this mucous was therefore seen as “feces of the brain” by Jean Fernel (1506–1558) [
      • Fernel J.
      Les maladies & symptomes des narines, avec leurs causes et leurs signes.
      ]. As Jacobo Berengario da Carpi (1460–1530) before him, Vesalius disagreed with the Galen's theory: for him, the “secretions of the brain” percolated through the base of the skull (from the third ventricle, then crossing the pituitary gland), thinking it did not pass through CP but thought the “foramen lacerum” [
      • Vesalius A.
      De humani corporis fabrica libri septem.
      ]. He also hypothesized that CP perforations could transmit air (for “cooling the brain”) and odors to the brain [
      • Vesalius A.
      De humani corporis fabrica libri septem.
      ], unlike Nathaniel Highmore (1613–1685) who argued that the meninges (which are not perforated in the CP) prevented air from reaching the brain [
      • Highmore N.
      De Auro, Naso & Lingua.
      ]. Finally, Vesalius confirmed the “mamillary processes” as being the seat of olfaction, without considering them as real cranial nerves: as he did not notice the fine nerve filaments connected to the olfactory mucosa, he called them “coesi” (“mutilated nerves”) [
      • Vesalius A.
      De humani corporis fabrica libri septem.
      ]. It was probably Adriaan van den Spiegel (1578–1625) who definitely considered olfactive nerves as cranial nerves [
      • Spiegel A.
      De naso interno, sive olfactus instrumento.
      ], before Thomas Willis (1621–1675) classified “nervi olfactorii” as “par primum” (first pair of cranial nerves) [
      • Willis T.
      Cerebri anatome: cui accessit nervorum descriptio et usus.
      ]. In fact, Willis clearly refuted Vesale's hypothesis, showing that when a liquid (milk or ink) is injected into the pituitary gland, it emerges in the jugular vein, not in the nasal cavities. However, Willis did not clearly understand the role of the CP, thinking that it also contributed to the resorption of cerebrospinal fluid (CSF) [
      • Willis T.
      Cerebri anatome: cui accessit nervorum descriptio et usus.
      ]. Finally, Conrad Victor Schneider (1614–1680) demonstrated that only branches of the olfactory nerves pass through the CP, not the nasal secretion produced by the mucous membrane of the nasal fossae (nowadays known as “Schneiderian membrane”) [
      • Schneider K.V.
      Liber de osse cribriformi, & sensu ac organo odoratus, morbis ad utrumq; spectantibus, de coryzâ, Haemorrhagiâ narium, polypo, sternutatione, amissione odoratus.
      ]. As described by Robert Bentley Todd (1809–1860) and William Bowman (1816–1892), the mucus secreted by Bowman's gland [
      • Todd R.B.
      • Bowman W.
      Of smell.
      ] protects the olfactory epithelium, allowing odors to dissolve so that they can be detected by olfactory receptor neurons corresponding to the ‘fila olfactoria’ described by Max Schultze (1825–1874) [
      • Bernstein J.
      Le sens de l'odorat.
      ].
      Julius Bernstein (1839–1917) highlighted that only “terminal organs” (fila olfactoria) have the capacity to experience the actions of odorants, the nerves being only a simple vector that transmit information and emotion to the brain [
      • Bernstein J.
      Le sens de l'odorat.
      ], echoing the words of Jean-Jacques Rousseau (1712–1778) who considered that “smell is the sense of imagination” [
      • Rousseau J.J.
      Livre second. L’âge de nature: de 2 à 12 ans (puer).
      ]. Paul Broca (1824–1880) defined olfaction as a “brutal sense”, stressing that it is usually more developed in the “brutal animals” with less intelligence (macrosmic animals), unlike humans (who are microsmic) [
      • Broca P.
      Anatomie comparée des circonvolutions cérébrales. Le grand lobe limbique et la scissure limbique dans la série des mammifères.
      ]. Moreover, considering the olfactive nerves (olfactory bulbs) as true cranial nerves is probably not exact. First, olfactive nerves (like the optic nerves) are the only nerves that do not emerge from the brainstem (but are attached to the forebrain: limbic system). Secondly, the peripheral olfactory receptor neurons are situated in the olfactory epithelium (posterodorsal recess of the nasal cavity), whereas the central part of the main olfactory system comprises the olfactory bulb and the targets of its projections (olfactory tract) within brain structures implicated in memory formation and motivational aspects of behavior. Finally, the olfactory system is unique among the senses, in that receptors project directly to the cortex, the other senses relaying through the thalamus [
      • Doty R.L.
      Handbook of Olfaction and Gustation.
      ].
      Since the middle of the 20th century, we know that olfactory receptor cells (derived from ectoderm and serving as the first-order neurons) can regenerate after they are damaged. Nagahara (1940) was the first to observe mitotic activity in the basal cells of the olfactory epithelium (he called “resting cells”) of adult mice [
      • Nagahara Y.
      Experimentelle Studien über die histologischen Veränderungen des Geruchssorgans nach der Olfactoriusdurchschneidung.
      ], then Edwin William Schultz (1887–1971) demonstrated the regeneration of olfactory sensory neurons in monkeys after toxic damage [
      • Schultz E.W.
      Repair of the olfactory mucosa with special reference to regeneration of olfactory cells (sensory neurons).
      ,
      • Schultz E.W.
      Regeneration of olfactory cells.
      ]. Olfactory neurogenesis is necessary because of the vulnerability of the olfactory sensory neurons to environmental factors: based on the appearance of a new generation of neurons from stem cells, it was studied more intensively by neuroanatomists in the early 1970s [
      • Mackay-Sim A.
      Stem cells and their niche in the adult olfactory mucosa.
      ]. Nowadays, we know the sensory olfactory neurons are continually replaced during adulthood from horizontal basal stem cells (able to regenerate all the cells of the olfactory epithelium, if damaged by trauma or toxins) in a neurogenic niche in the olfactory epithelium, but multipotent stem cells have also been found in the olfactory mucosa [
      • Mackay-Sim A.
      Stem cells and their niche in the adult olfactory mucosa.
      ]. The extraordinary plasticity of the olfactory system could explain why olfactory training improves olfactory function in humans and may improve the olfactory recovery time to stimulate olfactory nerve regeneration (related to olfactory receptor and neurotrophic factor stimulation): so olfactory training may be an effective intervention for patients with olfactory dysfunction [
      • Kim B.Y.
      • Park J.Y.
      • Kim E.J.
      • Kim B.G.
      • Kim S.W.
      The neuroplastic effect of olfactory training to the recovery of olfactory system in mouse model.
      ].

      3. The concept of “anosmia”

      Bernstein explained that two conditions are required for smell. First, there is the chemical condition due to chemical properties of the odorants acting on the olfactory receptors; secondly, there is also a mechanical condition, the regular renewal of a flow of air in the nasal cavities to maintain efficient olfaction: by stopping to breath, smell is suspended [
      • Bernstein J.
      Le sens de l'odorat.
      ]. Bernstein also mentioned the experience of Ernst Heinrich Weber (1795–1878) who observed that, when the nasal cavities are full of a liquid (such as water or eau-de-cologne), there is no sense of smell [
      • Bernstein J.
      Le sens de l'odorat.
      ]. The absence of the ability to smell is called “anosmia”, whereas “hyposmia” is only a decreased ability to smell. “Anosmia” comes from the Ancient Greek “an-” (meaning “absent”) and “-osmḗ” (meaning “odor”); it was also described under the term ‘chamesie” by Haly Abbas (930–994) or “olfactûs amissio” (“loss of olfaction”) by Daniel Sennert (1572–1637) [
      • Cloquet H.
      Des lésions de l'olfaction.
      ]. During the 16th century, Fernel was one of the first to give details about the causes of anosmia, pointing out that the loss of smell can occur when “continuous stench”, especially in the case of “ozaena” (chronic atrophic rhinitis), as well as “when the duct of the nostrils and ethmoid bone, through which the spirit and smell ordinarily pass, is impeded by an outgrowth of flesh, or by a polyp or by a phlegmon, or by some defluxion” [
      • Fernel J.
      Les maladies & symptomes des narines, avec leurs causes et leurs signes.
      ].
      François Boissier de Sauvages (1706–1767) considered anosmia as a possible disease, unlike Philippe Pinel (1745–1826) who thought it was a pure symptom [
      • Cloquet H.
      Des lésions de l'olfaction.
      ]. Based on the observations of Fernel, Théophile Bonet (1620–1689), Guillaume de Baillou (1538–1616) and Lorenz Heister (1683–1758), he classified anosmia in seven categories (Table 1) [
      • Boissier de Sauvages F.
      • Anosmia V.
      Perte d’odorat; Olfacûs amissio, Sennert; Chasemie, d’Haly-Abbas.
      ]. For him, it was mainly caused by nasal obstruction (“anosmia a polypo”) or destruction, especially due to rhinitis (“anosmia catarrhalis”) and other nasal infectious disorders, syphilitic (“anosmia syphilitica”) or not (“anosmia ab ozoena”), or due to various substances (“anosmia a siccitate” and “anosmia verminosa”) [
      • Boissier de Sauvages F.
      • Anosmia V.
      Perte d’odorat; Olfacûs amissio, Sennert; Chasemie, d’Haly-Abbas.
      ]. But he also reported on “anosmia paralytica” due to “obstruction and compression of the olfactory nerves”, without many details (Table 1) [
      • Boissier de Sauvages F.
      • Anosmia V.
      Perte d’odorat; Olfacûs amissio, Sennert; Chasemie, d’Haly-Abbas.
      ].
      Table 1Classification of anosmia according to François Boissier de Sauvages.(1772).
      TypeDenominationFrench definitionEnglish translation
      1anosmia catarrhalisC'est celle qui accompagne le rhume ordinaire; & lorsque celle-ci est opiniâtre, elle subsiste après même qu'il est guéri.”It is what accompanies the common cold, and when it is stubborn, it remains even after it is cured.”
      2anosmia ab ozoenaAnosmie causée par un ozène. Ceux qui puent du nez, soit à cause d'un ulcère qui ronge la membrane pituitaire, soit à cause de la putréfaction de la morve & de l'air qui séjournent trop longtemps dans les antres de Highmor & dans les autres sinus, ceux qui dissèquent les cadavres, qui vident les latrines, qui fréquentent les boucheries & les autres lieux où l'on respire de mauvaises odeurs, s'y habituent tellement, & en sont s'y affectés qu'ils ne sentent plus les autres, & perdent tout à fait l'odorat.Anosmia caused by ozaena. Those who stink from the nose, either because of an ulcer that gnaws at the pituitary membrane, or because of putrefaction of mucus/snot and air that stagnates in the antrum of Highmore and in the other sinuses, those who dissect corpses, who empty latrines, who frequent butcher's shops and other places where bad smells are respired, get so used to and affected by them that they no longer smell others, and lose their sense of smell altogether.”
      3anosmia a polypoAnosmie cause par un polype. Lorsqu'il se forme un polype dans le nez, & qu'il croit au point de boucher les narines & d'affaisser le vomer; l'air ni les effluves odoriférans ne pouvant plus y entrer, il faut nécessairement que l'odorat se perde. »Anosmia caused by a polyp. When a polyp is formed in the nose, and grows to the point of blocking the nostrils and sagging the vomer; neither the air nor the odoriferous effluvium can enter, the sense of smell must necessarily be lost.”
      4anosmia syphiliticaAnosmie vénérienne. C'est celui qui survient dans le troisième degré de la vérole, après que le dedans du nez est mangé par les ulcères qui s'y sont formés. Ces ulcères mangent non seulement les membranes, mais encore les cartilages, & détruisent entièrement l'organe de l'odorat. »Venereal anosmia. It is the one that occurs in the third degree of the great pox, after the inside of the nose is eaten by ulcers that have formed there. These ulcers eat not only the membranes, but also the cartilage, and completely destroy the organ of smell.”
      5anosmia verminosaAnosmie vermineuse. Plusieurs observations nous apprennent qu'il s'engendre des vers dans le nez, qui causent l'éternuement, la migraine, qui jettent le malade dans la fureur, & lui font entièrement perdent l'odorat. »Verminous anosmia. Several observations tell us that it generates worms in the nose, which cause sneezing, migraine, which throw the patient into rage, & make him entirely lose the sense of smell.”
      6anosmia a siccitateAnosmie causée par la sécheresse. Tout le monde sait que dans les fièvres & les maladies inflammatoires, la langue & la membrane pituitaire se dessèchent, lors surtout que la chaleur est considérable. Il n'est donc pas étonnant que ces maladies soient suivies du dégoût & de la perte d'odorat. Un homme qui voyage le vent en face, surtout en été, & qui respire la poussière qui s'élève des chemins, perd infailliblement l'odorat. La même chose arrive à ceux qui font un très grand usage du tabac, surtout de celui d'Espagne; & cela vient de ce que ces choses dessèchent les fibrilles nerveuses & les rendes insensibles aux impressions de dehors. On peut rapporter ici la perte de l'odorat, occasionnée par des calculs qui se forment dans les narines. »Anosmia caused by drought. Everybody knows that in fevers and inflammatory diseases, the tongue and pituitary membrane dry out, especially when the heat is considerable. It is therefore not surprising that these diseases are followed by disgust and loss of smell. A man who travels against the wind, especially in summer, and who breathes the dust that rises from the roads, unfailingly loses his sense of smell. The same thing happens to those who smoke a lot, especially tobacco from Spain; and this is because these things dry out the nervous fibrils and make them insensitive to sensations from the outside. We can report here the loss of sense of smell caused by stones forming in the nostrils.”
      7anosmia paralyticaAnosmie paralytique. C'est celle qui accompagne les maladies soporeuses, & les différentes espèces de paralysies, & qui est occasionnée par l'obstruction et la compression des nerfs olfactifs.”Paralytic anosmia. It is the one that accompanies the soporific diseases and the different species of paralysis, and that is caused by the obstruction and compression of the olfactory nerves.”
      This is adapted from « Boissier de Sauvages F. V. Anosmia, perte d'odorat; Olfacûs amissio, Sennert; Chasemie, d'Haly-Abbas. In: Boissier de Sauvages F, ed. Nosologie méthodique, ou distribution des maladies en classes, en genres et en espèces, suivant l'esprit de Sydenham, & la méthode des botanistes. Lyon: JM Bruyset, 1772; pp 174–177″ [
      • Boissier de Sauvages F.
      • Anosmia V.
      Perte d’odorat; Olfacûs amissio, Sennert; Chasemie, d’Haly-Abbas.
      ] (translated from the French).
      Many decades later, more details on “anosmia paralytica” were given by Hippolyte Cloquet (1787–1840) who compiled several cases written by earlier authors: loss of olfaction after the occurrence of a cerebral abscess (frontal lobe); lesion of the ethmoid bone; a case related to a tumor (“very hard stone”) of the brain; a case of a cerebral tumor compressing the olfactory nerves [
      • Cloquet H.
      Des lésions de l'olfaction.
      ]. Cloquet highlighted that “the loss of olfaction is a necessary consequence of the absence of olfactory nerves” [
      • Cloquet H.
      Des lésions de l'olfaction.
      ]. He also mentioned the possibility of “essential anosmia”, acquired or congenital, that is “always annoying”, unlike “symptomatic anosmia” which “disappears with the disease on which it depends” [
      • Cloquet H.
      Des lésions de l'olfaction.
      ]. During the 19th century, anatomical knowledge grew, especially about the brain function in olfaction [
      • Broca P.
      Anatomie comparée des circonvolutions cérébrales. Le grand lobe limbique et la scissure limbique dans la série des mammifères.
      ].
      For two centuries, many scientists developed tests to assess olfaction in humans, such as Ernst Heinrich Weber (1795–1878) [
      • Weber E.H.
      De pulsu, resorptione, auditu et tactu, F.
      ] or Hendrik Zwaademaker (1857–1930) and his “olfactometer” he used to diagnose “incomplete anosmia” [
      • Zwaademaker H.
      On measurement of the sense of smell in clinical examination.
      ]. Olfactory function may be tested by various psychophysical measurements (detection and recognition threshold tests, signal detection tests, quality discrimination tests, memory tests, sniffin’ stick test for orthonasal olfaction, retronasal olfactory stimulation using flavored aqueous solutions presented to the mouth, etc) and imaging (magnetic resonance imaging, MRI) or functional imaging (functional MRI) [
      • Doty R.L.
      Handbook of Olfaction and Gustation.
      ]. Electrophysiological measurements (electroencephalography, chemosensory event-related potentials) may also help to diagnose olfactory dysfunction. After Richard Caton (1842–1926) demonstrated that electrical potentials could be measured directly from the exposed surface of the cerebral cortex in animals (presented at the “forty-third annual meeting of the British Medical Association”, Edinburgh, 1875) [
      • Caton R.
      The electric currents of the brain.
      ], Hans Berger (1873–1941) recorded the first human “Elektrenkephalogramm” (EEG, as Berger coined it) in 1924 [
      • Jung R.
      • Berger W.
      Fünfzig Jahre EEG. Hans Bergers Entdeckung des Elektrenkephalogramms und seine ersten Befunde 1924–1931.
      ,
      • Berger H.
      Über das Elektrenkephalogram des Menschen.
      ]. Interestingly, the phenomenon nowadays known as “Berger effect” (reactivity of alpha rhythms to eyes opening) may also be evoked by odorants [
      • Gudziol H.
      • Guntinas-Lichius O.
      Electrophysiologic assessment of olfactory and gustatory function.
      ]. However, if Ernst Fleischl von Marxow (1846–1891) observed that brain electrical activity may be influenced by odorants (response to ammonia presented to a rabbit's nose), scalp-recorded EEG by odorants was later demonstrated in humans in the 1960's [
      • Finkenzeller P.
      Gemittelte EEG-Potentiale bei olfactorischer Reizung.
      ,
      • Allison T.
      • Goff W.R.
      Human cerebral evoked responses to odorous stimuli.
      ], leading to the development of chemosensory event-related potentials [
      • Osman A.
      • Silas J.
      Electrophysiological measurment of olfactory function.
      ]. Moreover, smelling produces a voltage change between the surface of the olfactory epithelium and any other point on the body (called “electro-olfactogram”, EOG), as first shown by David Ottoson (1918–2001) in the frog (1954) [
      • Ottoson D.
      Sustained potentials evoked by olfactory stimulation.
      ], many years after the works of Hosoya & Yoshida in the dog (1937) [
      • Hosoya Y.
      • Yoshida H.
      Über die Bioelektrischen Erscheinungen an der Riechschleimhaut.
      ]; however, the first human EOGs were only published in 1969 [
      • Osterhammel P.
      • Terkildsen K.
      • Zilstorff K.
      Electro-olfactograms in man.
      ]. EOG is a helpful tool to provide a complete picture of the processing of olfactory function, in combination with nasal endoscopy and air-dilution olfactometry [
      • Knecht M.
      • Hummel T.
      Recording of the human electro-olfactogram.
      ].
      Nowadays, we know that there are various etiologies for anosmia, with two main categories identified: “conduction injuries” (due to lesions of nose or nasal cavities) and “neuronal injuries” (due to lesions of olfactory neurons, olfactory bulbs or cerebral cortex) [
      • Doty R.L.
      Handbook of Olfaction and Gustation.
      ], as summarized in Table 2. The most frequent causes of olfaction impairment are sinonasal diseases (7–56%), post-upper respiratory infection (18–45%), head trauma (8–20%), toxic exposure (2–6%) and congenital disorders (0–4%); olfactory disorders are idiopathic in up to 34% of cases [
      • Nordin S.
      • Bramerson A.
      Complaints of olfactory disorders: epidemiology, assessment and clinical implications.
      ].
      Table 2Main conditions associated with olfactory dysfunction.
      Conduction injuries (nose and nasal cavities)Neural injuries (olfactory neurons to cerebral cortex)
      Infection- infectious rhinosinusitis (viral, bacterial or fungal)-COVID-19

      -AIDS (dementia)

      -Influenza

      -Rickettsia

      -Herpes simplex

      -neurosyphilis

      -meningitis
      Medications-rhinitis medicamentosa by using topical decongestants (oxymetazoline, phenylephrine, …) or oral medications (sympathetic amines, etc)

      -local anesthetics (cocaine, procaine, tetracaine)

      -intranasal saline solution (acethylchonine or acetyl-β-methylcholine, zinc sulfate, strychnine, etc)
      -anelgesics (antipyrine, codeine, morphine)

      -antimicrobials (griseofulvin, macrolides, neomycin, tetracyclines, lyncomycin, antivirals, etc)

      -myorelaxants

      -hypnotic agents

      -adrenal steroids (chronic use)

      -methotrexate

      ‑mercury/gold salts

      -cimetidine
      Toxics-cocaine

      -menthol, pepper, oil of peppermint, spices, etc
      -alcohol

      -heavy metal (mercury, nickel, cadmium, lead, manganese, etc)

      -acetone, acrylate, trichloroethylene, benzene, butylacetate, coke/coal
      Inflammation-chronic atrophic rhinitis (syphilis, leprosy, purulent sinusitis, radiotherapy, etc)

      -vasomotor rhinitis

      -inflammatory obstruction of the olfactory clefts
      -multiple sclerosis

      -Sjögren's syndrome
      Tumor-nasal polyposis

      -intranasal neoplasm (adenocarcinoma, leukemic infiltration, etc)

      -nasapharyngeal tumor (neurofibroma, schwannoma, etc)

      -osteoma,
      -neuro-olfactory tumor

      - frontal or temporal cerebral tumor, abscess or metastasis

      -parasagittal meningioma

      -tumor of the corpus callosum

      -para-optic chiasma tumor (aneurysm, craniopharyngioma, pituitary tumor)

      -osteoma
      Allergy-allergic rhinosinusitis (perennial, seasonal)
      Nutritional/metabolic disorders-chronic renal failure

      -abetalipoproteinemia

      -cirrhosis of liver

      ‑copper deficiency

      ‑zinc deficiency

      -vitamin deficiency (B1, B6, B12)

      -gout

      -diabetes

      -hypothyroidism

      -Addison's disease

      -Cushing's syndrome

      -Froelich's syndrome

      -panhypopituitarism

      -Whipple's disease
      Degeneration-Amyotrophic lateral sclerosis (ALS)

      -Guam ALS/dementia

      -Alzheimer's disease

      -Parkinson's disease

      -Huntington's disease

      -Korsakoff's syndrome
      Traumatism-deviated nasal septum-head trauma

      -traumatic blow

      -haemorrhage
      Genetic disorders-cephalocele-Kallman's syndrome

      -Down syndrome

      -familial dysautonomia

      -Refsum's disease
      Iatrogen causes-nasal surgery

      -radiotherapy
      -cranial or brain surgery

      -radiotherapy
      Psychiatric disorders-Munchausen's syndrome-olfactory reference syndrome

      -schizophrenia/schizotypy

      -depression

      -anorexia nervosa

      -attention deficit disorder

      -hysteria
      Miscelleanous-Paget's disease

      -chronic obstructive pulmonary disease
      -hydrocephalus

      -stroke

      -migraine

      -seizure (temporal lobe epilepsy)

      -psychosis/depression

      -myasthenia gravis

      -aging

      4. Anosmia in neurology

      More than simply playing a role in the enjoyment of food (by adding richness, complexity, and variety), olfaction also influences people's social behavior, plays a special role in emotions and in memory formation, and even may contribute to the choice of one's sexual partner [
      • Smeets M.A.M.
      • Veldhuizen M.G.
      • Galle S.
      • Gouweloos J.
      • de Haan A.J.A.
      • Vernooij J.
      • Visscher F.
      • Kroeze J.H.A.
      Sense of smell disorder and health-related quality of life.
      ]. As a consequence, impairing the ability to smell contributes to reduced quality of life (QoL) related to social interactions, eating, and feelings of wellbeing [
      • Smeets M.A.M.
      • Veldhuizen M.G.
      • Galle S.
      • Gouweloos J.
      • de Haan A.J.A.
      • Vernooij J.
      • Visscher F.
      • Kroeze J.H.A.
      Sense of smell disorder and health-related quality of life.
      ]. A reciprocal relationship has been noted between olfaction and depression: patients with depression have reduced olfactory performance, and patients with olfactory dysfunction present some symptoms of depression (that worsen with the severity of the loss of smell) [
      • Kohli P.
      • Soler Z.M.
      • Nguyen S.A.
      • Muus J.S.
      • Schlosser R.J.
      The association between olfaction and depression: a systematic review.
      ]. So olfactory dysfunction has a negative impact on daily life (decrease in QoL and reduced body-related self-esteem) and is likely to predispose a person to a depressed mood [
      • Kollndorfer K.
      • Reichert J.L.
      • Bruckler B.
      • Hinterleitner V.
      • Schopf V.
      Self-esteem as an important factor in quality of life and depressive symptoms in anosmia: a pilot study.
      ], although depressive symptoms are not always severe (probably because of adaptation to the olfaction disorder in the long-term) [
      • Auinger A.B.
      • Besser G.
      • Liu D.T.
      • Renner B.
      • Mueller C.A.
      Long-term impact of olfactory dysfunction on daily life.
      ]. Odor perception has also an important role in conditioning social and reproductive behaviors, with a role of some genes: precisely, odor perception between heterosexual partners may have an impact on depression and anxiety, possibly influenced by genetic variation in the OR7D4 (olfactory receptor, family 7, subfamily D, member 4) gene [
      • Sookoian S.
      • Burgueno A.
      • Gianotti T.F.
      • Marillet G.
      • Pirola C.J.
      Odor perception between heterosexual partners: its association with depression, anxiety, and genetic variation in odorant receptor OR7D4.
      ] coding for one of the most important odorant receptors on the plasma membrane of olfactory sensory neurons (responding to sex steroid-derived odors as androsterone andandrostadienone) in primates [
      • Zhuang H.
      • Chien M.S.
      • Matsunami H.
      Dynamic functional evolution of an odorant receptor for sex-steroid-derived odors in primates.
      ].
      Global and local white matter network dysfunction of the brain have been found in patients with anosmia and intact structural integrity (without neurodegenerative disorder), these alterations being more frequent in patients with retronasal olfaction deficit [
      • Chen B.
      • Akshita J.
      • Han P.
      • Thaploo D.
      • Kitzler H.H.
      • Hummel T.
      Aberrancies of brain network structures in patients with anosmia.
      ]. Finally, impairment of olfaction is a common disorder in the general population, this risk increasing in the elderly (up to a quarter of patients over the age of 65 presenting impaired olfaction) [
      • Boesveldt S.
      • Postma E.M.
      • Boak D.
      • Welge-Luessen A.
      • Schopf V.
      • Mainland J.D.
      • Martens J.
      • Ngai J.
      • Duffy V.B.
      Anosmia - A clinical review.
      ,
      • Doty R.L.
      • Shaman P.
      • Applebaum S.L.
      • Giberson R.
      • Siksorski L.
      • Rosenberg L.
      Smell identification ability: changes with age.
      ]; but, anosmia is only present in 4–6% of the population [
      • Landis B.N.
      • Konnerth C.G.
      • Hummel T.
      A study on the frequency of olfactory dysfunction.
      ,
      • Bramerson A.
      • Johansson L.
      • Ek L.
      • Nordin S.
      • Bende M.
      Prevalence of olfactory dysfunction: the Skovde population-based study.
      ]. Atrophy in the primary olfactory cortex (entorhinal cortex and amygdala) has been found in previous studies in young adults with anosmia/hyposmia, supporting the hypothesis of dysfunction and/or degeneration in areas critical to olfactory processing as a major cause of olfactory deficits in the older population [
      • Cerf-Ducastel B.
      • Murphy C.
      FMRI brain activation in response to odors is reduced in primary olfactory areas of elderly subjects.
      ]. Impaired olfaction may predict faster cognitive decline (with lower volume in the fusiform gyrus and the middle temporal cortex, including the hippocampus and entorhinal cortex) and indicate neurodegeneration in the brain among dementia-free older adults [
      • Dintica C.S.
      • Marseglia A.
      • Rizzuto D.
      • Wang R.
      • Seubert J.
      • Arfanakis K.
      • Bennett D.A.
      • Xu W.
      Impaired olfaction is associated with cognitive decline and neurodegeneration in the brain.
      ]. Recently, the “sniffing bead system” was specifically designed for screening olfactory function in older adults [
      • Min H.J.
      • Kim S.M.
      • Han D.H.
      • Kim K.S.
      The sniffing bead system, an olfactory dysfunction screening tool for geriatric subjects: a cross-sectional study.
      ].
      Olfactory dysfunction may be a clinical sign of many neurodegenerative disorders, including Alzheimer's disease, Huntington's disease, Parkinson's disease, vascular dementia, frontotemporal dementia, amyotrophic lateral sclerosis, progressive supranuclear palsy, Wilson's disease, idiopathic rapid eye movement sleep behavior disorder, etc. [
      • Doty R.L.
      Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate?.
      ]. In some cases, olfactory dysfunction may be a preclinical sign of a neurodegenerative disorder, for example occurring many years (usually 4–8 years) before Parkinson's disease [
      • Ross G.W.
      • Petrovitch H.
      • Abbott R.D.
      • Tanner C.M.
      • Popper J.
      • Masaki K.
      • Launer L.
      • White L.R.
      Association of olfactory dysfunction with risk for future Parkinson’s disease.
      ]. In such conditions, a key question remains: is neurodegeneration the basis for the perceptual differences in olfaction, or are disease-specific or other entities (respiratory infections or pollution) responsible for this association [
      • Doty R.L.
      Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate?.
      ]? Most of the neurological causes of anosmia are neurodegenerative, but profound olfactory dysfunction is also observed in non-degenerative neurological disorders such as myasthenia gravis that seems to influence olfactory function to the same degree as that observed in a number of neurodegenerative diseases in which CNS cholinergic dysfunction has been documented [
      • Doty R.L.
      Olfaction in Parkinson’s disease and related disorders.
      ]. Olfactory disorder, also common in many psychiatric disorders (depression, schizophrenia, bipolar disorder, etc) [
      • Carnemolla S.E.
      • Hsieh J.W.
      • Sipione R.
      • Landis B.N.
      • Kumfor F.
      • Piguet O.
      • Manuel A.L.
      Olfactory dysfunction in frontotemporal dementia and psychiatric disorders: a systematic review.
      ], may be observed in many other neurological diseases.
      In 1821, Cloquet distinguished between “constitutional” and “acquired” anosmia [
      • Cloquet H.
      Osphrésiologie, ou traité des odeurs, du et des organes de l'olfaction; avec l'histoire détaillée des maladies du nez et des fosses nasales, et des opérations qui leur conviennent.
      ], but Otto Charles Glaser (1880–1851) was probably the first to consider the possibility of hereditary cases of anosmia, writing that “'smell-blindness' is heritable” [
      • Glaser O.
      Hereditary deficiencies in the sense of smell.
      ]. Congenital anosmia (absence of sense of smell from birth) may be divided into “syndromic congenital anosmia” and “isolated congenital anosmia” (when anosmia is the only symptom and for which no disease-causing gene was identified) [
      • Karstensen H.G.
      • Tommerup N.
      Isolated and syndromic forms of congenital anosmia.
      ]. Kallmann syndrome (characterized by hypogonadotroph hypogonadism and anosmia/hyposmia) is a classical cause of congenital syndromic anosmia, with many causative genes (KAL1/ANOS1, KAL2/FGFR1, FGF8, CHD7, PROK2, etc.; most mutations are inherited in X-linked, autosomal dominant, or autosomal recessive pattern, but many genes interact with each other in an oligogenic manner) [
      • Stamou M.I.
      • Georgopoulos N.A.
      Kallmann syndrome: phenotype and genotype of hypogonadotropic hypogonadism.
      ], and anosmia may be also associated with Klinefelter syndrome (primary hypogonadism) [
      • Cangiano B.
      • Indirli R.
      • Profka E.
      • Castellano E.
      • Goggi G.
      • Vezzoli V.
      • Mantovani G.
      • Arosio M.
      • Persani L.
      • Borretta G.
      • Ferrante E.
      • Bonomi M.
      Central hypogonadism in Klinefelter syndrome: report of two cases and review of the literature.
      ], as it may be part of other syndromes such as Refsum disease (associated with retinis pigmentosa, deafness, demyelinating polyneuropathy, ataxia or ichtyosis) [
      • Gibberd F.B.
      • Feher M.D.
      • Sidey M.C.
      • Wierzbicki A.S.
      Smell testing: an additional tool for identification of adult Refsum’s disease.
      ], congenital insensitivity to pain (SCN9A gene mutations causing disrupted synaptic signalling at the primary sensory axon terminal) or some ciliopathies [
      • Karstensen H.G.
      • Tommerup N.
      Isolated and syndromic forms of congenital anosmia.
      ]. In Down syndrome (trisomy 21), olfaction is severely impaired, usually appearing at a relatively young age: in such cases, olfactory performance correlates with cognitive performance, so the olfactory deficit may represent an early indicator of neurodegenerative events (similar to those in Alzheimer's disease) in this population [
      • Cecchini M.P.
      • Viviani D.
      • Sandri M.
      • Hahner A.
      • Hummel T.
      • Zancanaro C.
      Olfaction in people with down syndrome: a comprehensive assessment across four decades of age.
      ].
      Olfactory disturbance may also be the consequence of trauma, affecting either the peripheral or the central pathways of olfactory system, or even the secondary olfactory centers (such as orbitofrontal cortex): its incidences ranges from 4 to 60%, increasing with the severity of the head trauma [
      • Singh R.
      • Humphries T.
      • Mason S.
      • Lecky F.
      • Dawson J.
      • Sinha S.
      The incidence of anosmia after traumatic brain injury: the SHEFBIT cohort.
      ]. Spontaneous recovery of olfactory function may occur over time, possibly due to a role of the subventricular neurogenesis and the increase in glomerular dopaminergic interneurons of the olfactory bulbs: despite no specific treatment, olfactory training may be a beneficial therapy in such conditions [
      • Marin C.
      • Langdon C.
      • Alobid I.
      • Mullol J.
      Olfactory dysfunction in traumatic brain injury: the role of neurogenesis.
      ]. Finally, some studies also found that olfactory dysfunction frequently occurs in stroke patients (hyposmia and functional anosmia, more than complete loss of smell), suggesting the inclusion of olfactory assessment in clinical practice [
      • Wehling E.
      • Naess H.
      • Wollschlaeger D.
      • Hofstad H.
      • Bramerson A.
      • Bende M.
      • Nordin S.
      Olfactory dysfunction in chronic stroke patients.
      ]. In contrast to congenital anosmia or anosmia due to age and neurodegenerative diseases, drug-induced disorders may regress after cessation of treatment [
      • Welge-Lüssen A.
      • Wolfensberger M.
      Reversible anosmia after amikacin therapy.
      ]. Similarly, disorders following infection or head trauma seem to subside during the first year after injury, sometimes beyond [
      • Reden J.
      • Mueller A.
      • Mueller C.
      • Konstantinidis I.
      • Frasnelli J.
      • Landis B.N.
      • Hummel T.
      Recovery of olfactory function following closed head injury or infections of the upper respiratory tract.
      ].

