Functional analysis of a double-point mutation in the KCNJ2 gene identified in a family with Andersen-Tawil syndrome

Published:October 15, 2019DOI:https://doi.org/10.1016/j.jns.2019.116521

      Highlights

      • We experienced a family of Andersen-Tawil syndrome with two mutations in KCNJ2 gene.
      • Two missense mutations in the KCNJ2 gene are located on the same allele.
      • The electrophysiological study revealed that both mutations cause loss of function.

      Abstract

      Andersen-Tawil syndrome (ATS) is a skeletal muscle channelopathy with autosomal dominant inheritance resulting in periodic paralysis, arrhythmia characterized by QT prolongation, and dysmorphic features. The KCNJ2 gene has been identified as the causative gene of ATS. Herein, we reported 2 cases of a 21-year-old man and his mother, with episodic paralytic attacks and/or arrhythmia, which are characteristic of ATS. Both G144A, a reported ATS mutation, and V296F, a novel mutation, were identified in the KCNJ2 gene on the same allele from the proband and his mother, but not from his father. In the present study, we investigated the functional effect of these variants on the potassium channel Kir2.1 and the significance of the double mutation. G144A, V296F, and G144A-V296F mutant channels expressed in cultured cells revealed a loss-of-function effect of these mutations on Kir2.1. The K+ currents of G144A and G144A-V296F channels were more suppressed than that of V296F channel alone, whereas was no difference between G144A and G144A-V296F. To our knowledge, a double mutation in the KCNJ2 gene has not been reported previously. While either of 2 mutations potentially causes ATS, the G144A mutation might cause the dominant effect on the patients' clinical presentation.

      Keywords

      Abbreviations:

      ATS (Andersen-Tawil syndrome), CMAP (compound muscle action potential), ECG (Electrocardiography)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tawil R.
        • Ptacek L.J.
        • Pavlakis S.G.
        • DeVivo D.C.
        • Penn A.S.
        • Özdemir C.
        • Griggs R.C.
        Andersen’s syndrome: potassium-sensitive periodic paralysis, ventricular ectopy, and dysmorphic features.
        Ann. Neurol. 1994; 35: 326-330https://doi.org/10.1002/ana.410350313
        • Tristani-Firouzi M.
        • Jensen J.L.
        • Donaldson M.R.
        • Sansone V.
        • Meola G.
        • Hahn A.
        • Bendahhou S.
        • Kwiecinski H.
        • Fidzianska A.
        • Plaster N.
        • Fu Y.H.
        • Ptacek L.J.
        • Tawil R.
        Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome).
        J. Clin. Invest. 2002; 110: 381-388https://doi.org/10.1172/JCI15183
        • Plaster N.M.
        • Tawil R.
        • Tristani-Firouzi M.
        • Canún S.
        • Bendahhou S.
        • Tsunoda A.
        • Donaldson M.R.
        • Iannaccone S.T.
        • Brunt E.
        • Barohn R.
        • Clark J.
        • Deymeer F.
        • George A.L.
        • Fish F.A.
        • Hahn A.
        • Nitu A.
        • Ozdemir C.
        • Serdaroglu P.
        • Subramony S.H.
        • Wolfe G.
        • Fu Y.H.
        • Ptáček L.J.
        Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome.
        Cell. 2001; 105: 511-519https://doi.org/10.1016/S0092-8674(01)00342-7
        • Kokunai Y.
        • Nakata T.
        • Furuta M.
        • Sakata S.
        • Kimura H.
        • Aiba T.
        • Yoshinaga M.
        • Osaki Y.
        • Nakamori M.
        • Itoh H.
        • Sato T.
        • Kubota T.
        • Kadota K.
        • Shindo K.
        • Mochizuki H.
        • Shimizu W.
        • Horie M.
        • Okamura Y.
        • Ohno K.
        • Takahashi M.P.
        A Kir3.4 mutation causes Andersen–Tawil syndrome by an inhibitory effect on Kir2.1.
        Neurology. 2014; 82: 1058 LP-1064https://doi.org/10.1212/WNL.0000000000000239
        • Kimura H.
        • Zhou J.
        • Kawamura M.
        • Itoh H.
        • Mizusawa Y.
        • Ding W.G.
        • Wu J.
        • Ohno S.
        • Makiyama T.
        • Miyamoto A.
        • Naiki N.
        • Wang Q.
        • Xie Y.
        • Suzuki T.
        • Tateno S.
        • Nakamura Y.
        • Zang W.J.
        • Ito M.
        • Matsuura H.
        • Horie M.
        Phenotype variability in patients carrying KCNJ2 mutations.
        Circ. Cardiovasc. Genet. 2012; 5: 344-353https://doi.org/10.1161/CIRCGENETICS.111.962316
        • Venance S.L.
        • Cannon S.C.
        • Fialho D.
        • Fontaine B.
        • Hanna M.G.
        • Ptacek L.J.
        • Tristani-Firouzi M.
        • Tawil R.
        • Griggs R.C.
        The primary periodic paralyses: diagnosis, pathogenesis and treatment.
        Brain. 2006; 129: 8-17https://doi.org/10.1093/brain/awh639
        • McManis P.G.
        • Lambert E.H.
        • Daube J.R.
        The exercise test in periodic paralysis.
        Muscle Nerve. 1986; 9: 704-710https://doi.org/10.1002/mus.880090805
        • Fournier E.
        • Arzel M.
        • Sternberg D.
        • Vicart S.
        • Laforet P.
        • Eymard B.
        • Willer J.
        • Tabti N.
        • Fontaine B.
        Electromyography guides toward subgroups of mutations in muscle channelopathies.
        Ann. Neurol. 2004; 56: 650-661https://doi.org/10.1002/ana.20241
        • Tan S.V.
        • Matthews E.
        • Barber M.
        • Burge J.A.
        • Rajakulendran S.
        • Sud R.
        • Haworth A.
        • Hanna M.G.
        Refined exercise testing can aid DNA-based diagnosis in muscle Channelopathies.
        Ann. Neurol. 2012; 69: 328-340https://doi.org/10.1002/ana.22238
      1. Tohoku Medical Megabank Organization, jMorp: Japanese multi omics reference pane, n.d. https://jmorp.megabank.tohoku.ac.jp/201909/ [accessed 19 Sep 2019].

