Quantifying iron deposition in the cerebellar subtype of multiple system atrophy and spinocerebellar ataxia type 6 by quantitative susceptibility mapping

Published:October 13, 2019DOI:https://doi.org/10.1016/j.jns.2019.116525

      Highlights

      • We used QSM to assess the brain iron deposition in MSA-C, SCA6, and HC.
      • The QSM values in the dentate nucleus were higher in MSA-C than those in the others.
      • The QSM values in the substantia nigra were higher in MSA-C than those in HC.
      • The QSM value in the dentate nucleus were correlated with disease duration in MSA-C.

      Abstract

      We used quantitative susceptibility mapping (QSM) to assess the brain iron deposition in 28 patients with the cerebellar subtype of multiple system atrophy (MSA-C), nine patients with spinocerebellar ataxia type 6 (SCA6), and 23 healthy controls. Two reviewers independently measured the mean QSM values in brain structures including the putamen, globus pallidus, caudate nucleus, red nucleus, substantia nigra, and cerebellar dentate nucleus. A receiver operating characteristics (ROC) analysis was performed to assess the diagnostic usefulness of the QSM measurements. The QSM values in the substantia nigra were significantly higher in the MSA-C group compared to the HC group (p = .007). The QSM values in the cerebellar dentate nucleus were significantly higher in MSA-C than those in the SCA6 and HC groups (p < .001), and significantly lower in the SCA6 patients compared to the HCs (p = .027). The QSM values in the cerebellar dentate nucleus were correlated with disease duration in MSA-C, but inversely correlated with disease duration in SCA6. In the ROC analysis, the QSM values in the cerebellar dentate nucleus showed excellent accuracy for differentiating MSA-C from SCA6 (area under curve [AUC], 0.925), and good accuracy for differentiating MSA-C from healthy controls (AUC 0.834). QSM can identify increased susceptibility of the substantia nigra and cerebellar dentate nucleus in MSA-C patients. These results suggest that an increase in iron accumulation in the cerebellar dentate nucleus may be secondary to the neurodegeneration associated with MSA-C.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kaindlstorfer C.
        • Jellinger K.A.
        • Eschlböck S.
        • Stefanova N.
        • Weiss G.
        • Wenning G.K.
        The relevance of iron in the pathogenesis of multiple system atrophy: a viewpoint.
        J. Alzheimers Dis. 2018; 61: 1253-1273
        • Dickson D.W.
        • Lin W.
        • Liu W.K.
        • Yen S.H.
        Multiple system atrophy: a sporadic synucleinoathy.
        Brain Pathol. 1999; 9: 721-732
        • Dexter D.T.
        • Carayon A.
        • Javoy-Agid F.
        • Agid Y.
        • Wells F.R.
        • Daniel S.E.
        • et al.
        Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia.
        Brain. 1991; 114: 1953-1975
        • Jellinger K.A.
        Neuropathological spectrum of synucleinopathies.
        Mov. Disord. 2003; 18: S2-S12
        • Matsusue E.
        • Fujii S.
        • Kanasaki Y.
        • Kaminou T.
        • Ohama E.
        • Ogawa T.
        Cerebellar lesions in multiple system atrophy: Postmortem MR imaging-pathologic correlations.
        Am. J. Neuroradiol. 2009; 30: 1725-1730
        • Bilgic B.
        • Pfefferbaum A.
        • Rohlfing T.
        • Sullivan E.V.
        • Adalsteinsson E.
        MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping.
        Neuroimage. 2012; 59: 2625-2635
        • Liu J.
        • Liu T.
        • de Rochefort L.
        • Ledoux J.
        • Khalidov I.
        • Chen W.
        • et al.
        Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map.
        Neuroimage. 2012; 59: 2560-2568
        • Sjöström H.
        • Granberg T.
        • Westman E.
        • Svenningsson P.
        Quantitative susceptibility mapping differentiates between parkinsonian disorders.
        Parkinsonism Relat. Disord. 2017; 44: 51-57
        • Ito K.
        • Ohtsuka C.
        • Yoshioka K.
        • Kameda H.
        • Yokosawa S.
        • Sato R.
        • et al.
        Differential diagnosis of parkinsonism by a combined use of diffusion kurtosis imaging and quantitative susceptibility mapping.
        Neuroradiology. 2017; 59: 759-769
        • Schöls L.
        • Bauer P.
        • Schmidt T.
        • Schulte T.
        • Riess O.
        Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis.
        Lancet Neurol. 2004; 3: 291-304
        • Ishikawa K.
        • Watanabe K.
        • Yoshizawa T.
        • Fujita H.
        • Iwamoto T.
        • Yoshizawa K.
        • et al.
        Clinical, neuropathological, and molecular study in two families with spinocerebellar ataxia type 6 (SCA6).
        J. Neurol. Neurosurg. Psychiatry. 1999; 67: 86-89
        • Stefanescu M.R.
        • Dohnalek M.
        • Maderwald S.
        • Thürling M.
        • Minnerop M.
        • Beck A.
        • et al.
        Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich’s ataxia.
        Brain. 2015; 138: 1182-1197
        • Gilman S.
        • Wennin G.K.
        • Low P.A.
        • Brooks D.J.
        • Mathias C.J.
        • Trojanowski J.Q.
        • et al.
        Second consensus statement on the diagnosis of multiple system atrophy.
        Neurology. 2008; 71: 670-676
        • Langkammer C.
        • Schweser F.
        • Krebs N.
        • Deistung A.
        • Goessler W.
        • Scheurer E.
        • et al.
        Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study.
        Neuroimage. 2012; 62: 1593-1599
        • Ide S.
        • Kakeda S.
        • Adachi H.
        • Miyata M.
        • Iwanaka Y.
        • Okada K.
        • et al.
        Detection of dentate nuclei abnormalities in a patient with dentatorubral-pallidoluysian atrophy using the quantitative susceptibility mapping.
        J. Neurol. Sci. 2019; 43: 97-98
        • Duyn J.H.
        • Schenck J.
        Contributions to magnetic susceptibility of brain tissue.
        NMR Biomed. 2017; 30e3546
        • Fukutani Y.
        • Nakamura I.
        • Matsubara R.
        • Kobayashi K.
        • Isaki K.
        Pathology of the cerebellar dentate nucleus in sporadic olivopontocerebellar atrophy: a morphometric investigation.
        J. Neurol. Sci. 1996; 137: 103-108
        • Kume A.
        • Takahashi A.
        • Hashizume Y.
        • Asai J.
        A histometrical and comparative study on Purkinje cell loss and olivary nucleus cell loss in multiple system atrophy.
        J. Neurol. Sci. 1991; 101: 178-186
        • Wenning G.K.
        • Tison F.
        • Elliott L.
        • Quinn N.P.
        • Daniel S.E.
        Olivopontocerebellar pathology in multiple system atrophy.
        Mov. Disord. 1996; 11: 157-162
        • Lee M.J.
        • Kim T.H.
        • Kim S.J.
        • Mun C.W.
        • Shin J.H.
        • Lee G.H.
        • et al.
        Speculating the timing of iron deposition in the putamen in multiple system atrophy.
        Parkinsonism Relat. Disord. 2019; 63: 106-110
        • Habib C.A.
        • Liu M.
        • Bawany N.
        • Garbern J.
        • Krumbein I.
        • Mentzel H.J.
        • et al.
        Assessing abnormal iron content in the deep gray matter of patients with multiple sclerosis versus healthy controls.
        Am. J. Neuroradiol. 2012; 33: 252-258
        • Raven E.P.
        • Lu P.H.
        • Tishler T.A.
        • Heydari P.
        • Bartzokis G.
        Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer’s disease detected in vivo with magnetic resonance imaging.
        J. Alzheimers Dis. 2013; 37: 127-136
        • Schneider S.A.
        • Bhatia K.P.