      5. Anosmia, infection and COVID-19

      Olfactory functioning can be categorized as a range of normal (normosmic) to diminished (hyposmic) and absent (anosmic) ability to detect and correctly label odors. The main cause of chronic loss of smell remains upper respiratory infections, especially the common cold, influenza, pneumonia, or human immunodeficiency virus: such infections are associated with “dysosmia” (any distortion of the perception of smell, including “parosmia” and “phantosmia”), then, with time, sometimes anosmia [
      • Doty R.L.
      Handbook of Olfaction and Gustation.
      ]. Parosmia (also called “troposmia”) corresponds to the distortion of perceived odor quality, usually described as a “foul”, “rotten”, “sewage” or “burn” smell, most commonly elicited by some odorants (mainly gasoline, tobacco and coffee): its prevalence ranges between 2.1% [
      • Landis B.N.
      • Konnerth C.G.
      • Hummel T.
      A study on the frequency of olfactory dysfunction.
      ] and 3.9% [
      • Nordin S.
      • Brämerson A.
      • Millqvist E.
      • Bende M.
      Prevalence of parosmia: the Skovde population-based studies.
      ]. The origin of parosmia in unclear but could be explained by a “peripheral theory” (the loss of functioning olfactory neurons results in the inability to form a complete picture of the odorant) and a “central theory” (the integrative or interpretive centers in the brain form a distorted odor) [
      • Leopold D.
      Distortion of olfactory perception: diagnosis and treatment.
      ]. Phantosmia is a phantom olfactory sensation (olfactory hallucination, or “phantom odor”), usually unpleasant, with no apparent olfactory stimulus: its prevalence is estimated to be 0.8% [
      • Landis B.N.
      • Konnerth C.G.
      • Hummel T.
      A study on the frequency of olfactory dysfunction.
      ].
      Aulus Cornelius Celsus (25 BCE-50 CE), based on Hippocrates observation of “coryza” (rhinitis inducing transient anosmia by nasal congestion), suggested that some cases of “phthisis” may be due to catarrh of the upper limbs [
      • Stegall J.
      The first four books of Aur. Corn. Celsus De Re Medica; with an ordo verborum and literal translation.
      ]. In 1912, by producing experimental poliomyelitis following the application of the active poliovirus to the nasal mucous membrane, Simon Flexner (1863–1946) and Paul Franklin Clark (1882–1983) demonstrated that a microorganism may enter the body and reach the CNS through the nose [
      • Flexner S.
      • Clarck P.F.
      A note on the mode of infection in epidemic poliomyelitis.
      ]. Since then, many viruses (herpes simplex, influenza, etc) have been shown to have similar properties [
      • Doty R.L.
      The olfactory vector hypothesis of neurodegenerative disease: is it viable?.
      ]. As with other respiratory viruses, coronaroviruses (named for the crown-like spikes on their surface) also have a propensity for neuroinvasion [
      • Bohmwald K.
      • Galvez N.M.S.
      • Rios M.
      • Kalergis A.M.
      Neurologic alterations due to respiratory virus infections.
      ]. The spike proteins (S) are membrane-anchored trimers containing a receptor-binding (RBD) S1 segment (RBD binds to angiotensin-converting enzyme-2, or ACE2) and a membrane-fusion S2 segment: the binding of the S segment to the ACE2 receptor is correlated with coronavirus infectivity in the targeted tissue, governing clinical outcomes [
      • Mossel E.C.
      • Huang C.
      • Narayanan K.
      • Makino S.
      • Tesh R.B.
      • Peters C.J.
      Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication.
      ]. SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) is responsible for the current coronavirus disease 2019 (COVID-19) pandemic, with 127,749,710 million patients diagnosed (2,794,174 deaths) worldwide by March 30th 2021 (https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6). Recently, a renewed interest in olfaction was observed following the observation of numerous cases of anosmia due to COVID-19: the first cases of anosmia and dysgeusia were observed in China, Italy, and Iran, before many cases were observed in other clusters [
      • Klopfenstein T.
      • Kadiane-Oussou N.J.
      • Toko L.
      • Royer P.Y.
      • Lepiller Q.
      • Gendrin V.
      • Zayet S.
      Features of anosmia in COVID-19.
      ]. Because SARS-CoV-2 virus causes reduction of smell and taste in a significant fraction of COVID-19 patients (incidence: 33.9–68%; prevalence: 86%) [
      • Meng X.
      • Deng Y.
      • Dai Z.
      • Meng Z.
      COVID-19 and anosmia: a review based on up-to-date knowledge.
      ,
      • Lechien J.R.
      • Chiesa-Estomba C.M.
      • De Siati D.R.
      • Horoi M.
      • Le Bon S.D.
      • Rodriguez A.
      • Dequanter D.
      • Blecic S.
      • El Afia F.
      • Distinguin L.
      • Chekkoury-Idrissi Y.
      • Hans S.
      • Delgado I.L.
      • Calvo-Henriquez C.
      • Lavigne P.
      • Falanga C.
      • Barillari M.R.
      • Cammaroto G.
      • Khalife M.
      • Leich P.
      • Souchay C.
      • Rossi C.
      • Journe F.
      • Hsieh J.
      • Edjlali M.
      • Carlier R.
      • Ris L.
      • Lovato A.
      • De Filippis C.
      • Coppee F.
      • Fakhry N.
      • Ayad T.
      • Saussez S.
      Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study.
      ], there was evidence for considering dysosmia/anosmia as a symptom of COVID-19 infection; some patients also present solely with this symptom [
      • Hornuss D.
      • Lange B.
      • Schroter N.
      • Rieg S.
      • Kern W.V.
      • Wagner D.
      Anosmia in COVID-19 patients.
      ]. Observing that 44% of anosmic and 50% of hyposmic COVID-19 patients did not report having olfactory problems, a good tool to detect anosmia in such patients seems to be the “sniffin’ stick test” [
      • Hornuss D.
      • Lange B.
      • Schroter N.
      • Rieg S.
      • Kern W.V.
      • Wagner D.
      Anosmia in COVID-19 patients.
      ]. Parosmia and phantosmia were also reported in COVID-19, respectively in 22% and 21% of the patients in the study of Le Bon et al [
      • Le Bon S.D.
      • Pisarski N.
      • Verbeke J.
      • Prunier L.
      • Cavelier G.
      • Thill M.P.
      • Rodriguez A.
      • Dequanter D.
      • Lechien J.R.
      • Le Bon O.
      • Hummel T.
      • Horoi M.
      Psychophysical evaluation of chemosensory functions 5 weeks after olfactory loss due to COVID-19: a prospective cohort study on 72 patients.
      ]. The prognosis for olfaction considered as favorable: anosmia/hyposmia usually persisted beyond 5 days (about 72.6% of anosmic patients recovered olfactory function within the first 8 days) [
      • Lechien J.R.
      • Chiesa-Estomba C.M.
      • De Siati D.R.
      • Horoi M.
      • Le Bon S.D.
      • Rodriguez A.
      • Dequanter D.
      • Blecic S.
      • El Afia F.
      • Distinguin L.
      • Chekkoury-Idrissi Y.
      • Hans S.
      • Delgado I.L.
      • Calvo-Henriquez C.
      • Lavigne P.
      • Falanga C.
      • Barillari M.R.
      • Cammaroto G.
      • Khalife M.
      • Leich P.
      • Souchay C.
      • Rossi C.
      • Journe F.
      • Hsieh J.
      • Edjlali M.
      • Carlier R.
      • Ris L.
      • Lovato A.
      • De Filippis C.
      • Coppee F.
      • Fakhry N.
      • Ayad T.
      • Saussez S.
      Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study.
      ], and most of the patients recovered by 30 days [
      • D'Ascanio L.
      • Pandolfini M.
      • Cingolani C.
      • Latini G.
      • Gradoni P.
      • Capalbo M.
      • Frausini G.
      • Maranzano M.
      • Brenner M.J.
      • Di Stadio A.
      Olfactory dysfunction in COVID-19 patients: prevalence and prognosis for recovering sense of smell.
      ]; when olfactory dysfunction due to SARS-Cov-2 infection persists beyond 2 weeks, a therapy should be considered, especially olfactory training [
      • Whitcroft K.L.
      • Hummel T.
      Olfactory dysfunction in COVID-19: diagnosis and management.
      ]. However, in the study of Le Bon et al, five weeks after developing sudden olfactory loss due to COVID-19, more than a third of patients displayed olfactory dysfunction according to psychophysical testing, suggesting potential peripheral neurosensory damage [
      • Le Bon S.D.
      • Pisarski N.
      • Verbeke J.
      • Prunier L.
      • Cavelier G.
      • Thill M.P.
      • Rodriguez A.
      • Dequanter D.
      • Lechien J.R.
      • Le Bon O.
      • Hummel T.
      • Horoi M.
      Psychophysical evaluation of chemosensory functions 5 weeks after olfactory loss due to COVID-19: a prospective cohort study on 72 patients.
      ]. So anosmia may be persistent, and olfactory mucosa presenting with persistent loss of smell may reveal the presence of viral transcripts and of SARS-CoV-2-infected cells [
      • Dias De Melo G.
      • Lazarini F.
      • Levallois S.
      • Hautefort C.
      • Michel V.
      • Larrous F.
      • Verillaud B.
      • Aparicio C.
      • Wagner S.
      • Gheusi G.
      • Kergoat L.
      • Kornobis E.
      • Cokelaer T.
      • Hervochon R.
      • Madec Y.
      • Roze E.
      • Salmon D.
      • Bourhy H.
      • Lecuit M.
      • Lledo P.M.
      COVID-19-associated olfactory dysfunction reveals SARS-CoV-2 neuroinvasion and persistence in the olfactory system.
      ]. The pathogenic mechanism of this olfactory dysfunction remains unclear: postviral anosmia in the setting of upper respiratory tract infection is usually related to mucosal congestion and nasal obstruction (conductive olfactory loss) [
      • Welge-Lüssen A.
      • Wolfensberger M.
      Olfactory disorders following upper respiratory tract infections.
      ], but sinonasal symptoms are not frequent in COVID-19, suggesting that mechanisms other than sinonasal obstruction may play a role [
      • Kandemirli S.G.
      • Altundag A.
      • Yildirim D.
      • Tekcan Sanli D.E.
      • Saatci O.
      Olfactory bulb MRI and paranasal sinus CT findings in persistent COVID-19 anosmia.
      ].
      On 4 March 2020 (Beijing Ditan Hospital, China), the first study on neurological disease following SARS-CoV-2 virus infection was reported, some patients having positive CSF for SARS-CoV-2 (by gene sequencing), even though most patients with SARS-CoV-2 infection do not test positive for the virus in CSF [
      • Sun T.
      • Guan J.
      Novel coronavirus and the central nervous system.
