Nasometric Scores in spinal and bulbar muscular atrophy - Effects of palatal lift prosthesis on dysarthria and dysphagia

Published:October 15, 2019DOI:https://doi.org/10.1016/j.jns.2019.116503

      Highlights

      • Nasalance score reflects bulbar dysfunction in spinal and bulbar muscular atrophy.
      • A palatal lift prosthesis improves dysarthria resulting from velopharyngeal dysfunction.
      • Dysphagia may be deteriorated by applying a palatal lift prosthesis.

      Abstract

      Spinal and bulbar muscular atrophy (SBMA) is a hereditary neuromuscular disease affecting only males characterized by progressive muscular atrophy and weakness in bulbar and limb muscles. The present study aimed to evaluate the features of velopharyngeal dysfunction (VPD) in SBMA subjects by an acoustic analysis of speech. Twenty-three genetically confirmed patients with SBMA were enrolled and assessed their speech by measuring the nasalance score with a Nasometer II. The nasalance scores of the SBMA group was higher than that of healthy controls (p = .035) and significantly correlated with the total score of the revised amyotrophic lateral sclerosis functional rating scale (rs = −0.520, p = .011). On the basis of the results of the VPD study, the efficacy of a palatal lift prosthesis (PLP) was assessed in two patients with SBMA to treat their VPD. The PLP improved dysarthria in both cases, although the impact of the prosthesis on dysphagia was not consistent. The present study suggested that the nasalance score is a useful quantitative measurement to evaluate VPD in patients with SBMA. A PLP may improve dysarthria in SBMA patients by reducing VPD, but the clinical application of this procedure should be considered carefully in view of its possible negative effect on dysphagia.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • La Spada A.R.
        • Wilson E.M.
        • Lubahn D.B.
        • Harding A.E.
        • Fischbeck K.H.
        Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy.
        Nature. 1991; 352: 77-79https://doi.org/10.1038/352077a0
        • Kennedy W.R.
        • Alter M.
        • Sung J.H.
        Progressive proximal spinal and bulbar muscular atrophy of late onset. A sex-linked recessive trait.
        Neurology. 1968; 18: 671-680https://doi.org/10.1212/WNL.18.7.671
        • Sobue G.
        • Hashizume Y.
        • Mukai E.
        • Hirayama M.
        • Mitsuma T.
        • Takahashi A.
        X-linked recessive bulbospinal neuronopathy. A clinicopathological study.
        Brain. 1989; 112: 209-232https://doi.org/10.1093/brain/112.1.209
        • Katsuno M.
        • Tanaka F.
        • Adachi H.
        • Banno H.
        • Suzuki K.
        • Watanabe H.
        • Sobue G.
        Pathogenesis and therapy of spinal and bulbar muscular atrophy (SBMA).
        Prog. Neurobiol. 2012; 99: 246-256https://doi.org/10.1016/j.pneurobio.2012.05.007
        • Atsuta N.
        • Watanabe H.
        • Ito M.
        • Banno H.
        • Suzuki K.
        • Katsuno M.
        • Tanaka F.
        • Tamakoshi A.
        • Sobue G.
        Natural history of spinal and bulbar muscular atrophy (SBMA): a study of 223 Japanese patients.
        Brain. 2006; 129: 1446-1455https://doi.org/10.1093/brain/awl096
        • Hashizume A.
        • Katsuno M.
        • Banno H.
        • Suzuki K.
        • Suga N.
        • Mano T.
        • Atsuta N.
        • Oe H.
        • Watanabe H.
        • Tanaka F.
        • Sobue G.
        Longitudinal changes of outcome measures in spinal and bulbar muscular atrophy.
        Brain. 2012; 135: 2838-2848https://doi.org/10.1093/brain/aws170
        • Banno H.
        • Katsuno M.
        • Suzuki K.
        • Tanaka S.
        • Suga N.
        • Hashizume A.
        • Mano T.
        • Araki A.
        • Watanabe H.
        • Fujimoto Y.
        • Yamamoto M.
        • Sobue G.
        Swallowing markers in spinal and bulbar muscular atrophy.
        Ann. Clin. Transl. Neurol. 2017; 4: 534-543https://doi.org/10.1002/acn3.425
        • Yorkston K.M.
        • Beukelman D.R.
        • Strand E.A.
        • Bell K.R.
        Chapter 9 velopharyngeal function.
        in: Yorkston K.M. Beukelman D.R. Strand E.A. Bell K.R. Management of Motor Speech Disorders in Children and Adults. 2nd ed. PRO-ED Inc., Austin1999: 359-402
        • Kummer A.W.
        Disorders of resonance and airflow secondary to cleft palate and/or velopharyngeal dysfunction.
        Semin. Speech Lang. 2011; 32: 141-149https://doi.org/10.1055/s-0031-1277716
        • Logemann J.A.
        Chapter 4 disorders of deglutition.
        in: Logamann J.A. Evaluation and Treatment of Swallowing Disorders. 2nd ed. PRO-ED Inc., Austin1998: 71-133
        • Logemann J.A.
        Chapter 2 anatomy and physiology of normal deglutition.
        in: Logamann J.A. Evaluation and Treatment of Swallowing Disorders. 2nd ed. PRO-ED Inc., Austin1998: 13-52
        • Tanaka S.
        • Banno H.
        • Katsuno M.
        • Suzuki K.
        • Suga N.
        • Hashizume A.
        • Mano T.
        • Araki A.
        • Watanabe H.
        • Adachi H.
        • Tatsumi H.
        • Yamamoto M.
        • Sobue G.
        Distinct acoustic features in spinal and bulbar muscular atrophy patients with laryngospasm.
        J. Neurol. Sci. 2014; 337: 193-200https://doi.org/10.1016/j.jns.2013.12.010
        • Rudnick E.F.
        • Sie K.C.
        Velopharyngeal insufficiency: current concepts in diagnosis and management.
        Curr. