Advertisement

Early neuropsychological markers of cognitive involvement in multiple sclerosis

Published:February 16, 2021DOI:https://doi.org/10.1016/j.jns.2021.117349

      Highlights

      • Early detection of cognitive involvement in MS is critical.
      • We compared the sensitivity and specificity of measures for early detection.
      • Measures of processing speed and variability were the most sensitive and specific.
      • Brief, computer-based measures can detect early cognitive involvement in MS.

      Abstract

      Background

      Cognitive impairment due to multiple sclerosis (MS) is common and often limits occupational functioning, contributes to disability, and reduces quality of life. Early detection of cognitive involvement in MS is critical for treatment planning and intervention, and frequent, regular cognitive monitoring may provide insight into subtle changes in disease progression.

      Objective

      To compare the sensitivity and specificity of clinical, computer-based and experimental measures to early cognitive involvement in MS.

      Methods

      Cognitive functioning was compared in MS participants early in the disease course to matched healthy controls using conventional, computer-based and functional assessments: the Brief International Cognitive Assessment in MS (BICAMS); the computer-based Cogstate Brief Battery (CBB); the Attention Network Test-Interaction (ANT-I), including intra-individual variability; and the Test of Everyday Cognitive Ability (TECA), a functional measure of instrumental activities of daily living.

      Results

      MS participants (n = 25, mean disease duration= 5.82 ± 3.65 years) and demographically matched healthy controls (n = 29) completed the cognitive assessments. The Cogstate measure of choice reaction time (AUC = 0.73, p = .004), intra-individual variability on the ANT-I (AUC = 0.79, p = .001), and TECA (AUC = 0.78, p = .001) scores were the most sensitive and specific markers of cognitive involvement in MS.

      Conclusions

      Brief, repeatable, computer-based measures of reaction time and variability detect early MS associated cognitive involvement.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Baumstarck-Barrau K.
        • Simeoni M.-C.
        • Reuter F.
        • et al.
        Cognitive function and quality of life in multiple sclerosis patients: a cross-sectional study.
        BMC Neurol. 2011; 11: 17
        • Benedict R.H.
        • Wahlig E.
        • Bakshi R.
        • et al.
        Predicting quality of life in multiple sclerosis: accounting for physical disability, fatigue, cognition, mood disorder, personality, and behavior change.
        J. Neurol. Sci. 2005; 231: 29-34
        • Benito-Leon J.
        • Morales J.
        • Rivera-Navarro J.
        Health-related quality of life and its relationship to cognitive and emotional functioning in multiple sclerosis patients.
        Eur. J. Neurol. 2002; 9: 497-502
        • Morrow S.A.
        • Drake A.
        • Zivadinov R.
        • et al.
        Predicting loss of employment over three years in multiple sclerosis: clinically meaningful cognitive decline.
        Clin. Neuropsychol. 2010; 24: 1131-1145
        • Papathanasiou A.
        • Messinis L.
        • Zampakis P.
        • et al.
        Thalamic atrophy predicts cognitive impairment in relapsing remitting multiple sclerosis. effect on instrumental activities of daily living and employment status.
        J. Neurol. Sci. 2015; 358: 236-242
        • Patti F.
        • Leone C.
        • D’Amico E.
        Treatment options of cognitive impairment in multiple sclerosis.
        Neurol. Sci. 2010; 31: 265-269
        • Di Filippo M.
        • Portaccio E.
        • Mancini A.
        • et al.
        Multiple sclerosis and cognition: synaptic failure and network dysfunction.
        Nat. Rev. Neurosci. 2018; 19: 599-609
        • Sumowski J.F.
        • Benedict R.
        • Enzinger C.
        • et al.
        Cognition in multiple sclerosis: state of the field and priorities for the future.
        Neurology. 2018; 90: 278-288
        • DeLuca J.
        • Chelune G.J.
        • Tulsky D.S.
        • et al.
        Is speed of processing or working memory the primary information processing deficit in multiple sclerosis?.
        J. Clin. Exp. Neuropsychol. 2004; 26: 550-562
        • Chiaravalloti N.D.
        • Stojanovic-Radic J.
        • DeLuca J.
        The role of speed versus working memory in predicting learning new information in multiple sclerosis.
        J. Clin. Exp. Neuropsychol. 2013; 35: 180-191
        • Lengenfelder J.
        • Bryant D.
        • Diamond B.J.
        • et al.
        Processing speed interacts with working memory efficiency in multiple sclerosis.
        Arch. Clin. Neuropsychol. 2006; 21: 229-238
        • Kim S.
        • Zemon V.
        • Rath J.F.
        • et al.
        Screening instruments for the early detection of cognitive impairment in patients with multiple sclerosis.
        Int J MS Care. 2017; 19 (2017/03/01): 1-10
        • Langdon D.
        • Amato M.
        • Boringa J.
        • et al.
        Recommendations for a brief international cognitive assessment for multiple sclerosis (BICAMS).
        Mult. Scler. J. 2012; 18: 891-898
        • Smith A.
        Symbol Digit Modalities Test.
        Western Psychological Services Los Angeles, CA1982
        • López-Góngora M.
        • Querol L.
        • Escartín A.
        A one-year follow-up study of the symbol digit modalities test (SDMT) and the paced auditory serial addition test (PASAT) in relapsing-remitting multiple sclerosis: an appraisal of comparative longitudinal sensitivity.
        BMC Neurol. 2015; 15: 40
        • Sonder J.M.
        • Burggraaff J.
        • Knol D.L.
        • et al.
        Comparing long-term results of PASAT and SDMT scores in relation to neuropsychological testing in multiple sclerosis.
        Mult. Scler. J. 2014; 20: 481-488
        • Charvet L.E.
        • Beekman R.
        • Amadiume N.
        • et al.
        The symbol digit modalities test is an effective cognitive screen in pediatric onset multiple sclerosis (MS).
        J. Neurol. Sci. 2014; 341: 79-84
        • Benedict R.H.
        • DeLuca J.
        • Phillips G.
        • et al.
        Validity of the symbol digit modalities test as a cognition performance outcome measure for multiple sclerosis.
        Mult. Scler. J. 2017; 23: 721-733
        • Parmenter B.
        • Weinstock-Guttman B.
        • Garg N.
        • et al.
        Screening for cognitive impairment in multiple sclerosis using the symbol digit modalities test.
        Mult. Scler. J. 2007; 13: 52-57
        • Delis D.
        • Kramer J.
        • Kaplan E.
        • et al.
        Manual for the California Verbal Learning Test (CVLT-II).
        The Psychological Corporation, San Antonio, TX2000
        • Schmidt M.
        Rey Auditory Verbal Learning Test: RAVLT: A Handbook.
        Western Psychological Services, 1996
        • Benedict R.H.
        Brief Visuospatial Memory Test--Revised: Professional Manual.
        PAR, 1997
        • Benedict R.H.
        • Groninger L.
        Preliminary standardization of a new visuospatial memory test with six alternate forms.
        Clin. Neuropsychol. 1995; 9: 11-16
        • Wojcik C.M.
        • Beier M.
        • Costello K.
        • et al.
        Computerized neuropsychological assessment devices in multiple sclerosis: a systematic review.
        Mult. Scler. J. 2019; 1352458519879094
        • Bartlett E.
        • Shaw M.
        • Schwarz C.
        • et al.
        Brief computer-based information processing measures are linked to white matter integrity in pediatric-onset multiple sclerosis.
        J. Neuroimaging. 2019; 29: 140-150
        • Charvet L.E.
        • Shaw M.
        • Frontario A.
        • et al.
        Cognitive impairment in pediatric-onset multiple sclerosis is detected by the brief international cognitive assessment for multiple sclerosis and computerized cognitive testing.
        Mult. Scler. J. 2018; 24: 512-519
        • De Meijer L.
        • Merlo D.
        • Skibina O.
        • et al.
        Monitoring cognitive change in multiple sclerosis using a computerized cognitive battery.
        Mult. Sclerosis J.–Exper. Transl. Clin. 2018; 4 (2055217318815513)
        • Collie A.
        • Maruff P.
        • Darby D.G.
        • et al.
        The effects of practice on the cognitive test performance of neurologically normal individuals assessed at brief test–retest intervals.
        J. Int. Neuropsychol. Soc. 2003; 9: 419-428
        • Falleti M.G.
        • Maruff P.
        • Collie A.
        • et al.
        Practice effects associated with the repeated assessment of cognitive function using the CogState battery at 10-minute, one week and one month test-retest intervals.
        J. Clin. Exp. Neuropsychol. 2006; 28: 1095-1112
        • Fan J.
        • McCandliss B.D.
        • Sommer T.
        • et al.
        Testing the efficiency and independence of attentional networks.
        J. Cogn. Neurosci. 2002; 14: 340-347
        • Callejas A.
        • Lupianez J.
        • Funes M.J.
        • et al.
        Modulations among the alerting, orienting and executive control networks.
        Exp. Brain Res. 2005; 167: 27-37
        • Ishigami Y.
        • Fisk J.D.
        • Wojtowicz M.
        • et al.
        Repeated measurement of the attention components of patients with multiple sclerosis using the attention network test-interaction (ANT-I): stability, isolability, robustness, and reliability.
        J. Neurosci. Methods. 2013; 216: 1-9
        • Wojtowicz M.
        • Omisade A.
        • Fisk J.D.
        Indices of cognitive dysfunction in relapsing-remitting multiple sclerosis: intra-individual variability, processing speed, and attention network efficiency.
        J. Int. Neuropsychol. Soc. 2013; 19: 551-558
        • Roth A.K.
        • Denney D.R.
        • Lynch S.G.
        Information processing speed and attention in multiple sclerosis: reconsidering the attention network test (ANT).
        J. Clin. Exp. Neuropsychol. 2015; 37: 518-529
        • Wojtowicz M.
        • Berrigan L.I.
        • Fisk J.D.
        Intra-individual variability as a measure of information processing difficulties in multiple sclerosis.
        Intern. J. MS Care. 2012; 14: 77-83
        • Wojtowicz M.A.
        • Ishigami Y.
        • Mazerolle E.L.
        • et al.
        Stability of intraindividual variability as a marker of neurologic dysfunction in relapsing remitting multiple sclerosis.
        J. Clin. Exp. Neuropsychol. 2014; 36: 455-463
        • Bodling A.M.
        • Denney D.R.
        • Lynch S.G.
        Individual variability in speed of information processing: an index of cognitive impairment in multiple sclerosis.
        Neuropsychology. 2012; 26: 357
        • Bruce J.M.
        • Bruce A.S.
        • Arnett P.A.
        Response variability is associated with self-reported cognitive fatigue in multiple sclerosis.
        Neuropsychology. 2010; 24: 77
        • Holtzer R.
        • Foley F.
        • D’Orio V.
        • et al.
        Learning and cognitive fatigue trajectories in multiple sclerosis defined using a burst measurement design.