      ]. To date, various neurological manifestations (other than anosmia/dysgeusia) have been described in COVID-19: headache, dizziness, impaired consciousness, cerebrovascular accident, acute necrotizing encephalopathy, meningo-encephalitis, acute inflammatory polyradiculoneuropathy, myalgia and psychiatric symptoms (depression, anxiety, insomnia) [
      • Al-Sarraj S.
      • Troakes C.
      • Hanley B.
      • Osborn M.
      • Richardson M.P.
      • Hotopf M.
      • Bullmore E.
      • Everall I.P.
      The spectrum of neuropathology in COVID-19.
      ]. The exact mechanism of SARS-CoV-2 neuroinvasion is still unclear, but two main penetration routes were first suggested. In the “hematogenous route”, it was hypothesized that the spread of SARS-CoV-2 across the blood-brain barrier (BBB) could be the consequence of infection of the brain microvascular endothelial cells (or BMEC, lining the brain capillaries), via interactions of the S-protein of SARS-CoV-2 with ACE2 on the BMEC cell surface, facilitating the entry of virus into the CNS; the other hypothesis is the “trans-synaptic spread” through the olfactory nerve and/or the hypoglossal, facial, glossopharyngeal and vagus cranial nerve: the neuronal expression of ACE2 could facilitate SARS-CoV-2 infection through the uptake into dendrites and soma [
      • Al-Sarraj S.
      • Troakes C.
      • Hanley B.
      • Osborn M.
      • Richardson M.P.
      • Hotopf M.
      • Bullmore E.
      • Everall I.P.
      The spectrum of neuropathology in COVID-19.
      ,
      • Dhouib I.E.
      Does coronaviruses induce neurodegenerative diseases? A systematic review on the neurotropism and neuroinvasion of SARS-CoV-2.
      ]. Two other mechanism were suspected: the “immune cell route” (infection of epithelial respiratory cells, then of the resident immune cells that could carry SARS-CoV-2 to various organs, including the CNS) and the “autoimmune mechanism” [
      • Al-Sarraj S.
      • Troakes C.
      • Hanley B.
      • Osborn M.
      • Richardson M.P.
      • Hotopf M.
      • Bullmore E.
      • Everall I.P.
      The spectrum of neuropathology in COVID-19.
      ]. It was also proposed that the immune phenomena leading to multi-organ damage in some COVID-19 patients could be explained by molecular mimicry (MM): MM between the SARS-CoV-2 protein ORF7b (Open Reading Frames 7b) and OR7D4 could explain anosmia; in the same way, MM between the SARS-CoV-2 protein ORF1ab and PARP9 (Poly-ADP-Ribose-Polymerase Family Member 9) could explain leukopenia, MM between the SARS-CoV-2 nucleocapsid phosphor-protein and SLC12A6 (Solute Carrier Family 12 Member 6) could explain vascular damage [
      • Kandemirli S.G.
      • Altundag A.
      • Yildirim D.
      • Tekcan Sanli D.E.
      • Saatci O.
      Olfactory bulb MRI and paranasal sinus CT findings in persistent COVID-19 anosmia.
      ]. Thus, once in the CNS, SARS-CoV-2 can reside either quiescent, or eventually be active leading to severe acute encephalitis (with neuroinflammation and prolonged neuroimmune activation) [
      • Dhouib I.E.
      Does coronaviruses induce neurodegenerative diseases? A systematic review on the neurotropism and neuroinvasion of SARS-CoV-2.
      ]. But, a question remains: are these neurological disorders directly due to viral invasion of the CNS, or can they be caused by indirect mechanisms [
      • Al-Sarraj S.
      • Troakes C.
      • Hanley B.
      • Osborn M.
      • Richardson M.P.
      • Hotopf M.
      • Bullmore E.
      • Everall I.P.
      The spectrum of neuropathology in COVID-19.
      ]? The evidence of a causal relationship between SARSCoV-2 and autopsy brain findings remains equivocal (large and small infarcts, microhaemorrhages, focal parenchymal infiltrate of T-cells, etc), but this probably represents a combination of direct cytopathic effects mediated by SARS-CoV-2 replication or indirect effects due to respiratory failure, injurious cytokine reaction, reduced immune response and cerebrovascular accidents induced by viral infection [
      • Al-Sarraj S.
      • Troakes C.
      • Hanley B.
      • Osborn M.
      • Richardson M.P.
      • Hotopf M.
      • Bullmore E.
      • Everall I.P.
      The spectrum of neuropathology in COVID-19.
      ]. According to Matschke et al., the neuropathological changes in patients with COVID-19 seem to be mild, with pronounced neuroinflammatory changes in the brainstem as the most common finding: in their study, SARS-CoV-2 RNA or proteins were detected in the brain of 21 (53%) of 40 examined patients, with SARS-CoV-2 viral proteins found in cranial nerves originating from the lower brainstem and in isolated cells of the brainstem (Fig. 1) [
      • Matschke J.
      • Lutgehetmann M.
      • Hagel C.
      • Sperhake J.P.
      • Schroder A.S.
      • Edler C.
      • Mushumba H.
      • Fitzek A.
      • Allweiss L.
      • Dandri M.
      • Dottermusch M.
      • Heinemann A.
      • Pfefferle S.
      • Schwabenland M.
      • Sumner Magruder D.
      • Bonn S.
      • Prinz M.
      • Gerloff C.
      • Puschel K.
      • Krasemann S.
      • Aepfelbacher M.
      • Glatzel M.
      Neuropathology of patients with COVID-19 in Germany: a post-mortem case series.
      ].
      For the olfactory system and COVID-19, we know that: a) the sustentacular cells (supporting cells) of the olfactory epithelium (expressing high levels of ACE2 and the cell surface-associated protease called “transmembrane protease serine 2” or “TMPRSS2”, allowing viral entry following binding of the viral spike protein to ACE2) are the primary target and entry point of SARS-CoV-2 (initiating a series of events leading to dysosmia/anosmia) (Fig. 1), b) some findings are consistent with an inflammatory olfactory neuropathy (prominent leukocytic infiltrates in the lamina propria, focal atrophy of the mucosa, and digestion chambers in the olfactory nerve fibers), and c) desquamation of the olfactory neuroepithelium leads to loss of olfactory cilia [
      • Vaira L.A.
      • Hopkins C.
      • Sandison A.
      • Manca A.
      • Machouchas N.
      • Turilli D.
      • Lechien J.R.
      • Barillari M.R.
      • Salzano G.
      • Cossu A.
      • Saussez S.
      • De Riu G.
      Olfactory epithelium histopathological findings in long-term coronavirus disease 2019 related anosmia.
      ]. Thus, it was confirmed that SARS-CoV-2 can also enter the nervous system by crossing the neural-mucosal interface in olfactory mucosa: SARS-Cov-2 RNA and proteins were found in olfactory bulb, olfactory tubercle, brainstem and cerebellum (Fig. 1) [
      • Meinhardt J.
      • Radke J.
      • Dittmayer C.
      • Franz J.
      • Thomas C.
      • Mothes R.
      • Laue M.
      • Schneider J.
      • Brünink S.
      • Greuel S.
      • Lehmann M.
      • Hassan O.
      • Aschman T.
      • Schumann E.
      • Chua R. Lorenz
      • Conrad C.
      • Eils R.
      • Stenzel W.
      • Windgassen M.
      • Rößler L.
      • Goebel H.H.
      • Gelderblom H.R.
      • Martin H.
      • Nitsche A.
      • Schulz-Schaeffer W.J.
      • Hakroush S.
      • Winkler M.S.
      • Tampe B.
      • Scheibe F.
      • Körtvélyessy P.
      • Reinhold D.
      • Siegmund B.
      • Kühl A.A.
      • Elezkurtaj S.
      • Horst D.
      • Oesterhelweg L.
      • Tsokos M.
      • Ingold-Heppner B.
      • Stadelmann C.
      • Drosten C.
      • Corman V.M.
      • Radbruch H.
      • Heppner F.L.
      Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19.
      ]. Microbleeding or abnormal enhancement of the olfactory bulbs were reported on MR imaging of some COVID-19 patients (by using sequences with coronal thin-slice pre- and/or post‑gadolinium fat-suppressed T1WI in the anterior fossa of the cranium) [
      • Aragao M.
      • Leal M.C.
      • Cartaxo Filho O.Q.
      • Fonseca T.M.
      • Valenca M.M.
      Anosmia in COVID-19 associated with injury to the olfactory bulbs evident on MRI.
      ]. Moreover, a few COVID-19 patients may experience more persistent olfactory dysfunction: in such patients, there is MRI evidence of the development of olfactory bulb atrophy [
      • Tsivgoulis G.
      • Fragkou P.C.
      • Lachanis S.
      • Palaiodimou L.
      • Lambadiari V.
      • Papathanasiou M.
      • Sfikakis P.P.
      • Voumvourakis K.I.
      • Tsiodras S.
      Olfactory bulb and mucosa abnormalities in persistent COVID-19-induced anosmia: a magnetic resonance imaging study.
      ]. As pointed out below, the olfactory dysfunction in Alzheimer's disease is well recognized, largely due to the accumulation of neurofibrillary tangles in central olfactory regions, especially the entorhinal cortex and hippocampus (this regions being considered to be among the first areas affected by the pathologic changes of classical Alzheimer's disease) (Fig. 1) [
      • Price J.L.
      • Davis P.B.
      • Morris J.C.
      • White D.L.
      The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease.
      ]. It was also shown that people carrying one or two copies of the epsilon-4 allele of apolipoprotein E4 (ApoE4), a key associated genetic risk factor for late onset Alzheimer's disease, develop significant odor recognition deficits in comparison to those not carrying this haplotype [
      • Gilbert P.E.
      • Murphy C.
      The effect of the ApoE epsilon4 allele on recognition memory for olfactory and visual stimuli in patients with pathologically confirmed Alzheimer’s disease, probable Alzheimer’s disease, and healthy elderly controls.
      ]. So recently, as highlighted by some authors (and considering the high prevalence of anosmia in patients with mild-to-moderate forms of COVID-19), the question of whether SARS-CoV-2 infection will be associated with an increased risk and rate of future neurodegenerative disorders remains open and subject to speculation [
      • Dhouib I.E.
      Does coronaviruses induce neurodegenerative diseases? A systematic review on the neurotropism and neuroinvasion of SARS-CoV-2.
      ,
      • Manzo C.
      • Serra-Mestres J.
      • Isetta M.
      • Castagna A.
      Could COVID-19 anosmia and olfactory dysfunction trigger an increased risk of future dementia in patients with ApoE4?.
      ]. According to Manzo et al., a hypothesis could be that SARS-CoV-2 may be an increased risk factor for future dementia in anosmic patients with ApoE4 (higher than in ApoE4 patients with anosmia not induced by SARS-CoV-2), combined with virus-induced chronic modifications in the CNS, so these authors suggest a long-term follow-up of COVID-19 patients who develop olfactory dysfunction [
      • Manzo C.
      • Serra-Mestres J.
      • Isetta M.
      • Castagna A.
      Could COVID-19 anosmia and olfactory dysfunction trigger an increased risk of future dementia in patients with ApoE4?.
      ].