        Excess iron harms the brain: the syndromes of neurodegeneration with brain iron accumulation (NBIA).
        J. Neural Transm. 2013; 120: 695-703
        • Ward P.G.D.
        • Harding I.H.
        • Close T.G.
        • Corben L.A.
        • Delatycki M.B.
        • Storey E.
        • et al.
        Longitudinal evaluation of iron concentration and atrophy in the dentate nuclei in friedreich ataxia.
        Mov. Disord. 2013; 34: 335-343
        • Gomez C.M.
        • Thompson R.M.
        • Gammack J.T.
        • Perlman S.L.
        • Dobyns W.B.
        • Truwit C.L.
        • et al.
        Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset.
        Ann. Neurol. 1997; 42: 933-950
        • Gierga K.
        • Schelhaas H.J.
        • Brunt E.R.
        • Seidel K.
        • Scherzed W.
        • Egensperger R.
        • et al.
        Spinocerebellar ataxia type 6 (SCA6): Neurodegeneration goes beyond the known brain predilection sites.
        Neuropathol. Appl. Neurobiol. 2009; 35: 515-527
        • Wang X.
        • Wang H.
        • Xia Y.
        • Jiang H.
        • Shen L.
        • Wang S.
        • et al.
        A neuropathological study at autopsy of early onset spinocerebellar ataxia 6.
        J. Clin. Neurosci. 2010; 17: 751-755
        • Connor J.R.
        • Menzies S.L.
        • St Martin S.M.
        • Mufson E.J.
        Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains.
        J. Neurosci. Res. 1990; 27: 595-611
        • Frismand S.
        • Salem H.
        • Panouilleres M.
        • Pélisson D.
        • Jacobs S.
        • Vighetto A.
        • et al.
        MRI findings in AOA2: cerebellar atrophy and abnormal iron detection in dentate nucleus.
        Neuroimage Clin. 2013; 2: 542-548
        • Schöls L.
        • Szymanski S.
        • Peters S.
        • Przuntek H.
        • Epplen J.T.
        • Hardt C.
        • et al.
        Genetic background of apparently idiopathic sporadic cerebellar ataxia.
        Hum. Genet. 2000; 107: 132-137
        • Abele M.
        • Bürk K.
        • Schöls L.
        • Schwartz S.
        • Besenthal I.
        • Dichgans J.
        • et al.
        The aetiology of sporadic adult-onset ataxia.
        Brain. 2002; 125: 961-968
        • Hadjivassiliou M.
        • Martindale J.
        • Shanmugarajah P.
        • Grünewald R.A.
        • Sarrigiannis P.G.
        • Beauchamp N.
        • et al.
        Causes of progressive cerebellar ataxia: prospective evaluation of 1500 patients.
        J. Neurol. Neurosurg. Psychiatry. 2017; 88: 301-309
        • Gilman S.
        • Little R.
        • Johanns J.
        • Heumann M.
        • Kluin K.J.
        • Junck L.
        • et al.
        Evolution of sporadic olivopontocerebellar atrophy into multiple system atrophy.
        Neurology. 2000; 55: 527-532
        • Jellinger K.A.
        • Seppo K.
        • Wenning G.K.
        Grading of neuropathology in multiple system atrophy: proposal for a novel scale.
        Mov. Disord. 2005; 20: S29-S36
        • Muñoz E.
        • Iranzo A.
        • Rauek S.
        • Lomeña F.
        • Gallego J.
        • Ros D.
        • et al.
        Subclinical nigrostriatal dopaminergic denervation in the cerebellar subtype of multiple system atrophy (MSA-C).
        J. Neurol. 2011; 258: 2248-2253
        • Lee J.H.
        • Kim T.H.
        • Mun C.W.
        • Kim T.H.
        • Han Y.H.
        Progression of subcortical atrophy and iron deposition in multiple system atrophy: a comparison between clinical subtypes.
        J. Neurol. 2015; 262: 1876-1882
        • Matsusue E.
        • Fujii S.
        • Kanasaki Y.
        • Sugihara S.
        • Miyata H.
        • Ohama E.
        • et al.
        Putaminal lesion in multiple system atrophy: postmortem MR-pathological correlations.
        Neuroradiology. 2008; 50: 559-567