        Mult. Sclerosis (Houndmills, Basingstoke, England). 2013; 19 (2013/02/27): 1518-1525
        • Owsley C.
        • Sloane M.
        • McGwin Jr., G.
        • et al.
        Timed instrumental activities of daily living tasks: relationship to cognitive function and everyday performance assessments in older adults.
        Gerontology. 2002; 48: 254-265
        • Wadley V.G.
        • Okonkwo O.
        • Crowe M.
        • et al.
        Mild cognitive impairment and everyday function: evidence of reduced speed in performing instrumental activities of daily living.
        Am. J. Geriatr. Psychiatry. 2008; 16: 416-424
        • Goverover Y.
        • Genova H.M.
        • Hillary F.G.
        • et al.
        The relationship between neuropsychological measures and the timed instrumental activities of daily living task in multiple sclerosis.
        Mult. Scler. J. 2007; 13: 636-644
        • Charvet L.E.
        • Shaw M.T.
        • Sherman K.
        • et al.
        Timed instrumental activities of daily living in multiple sclerosis: the test of everyday cognitive ability (TECA).
        Multiple Sclerosis Related Disord. 2018; 23: 69-73
        • Thompson A.J.
        • Banwell B.L.
        • Barkhof F.
        • et al.
        Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria.
        Lancet Neurol. 2018; 17: 162-173
        • Johnson J.S.
        • Newport E.L.
        Critical period effects in second language learning: the influence of maturational state on the acquisition of English as a second language.
        Cogn. Psychol. 1989; 21: 60-99
        • Wilkinson G.S.
        WRAT-3: Wide Range Achievement Test Administration Manual.
        Wide Range, Inc., Wilmington, Del.1993
        • Blozik E.
        • Scherer M.
        • Lacruz M.E.
        • et al.
        Diagnostic utility of a one-item question to screen for depressive disorders: results from the KORA F3 study.
        BMC Fam. Pract. 2013; 14: 198https://doi.org/10.1186/1471-2296-14-198
        • Rao S.
        A Manual for the Brief, Repeatable Battery of Neuropsychological Tests in Multiple Sclerosis: National Multiple Sclerosis Society.
        1991
        • Strober L.
        • Bruce J.
        • Arnett P.
        • et al.
        A new look at an old test: normative data of the symbol digit modalities test–Oral version.
        Mult. Sclerosis Related Disord. 2020; 43102154
        • Dusankova J.B.
        • Kalincik T.
        • Havrdova E.
        • et al.
        Cross cultural validation of the minimal assessment of cognitive function in multiple sclerosis (MACFIMS) and the brief international cognitive assessment for multiple sclerosis (BICAMS).
        Clin. Neuropsychol. 2012; 26: 1186-1200
        • Goverover Y.
        • Chiaravalloti N.
        • DeLuca J.
        Brief international cognitive assessment for multiple sclerosis (BICAMS) and performance of everyday life tasks: actual reality.
        Mult. Scler. J. 2016; 22: 544-550
        • Charvet L.
        • Shaw M.
        • Dobbs B.
        • et al.
        Remotely supervised transcranial direct current stimulation increases the benefit of at-home cognitive training in multiple sclerosis.
        Neuromod.: Technol. Neural Interf. 2018; 21: 383-389
        • Cogstate
        Cogstate Pediatric and Adult Normative Data.
        Cogstate, Inc, New Haven, CT2018
        • Posner M.I.
        • Petersen S.E.
        The attention system of the human brain.
        Annu. Rev. Neurosci. 1990; 13: 25-42
        • Maruff P.
        • Thomas E.
        • Cysique L.
        • et al.
        Validity of the CogState brief battery: relationship to standardized tests and sensitivity to cognitive impairment in mild traumatic brain injury, schizophrenia, and AIDS dementia complex.
        Arch. Clin. Neuropsychol. 2009; 24: 165-178https://doi.org/10.1093/arclin/acp010
        • Lim Y.Y.
        • Pietrzak R.H.
        • Bourgeat P.
        • et al.
        Relationships between performance on the Cogstate brief battery, neurodegeneration, and Aβ accumulation in cognitively normal older adults and adults with MCI.
        Arch. Clin. Neuropsychol. 2014; 30: 49-58https://doi.org/10.1093/arclin/acu068
        • Benedict R.H.B.
        • Drake A.S.
        • Irwin L.N.
        • et al.
        Benchmarks of meaningful impairment on the MSFC and BICAMS.
        Mult. Scler. J. 2016; 22: 1874-1882https://doi.org/10.1177/1352458516633517
        • Rao S.M.
        • Losinski G.
        • Mourany L.
        • et al.
        Processing speed test: validation of a self-administered, iPad®-based tool for screening cognitive dysfunction in a clinic setting.
        Mult. Scler. J. 2017; 23: 1929-1937
        • Palmer B.W.
        • Boone K.B.
        • Lesser I.M.
        • et al.
        Base rates of “impaired” neuropsychological test performance among healthy older adults.
        Arch. Clin. Neuropsychol. 1998; 13: 503-511https://doi.org/10.1093/arclin/13.6.503
        • Brooks B.L.
        • Iverson G.L.
        • White T.
        Substantial risk of “Accidental MCI” in healthy older adults: base rates of low memory scores in neuropsychological assessment.
        J. Intern. Neuropsychol. Soc.: JINS. 2007; 13: 490
        • Schretlen D.J.
        • Testa S.M.
        • Winicki J.M.
        • et al.
        Frequency and bases of abnormal performance by healthy adults on neuropsychological testing.
        J. Int. Neuropsychol. Soc. 2008; 14: 436-445
        • Berrigan L.I.
        • Fisk J.D.
        • Walker L.A.
        • et al.
        Reliability of regression-based normative data for the oral symbol digit modalities test: an evaluation of demographic influences, construct validity, and impairment classification rates in multiple sclerosis samples.
        Clin. Neuropsychol. 2014; 28: 281-299
        • Heine M.
        • van den Akker L.E.
        • Blikman L.
        • et al.
        Real-time assessment of fatigue in patients with multiple sclerosis: how does it relate to commonly used self-report fatigue questionnaires?.
        Arch. Phys. Med. Rehabil. 2016; 97 (2016/10/27): 1887-1894.e1881
        • Berard J.A.
        • Smith A.M.
        • Walker L.A.
        A longitudinal evaluation of cognitive fatigue on a task of sustained attention in early relapsing-remitting multiple sclerosis.
        Intern. J. MS Care. 2018; 20: 55-61
        • Andreasen A.K.
        • Spliid P.
        • Andersen H.
        • et al.
        Fatigue and processing speed are related in multiple sclerosis.
        Eur. J. Neurol. 2010; 17: 212-218
        • Schwid S.R.
        • Tyler C.M.
        • Scheid E.A.
        • et al.
        Cognitive fatigue during a test requiring sustained attention: a pilot study.
        Mult. Scler. J. 2003; 9: 503-508
        • Krupp L.B.
        • Elkins L.E.
        Fatigue and declines in cognitive functioning in multiple sclerosis.
        Neurology. 2000; 55: 934-939
        • Wojcik C.M.
        • Rao S.M.
        • Schembri A.J.
        • et al.
        Necessity of technicians for computerized neuropsychological assessment devices in multiple sclerosis.
        Mult. Scler. J. 2020; 26: 109-113
        • Macniven J.
        • Davis C.
        • Ho M.-Y.
        • et al.
        Stroop performance in multiple sclerosis: information processing, selective attention, or executive functioning?.
        J. Int. Neuropsychol. Soc. 2008; 14: 805-814
        • Chiaravalloti N.D.
        • DeLuca J.
        Cognitive impairment in multiple sclerosis.
        Lancet Neurol. 2008; 7: 1139-1151
        • Charvet L.E.
        • Shaw M.
        • Haider L.
        • et al.
        Remotely-delivered cognitive remediation in multiple sclerosis (MS): protocol and results from a pilot study.
        Mult. Sclerosis J.–Exper. Transl. Clin. 2015; 1 (2055217315609629)
        • Charvet L.
        • Yang J.
        • Shaw M.
        • et al.
        An Adaptive Computer-based Cognitive Training Program Improves Cognitive Functioning in Adults with Multiple Sclerosis (MS): Results of a Double-blind Randomized Active-Placebo-Controlled 12-Week Trial (P2. 170).
        AAN Enterprises, 2016
        • Benedict R.H.
        • DeLuca J.
        • Enzinger C.
        • et al.
        Neuropsychology of multiple sclerosis: looking back and moving forward.
        J. Int. Neuropsychol. Soc. 2017; 23: 832-842
        • Chiaravalloti N.D.
        • DeLuca J.
        Cognitive Rehabilitation in Multiple Sclerosis.
        2018
        • Goverover Y.
        • Chiaravalloti N.D.
        • O’Brien A.R.
        • et al.
        Evidenced-based cognitive rehabilitation for persons with multiple sclerosis: an updated review of the literature from 2007 to 2016.
        Arch. Phys. Med. Rehabil. 2018; 99: 390-407
        • Fuchs T.A.
        • Ziccardi S.
        • Dwyer M.G.
        • et al.
        Response heterogeneity to home-based restorative cognitive rehabilitation in multiple sclerosis: an exploratory study.
        Mult. Sclerosis Related Disord. 2019; 34
        • Patten S.B.
        • Marrie R.A.
        • Carta M.G.
        Depression in multiple sclerosis.
        Intern. Rev. Psych. 2017; 29: 463-472

      CHORUS Manuscript

      View Open Manuscript