      6. Conclusion

      Centuries of researches have led to a better understanding of the anatomical bases and physiological mechanisms of olfaction, as well as the pathologies leading to olfactory dysfunction. Although the current COVID-19 pandemic has attracted considerable interest in anosmia, olfaction and its links with neurodegenerative disorders are not fully understood. Finally, we believe that physicians need to be aware of the olfactory deficits that may accompany or precede various disorders, neurological or not, and to consider assessment of olfactory function in clinical practice.

      Authors contribution

      SM and GS are responsible of the conceptualisation of the review and developed the original draft. JMV and GLM have extended the original draft. FD, AS and LC have reviewed and edited the final draft.

      Funding

      None.

      Declaration of Competing Interest

      There is no conflict of interest associated with this review.

      Acknowledgements

      None.

      References

        • Doty R.L.
        Handbook of Olfaction and Gustation.
        3rd ed. Wiley Blackwell, Hoboken, New Jersey2015
        • Chauveau C.
        Recherches sur l'histoire de l'anatomie et de la physiologie des fosses nasales depuis Hippocrates jusqu'à la période spécialistique.
        J.B. Baillière & Fils, Paris1912
        • Hirsch A.
        De Collectionis Hippocraticae Auctorum Anatomia.
        Gustavus Lange, Berolini1864
        • Wright J.
        A History of Laryngology and Rhinology.
        Lea & Febiger, Philadelphia and New York1914
        • Turliuc D.M.
        • Sava A.
        • Cucu A.I.
        • Turliuc S.
        • Dumitrescu A.M.
        • Costea C.F.
        Cribriform plate and Galen's Cribrum Romanum.
        Revist Romana Anat. Clin. Antropol. 2016; 15: 123-126
        • Cappello F.
        • Gerbino A.
        • Zummo G.
        Giovanni Filippo Ingrassia: a five-hundred year-long lesson.
        Clin. Anat. 2010; 23: 743-749
        • Falloppio G.
        Mutinensis Physici Praeclarissimi, ac nostrotum temporum eximij Anatomici Expositio in librum Galeni de ossibus huic accesserunt observationes eiusdem authoris, Simonem Galignanum de Karera, Venetiis.
        1570
        • Oribasius
        De l'organe de l'odorat.
        in: Oribasius Oeuvres d'Oribase, texte grec, en grande partie inédit, colationné sur les manuscrits, traduit pour la première fois en français, avec une introduction, des notes, des tables et des planches (Bussemaker & Daremberg). Imprimerie Impériale, Paris1858: 306-309
        • Fernel J.
        Les maladies & symptomes des narines, avec leurs causes et leurs signes.
        in: Fernel J. La pathologie. La Veuve de Jean Le Boye, Paris1646: 353-356
        • Vesalius A.
        De humani corporis fabrica libri septem.
        J. Oporinum, Basel. 1553; 7
        • Highmore N.
        De Auro, Naso & Lingua.
        in: Highmore N. Corporis humani disquisitio anatomica: in qua sanguinis circulationem in quavis corporis particula plurimis typis novis, ac aenygmatum medicorum fuccicta dilucidatione ornatam prosequutus est Samuelis Broun, The Hague. 1651: 240-242
        • Spiegel A.
        De naso interno, sive olfactus instrumento.
        in: Spiegel A. De humani corporis fabrica libri decem. 1632: 390
        • Willis T.
        Cerebri anatome: cui accessit nervorum descriptio et usus.
        Jo. Martyn & Ja, Allefry, London1664
        • Schneider K.V.
        Liber de osse cribriformi, & sensu ac organo odoratus, morbis ad utrumq; spectantibus, de coryzâ, Haemorrhagiâ narium, polypo, sternutatione, amissione odoratus.
        J Wilhelm, Witterberg1655
        • Todd R.B.
        • Bowman W.
        Of smell.
        in: Todd R.B. Bowman W. The Physiological Anatomy and Physiology of Man. Blanchard & Lea, Philadelphia1857
        • Bernstein J.
        Le sens de l'odorat.
        in: Bernstein J. Les sens. F. Alcan, Paris1893: 245-252
        • Rousseau J.J.
        Livre second. L’âge de nature: de 2 à 12 ans (puer).
        in: Rousseau J.J. Emile, ou l’éducation. J. Néaulme, La Haye1762: 250
        • Broca P.
        Anatomie comparée des circonvolutions cérébrales. Le grand lobe limbique et la scissure limbique dans la série des mammifères.
        Rev. Anthropol. 1878; 1: 385-498
        • Nagahara Y.
        Experimentelle Studien über die histologischen Veränderungen des Geruchssorgans nach der Olfactoriusdurchschneidung.
        Jpn. J. Med. Sci. V Pathol. 1940; 6: 165-199
        • Schultz E.W.
        Repair of the olfactory mucosa with special reference to regeneration of olfactory cells (sensory neurons).
        Am. J. Pathol. 1960; 37: 1-19
        • Schultz E.W.
        Regeneration of olfactory cells.
        Proc. Soc. Exp. Biol. Med. 1941; 46: 41-43
        • Mackay-Sim A.
        Stem cells and their niche in the adult olfactory mucosa.
        Arch. Ital. Biol. 2010; 148: 47-58
        • Kim B.Y.
        • Park J.Y.
        • Kim E.J.
        • Kim B.G.
        • Kim S.W.
        The neuroplastic effect of olfactory training to the recovery of olfactory system in mouse model.
        Int. Forum Allergy Rhinol. 2019; 9: 715-723
        • Cloquet H.
        Des lésions de l'olfaction.
        in: Cloquet H. Ophrésiologie, ou traité des odeurs, du sens et des organes de l'olfaction; avec l'histoire détaillée des maladies du nez et des fosses nasales, et des opérations qui leur conviennent. Méquignon-Marvis, Paris1821: 748-754
        • Boissier de Sauvages F.
        • Anosmia V.
        Perte d’odorat; Olfacûs amissio, Sennert; Chasemie, d’Haly-Abbas.
        in: Boissier de Sauvages F. Nosologie méthodique, ou distribution des maladies en classes, en genres et en espèces, suivant l’esprit de Sydenham, & la méthode des botanistes. JM Bruyset, Lyon1772
        • Weber E.H.
        De pulsu, resorptione, auditu et tactu, F.
        Koehler, Leipzig1834
        • Zwaademaker H.
        On measurement of the sense of smell in clinical examination.
        Lancet. 1889; 133: 1300-1302
        • Caton R.
        The electric currents of the brain.
        Br. Med. J. 1875; 2: 278
        • Jung R.
        • Berger W.
        Fünfzig Jahre EEG. Hans Bergers Entdeckung des Elektrenkephalogramms und seine ersten Befunde 1924–1931.
        Arch. Psy. Nervenkr. 1979; 227: 279-300
        • Berger H.
        Über das Elektrenkephalogram des Menschen.
        Arch. Psy. Nervenkr. 1929; 87: 527-570
        • Gudziol H.
        • Guntinas-Lichius O.
        Electrophysiologic assessment of olfactory and gustatory function.
        Handb. Clin. Neurol. 2019; 164: 247-262
        • Finkenzeller P.
        Gemittelte EEG-Potentiale bei olfactorischer Reizung.
        Pfügers Archiv. 1965; 292: 76-85
        • Allison T.
        • Goff W.R.
        Human cerebral evoked responses to odorous stimuli.
        Electroencephalogr. Clin. Neurophysiol. 1967; 23: 558-560
        • Osman A.
        • Silas J.
        Electrophysiological measurment of olfactory function.
        in: Doty R.L. Handbook of Olfaction and Gustation. Wiley Blackwell, Hoboken New Jersey2015: 261-277
        • Ottoson D.
        Sustained potentials evoked by olfactory stimulation.
        Acta Physiol. Scand. 1954; 32: 384-386
        • Hosoya Y.
        • Yoshida H.
        Über die Bioelektrischen Erscheinungen an der Riechschleimhaut.
        Jap. J. Med. Sci. III Biophys. 1937; 5: 22
        • Osterhammel P.
        • Terkildsen K.
        • Zilstorff K.
        Electro-olfactograms in man.
        J. Laryngol. Otol. 1969; 83: 731-733
        • Knecht M.
        • Hummel T.
        Recording of the human electro-olfactogram.
        Physiol. Behav. 2004; 83: 13-19
        • Nordin S.
        • Bramerson A.
        Complaints of olfactory disorders: epidemiology, assessment and clinical implications.
        Curr. Opin. Allergy Clin. Immunol. 2008; 8: 10-15
        • Smeets M.A.M.
        • Veldhuizen M.G.
        • Galle S.
        • Gouweloos J.
        • de Haan A.J.A.
        • Vernooij J.
        • Visscher F.
        • Kroeze J.H.A.
        Sense of smell disorder and health-related quality of life.
        Rehabil. Psychol. 2009; 54: 404-412
        • Kohli P.
        • Soler Z.M.
        • Nguyen S.A.
        • Muus J.S.
        • Schlosser R.J.
        The association between olfaction and depression: a systematic review.
        Chem. Senses. 2016; 41: 479-486
        • Kollndorfer K.
        • Reichert J.L.
        • Bruckler B.
        • Hinterleitner V.
        • Schopf V.
        Self-esteem as an important factor in quality of life and depressive symptoms in anosmia: a pilot study.
        Clin. Otolaryngol. 2017; 42: 1229-1234
        • Auinger A.B.
        • Besser G.
        • Liu D.T.
        • Renner B.
        • Mueller C.A.
        Long-term impact of olfactory dysfunction on daily life.
        Wien. Klin. Wochenschr. 2020; https://doi.org/10.1007/s00508-020-01751-5
        • Sookoian S.
        • Burgueno A.
        • Gianotti T.F.
        • Marillet G.
        • Pirola C.J.
        Odor perception between heterosexual partners: its association with depression, anxiety, and genetic variation in odorant receptor OR7D4.
        Biol. Psychol. 2011; 86: 153-157
        • Zhuang H.
        • Chien M.S.
        • Matsunami H.
        Dynamic functional evolution of an odorant receptor for sex-steroid-derived odors in primates.
        Proc. Natl. Acad. Sci. U. S. A. 2009; 106: 21247-21251
        • Chen B.
        • Akshita J.
        • Han P.
        • Thaploo D.
        • Kitzler H.H.
        • Hummel T.
        Aberrancies of brain network structures in patients with anosmia.
        Brain Topogr. 2020; 33: 403-411
        • Boesveldt S.
        • Postma E.M.
        • Boak D.
        • Welge-Luessen A.
        • Schopf V.
        • Mainland J.D.
        • Martens J.
        • Ngai J.
        • Duffy V.B.
        Anosmia - A clinical review.
        Chem. Senses. 2017; 42: 513-523
        • Doty R.L.
        • Shaman P.
        • Applebaum S.L.
        • Giberson R.
        • Siksorski L.
        • Rosenberg L.
        Smell identification ability: changes with age.
        Science. 1984; 226: 1441-1443
        • Landis B.N.
        • Konnerth C.G.
        • Hummel T.
        A study on the frequency of olfactory dysfunction.
        Laryngoscope. 2004; 114: 1764-1769
        • Bramerson A.
        • Johansson L.
        • Ek L.
        • Nordin S.
        • Bende M.
        Prevalence of olfactory dysfunction: the Skovde population-based study.
        Laryngoscope. 2004; 114: 733-737
        • Cerf-Ducastel B.
        • Murphy C.
        FMRI brain activation in response to odors is reduced in primary olfactory areas of elderly subjects.
        Brain Res. 2003; 986: 39-53
        • Dintica C.S.
        • Marseglia A.
        • Rizzuto D.
        • Wang R.
        • Seubert J.
        • Arfanakis K.
        • Bennett D.A.
        • Xu W.
        Impaired olfaction is associated with cognitive decline and neurodegeneration in the brain.
        Neurology. 2019; 92: e700-e709
        • Min H.J.
        • Kim S.M.
        • Han D.H.
        • Kim K.S.
        The sniffing bead system, an olfactory dysfunction screening tool for geriatric subjects: a cross-sectional study.
        BMC Geriatr. 2021; 21: 54
        • Doty R.L.
        Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate?.
        Lancet Neurol. 2017; 16: 478-488
        • Ross G.W.
        • Petrovitch H.
        • Abbott R.D.
        • Tanner C.M.
        • Popper J.
        • Masaki K.
        • Launer L.
        • White L.R.
        Association of olfactory dysfunction with risk for future Parkinson’s disease.
        Ann. Neurol. 2008; 63: 167-173
        • Doty R.L.
        Olfaction in Parkinson’s disease and related disorders.
        Neurobiol. Dis. 2012; 46: 527-552
        • Carnemolla S.E.
        • Hsieh J.W.
        • Sipione R.
        • Landis B.N.
        • Kumfor F.
        • Piguet O.
        • Manuel A.L.
        Olfactory dysfunction in frontotemporal dementia and psychiatric disorders: a systematic review.
        Neurosci. Biobehav. Rev. 2020; 118: 588-611
        • Cloquet H.
        Osphrésiologie, ou traité des odeurs, du et des organes de l'olfaction; avec l'histoire détaillée des maladies du nez et des fosses nasales, et des opérations qui leur conviennent.
        Méquignon-Marvis, Paris1821
        • Glaser O.
        Hereditary deficiencies in the sense of smell.
        Science. 1918; 48: 647-648
        • Karstensen H.G.
        • Tommerup N.
        Isolated and syndromic forms of congenital anosmia.
        Clin. Genet. 2012; 81: 210-215
        • Stamou M.I.
        • Georgopoulos N.A.
        Kallmann syndrome: phenotype and genotype of hypogonadotropic hypogonadism.
        Metabolism. 2018; 86: 124-134
        • Cangiano B.
        • Indirli R.
        • Profka E.
        • Castellano E.
        • Goggi G.
        • Vezzoli V.
        • Mantovani G.
        • Arosio M.
        • Persani L.
        • Borretta G.
        • Ferrante E.
        • Bonomi M.
        Central hypogonadism in Klinefelter syndrome: report of two cases and review of the literature.
        J. Endocrinol. Investig. 2020; 44: 459-470
        • Gibberd F.B.
        • Feher M.D.
        • Sidey M.C.
        • Wierzbicki A.S.
        Smell testing: an additional tool for identification of adult Refsum’s disease.
        J. Neurol. Neurosurg. Psychiatry. 2004; 75: 1334-1336
        • Cecchini M.P.
        • Viviani D.
        • Sandri M.
        • Hahner A.
        • Hummel T.
        • Zancanaro C.
        Olfaction in people with down syndrome: a comprehensive assessment across four decades of age.
        PLoS One. 2016; 11e0146486
        • Singh R.
        • Humphries T.
        • Mason S.
        • Lecky F.
        • Dawson J.
        • Sinha S.
        The incidence of anosmia after traumatic brain injury: the SHEFBIT cohort.
        Brain Inj. 2018; 32: 1122-1128
        • Marin C.
        • Langdon C.
        • Alobid I.
        • Mullol J.
        Olfactory dysfunction in traumatic brain injury: the role of neurogenesis.
        Curr Allergy Asthma Rep. 2020; 20: 55
        • Wehling E.
        • Naess H.
        • Wollschlaeger D.
        • Hofstad H.
        • Bramerson A.
        • Bende M.
        • Nordin S.
        Olfactory dysfunction in chronic stroke patients.
        BMC Neurol. 2015; 15: 199
        • Welge-Lüssen A.
        • Wolfensberger M.
        Reversible anosmia after amikacin therapy.
        Arch. Otolaryngol. Head Neck Surg. 2003; 129: 1331-1333
        • Reden J.
        • Mueller A.
        • Mueller C.
        • Konstantinidis I.
        • Frasnelli J.
        • Landis B.N.
        • Hummel T.
        Recovery of olfactory function following closed head injury or infections of the upper respiratory tract.
        Arch. Otolaryngol. Head Neck Surg. 2006; 132: 265-269
        • Nordin S.
        • Brämerson A.
        • Millqvist E.
        • Bende M.
        Prevalence of parosmia: the Skovde population-based studies.
        Rhinology. 2007; 45: 50-53
        • Leopold D.
        Distortion of olfactory perception: diagnosis and treatment.
        Chem. Senses. 2002; 27: 611-615
        • Stegall J.
        The first four books of Aur. Corn. Celsus De Re Medica; with an ordo verborum and literal translation.
        John Churchill, London1837
        • Flexner S.
        • Clarck P.F.
        A note on the mode of infection in epidemic poliomyelitis.
        Proc. Soc. Exp. Biol. Med. 1912; 10: 1-2
        • Doty R.L.
        The olfactory vector hypothesis of neurodegenerative disease: is it viable?.
        Ann. Neurol. 2008; 63: 7-15
        • Bohmwald K.
        • Galvez N.M.S.
        • Rios M.
        • Kalergis A.M.