      2. National Center for Biotechnology Information, ClinVar:public archive of relationships among sequence variation and human phenotype. [VCV000067575.1], (n.d.). https://www.ncbi.nlm.nih.gov/clinvar/variation/VCV000067575.1 [accessed 19 Sep 2019].

        • Ballester L.Y.
        • Benson D.W.
        • Wong B.
        • Law I.H.
        • Mathews K.D.
        • Vanoye C.G.
        • George A.L.
        Trafficking-competent and trafficking-defective KCNJ2 mutations in Andersen syndrome.
        Hum. Mutat. 2006; 27: 388https://doi.org/10.1002/humu.9418
        • Song J.
        • Luo S.
        • Cheng X.
        • Yue D.
        • Zhu W.
        • Lin J.
        • Huang J.
        • Lu J.
        • Zhao C.
        • Qiao K.
        Clinical features and long exercise test in Chinese patients with Andersen-Tawil syndrome.
        Muscle Nerve. 2016; 54: 1059-1063https://doi.org/10.1002/mus.25169
        • Kato H.
        • Kokunai Y.
        • Dalle C.
        • Kubota T.
        • Madokoro Y.
        • Yuasa H.
        • Uchida Y.
        • Ikeda T.
        • Mochizuki H.
        • Nicole S.
        • Fontaine B.
        • Takahashi M.P.
        • Mitake S.
        A case of non-dystrophic myotonia with concomitant mutations in the SCN4A and CLCN1 genes.
        J. Neurol. Sci. 2016; 369: 254-258https://doi.org/10.1016/j.jns.2016.08.030
        • Furby A.
        • Vicart S.
        • Camdessanché J.P.
        • Fournier E.
        • Chabrier S.
        • Lagrue E.
        • Paricio C.
        • Blondy P.
        • Touraine R.
        • Sternberg D.
        • Fontaine B.
        Heterozygous CLCN1 mutations can modulate phenotype in sodium channel myotonia.
        Neuromuscul. Disord. 2014; 24: 953-959https://doi.org/10.1016/j.nmd.2014.06.439
        • Bendahhou S.
        • Cummins T.R.
        • Hahn A.F.
        • Langlois S.
        • Waxman S.G.
        • Ptácek L.J.
        A double mutation in families with periodic paralysis defines new aspects of sodium channel slow inactivation.
        J. Clin. Invest. 2000; 106: 431-438https://doi.org/10.1172/JCI9654
        • Kubo Y.
        • Murata Y.
        Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K + channel.
        J. Physiol. 2001; 531: 645-660https://doi.org/10.1111/j.1469-7793.2001.0645h.x