        Neurologic alterations due to respiratory virus infections.
        Front. Cell. Neurosci. 2018; 12: 386
        • Mossel E.C.
        • Huang C.
        • Narayanan K.
        • Makino S.
        • Tesh R.B.
        • Peters C.J.
        Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication.
        J. Virol. 2005; 79: 3846-3850
        • Klopfenstein T.
        • Kadiane-Oussou N.J.
        • Toko L.
        • Royer P.Y.
        • Lepiller Q.
        • Gendrin V.
        • Zayet S.
        Features of anosmia in COVID-19.
        Med. Mal. Infect. 2020; 50: 436-439
        • Meng X.
        • Deng Y.
        • Dai Z.
        • Meng Z.
        COVID-19 and anosmia: a review based on up-to-date knowledge.
        Am. J. Otolaryngol. 2020; 41: 102581
        • Lechien J.R.
        • Chiesa-Estomba C.M.
        • De Siati D.R.
        • Horoi M.
        • Le Bon S.D.
        • Rodriguez A.
        • Dequanter D.
        • Blecic S.
        • El Afia F.
        • Distinguin L.
        • Chekkoury-Idrissi Y.
        • Hans S.
        • Delgado I.L.
        • Calvo-Henriquez C.
        • Lavigne P.
        • Falanga C.
        • Barillari M.R.
        • Cammaroto G.
        • Khalife M.
        • Leich P.
        • Souchay C.
        • Rossi C.
        • Journe F.
        • Hsieh J.
        • Edjlali M.
        • Carlier R.
        • Ris L.
        • Lovato A.
        • De Filippis C.
        • Coppee F.
        • Fakhry N.
        • Ayad T.
        • Saussez S.
        Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study.
        Eur. Arch. Otorhinolaryngol. 2020; 277: 2251-2261
        • Hornuss D.
        • Lange B.
        • Schroter N.
        • Rieg S.
        • Kern W.V.
        • Wagner D.
        Anosmia in COVID-19 patients.
        Clin. Microbiol. Infect. 2020; 26: 1426-1427
        • Le Bon S.D.
        • Pisarski N.
        • Verbeke J.
        • Prunier L.
        • Cavelier G.
        • Thill M.P.
        • Rodriguez A.
        • Dequanter D.
        • Lechien J.R.
        • Le Bon O.
        • Hummel T.
        • Horoi M.
        Psychophysical evaluation of chemosensory functions 5 weeks after olfactory loss due to COVID-19: a prospective cohort study on 72 patients.
        Eur. Arch. Otorhinolaryngol. 2021; 278: 101-108
        • D'Ascanio L.
        • Pandolfini M.
        • Cingolani C.
        • Latini G.
        • Gradoni P.
        • Capalbo M.
        • Frausini G.
        • Maranzano M.
        • Brenner M.J.
        • Di Stadio A.
        Olfactory dysfunction in COVID-19 patients: prevalence and prognosis for recovering sense of smell.
        Otolaryngol. Head Neck Surg. 2021; 164: 82-86
        • Whitcroft K.L.
        • Hummel T.
        Olfactory dysfunction in COVID-19: diagnosis and management.
        JAMA. 2020; 323: 2512-2514
        • Dias De Melo G.
        • Lazarini F.
        • Levallois S.
        • Hautefort C.
        • Michel V.
        • Larrous F.
        • Verillaud B.
        • Aparicio C.
        • Wagner S.
        • Gheusi G.
        • Kergoat L.
        • Kornobis E.
        • Cokelaer T.
        • Hervochon R.
        • Madec Y.
        • Roze E.
        • Salmon D.
        • Bourhy H.
        • Lecuit M.
        • Lledo P.M.
        COVID-19-associated olfactory dysfunction reveals SARS-CoV-2 neuroinvasion and persistence in the olfactory system.
        BioRxiv. 2020; https://doi.org/10.1101/2020.11.18.388819
        • Welge-Lüssen A.
        • Wolfensberger M.
        Olfactory disorders following upper respiratory tract infections.
        Adv. Otorhinolaryngol. 2006; 63: 125-132
        • Kandemirli S.G.
        • Altundag A.
        • Yildirim D.
        • Tekcan Sanli D.E.
        • Saatci O.
        Olfactory bulb MRI and paranasal sinus CT findings in persistent COVID-19 anosmia.
        Acad. Radiol. 2021; 28: 28-35
        • Sun T.
        • Guan J.
        Novel coronavirus and the central nervous system.
        Eur. J. Neurol. 2020; 27e52
        • Al-Sarraj S.
        • Troakes C.
        • Hanley B.
        • Osborn M.
        • Richardson M.P.
        • Hotopf M.
        • Bullmore E.
        • Everall I.P.
        The spectrum of neuropathology in COVID-19.
        Neuropathol. Appl. Neurobiol. 2021; 47: 3-16
        • Dhouib I.E.
        Does coronaviruses induce neurodegenerative diseases? A systematic review on the neurotropism and neuroinvasion of SARS-CoV-2.
        Drug Discov. Ther. 2020; 14: 262-272
        • Matschke J.
        • Lutgehetmann M.
        • Hagel C.
        • Sperhake J.P.
        • Schroder A.S.
        • Edler C.
        • Mushumba H.
        • Fitzek A.
        • Allweiss L.
        • Dandri M.
        • Dottermusch M.
        • Heinemann A.
        • Pfefferle S.
        • Schwabenland M.
        • Sumner Magruder D.
        • Bonn S.
        • Prinz M.
        • Gerloff C.
        • Puschel K.
        • Krasemann S.
        • Aepfelbacher M.
        • Glatzel M.
        Neuropathology of patients with COVID-19 in Germany: a post-mortem case series.
        Lancet Neurol. 2020; 19: 919-929
        • Vaira L.A.
        • Hopkins C.
        • Sandison A.
        • Manca A.
        • Machouchas N.
        • Turilli D.
        • Lechien J.R.
        • Barillari M.R.
        • Salzano G.
        • Cossu A.
        • Saussez S.
        • De Riu G.
        Olfactory epithelium histopathological findings in long-term coronavirus disease 2019 related anosmia.
        J. Laryngol. Otol. 2020; : 1-13
        • Meinhardt J.
        • Radke J.
        • Dittmayer C.
        • Franz J.
        • Thomas C.
        • Mothes R.
        • Laue M.
        • Schneider J.
        • Brünink S.
        • Greuel S.
        • Lehmann M.
        • Hassan O.
        • Aschman T.
        • Schumann E.
        • Chua R. Lorenz
        • Conrad C.
        • Eils R.
        • Stenzel W.
        • Windgassen M.
        • Rößler L.
        • Goebel H.H.
        • Gelderblom H.R.
        • Martin H.
        • Nitsche A.
        • Schulz-Schaeffer W.J.
        • Hakroush S.
        • Winkler M.S.
        • Tampe B.
        • Scheibe F.
        • Körtvélyessy P.
        • Reinhold D.
        • Siegmund B.
        • Kühl A.A.
        • Elezkurtaj S.
        • Horst D.
        • Oesterhelweg L.
        • Tsokos M.
        • Ingold-Heppner B.
        • Stadelmann C.
        • Drosten C.
        • Corman V.M.
        • Radbruch H.
        • Heppner F.L.
        Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19.
        Nat. Neurosci. 2020; 24: 168-175
        • Aragao M.
        • Leal M.C.
        • Cartaxo Filho O.Q.
        • Fonseca T.M.
        • Valenca M.M.
        Anosmia in COVID-19 associated with injury to the olfactory bulbs evident on MRI.
        AJNR Am. J. Neuroradiol. 2020; 41: 1703-1706
        • Tsivgoulis G.
        • Fragkou P.C.
        • Lachanis S.
        • Palaiodimou L.
        • Lambadiari V.
        • Papathanasiou M.
        • Sfikakis P.P.
        • Voumvourakis K.I.
        • Tsiodras S.
        Olfactory bulb and mucosa abnormalities in persistent COVID-19-induced anosmia: a magnetic resonance imaging study.
        Eur. J. Neurol. 2021; 28: e6-e8
        • Price J.L.
        • Davis P.B.
        • Morris J.C.
        • White D.L.
        The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease.
        Neurobiol. Aging. 1991; 12: 295-312
        • Gilbert P.E.
        • Murphy C.
        The effect of the ApoE epsilon4 allele on recognition memory for olfactory and visual stimuli in patients with pathologically confirmed Alzheimer’s disease, probable Alzheimer’s disease, and healthy elderly controls.
        J. Clin. Exp. Neuropsychol. 2004; 26: 779-794
        • Manzo C.
        • Serra-Mestres J.
        • Isetta M.
        • Castagna A.
        Could COVID-19 anosmia and olfactory dysfunction trigger an increased risk of future dementia in patients with ApoE4?.
        Med. Hypotheses. 2021; 147: 110479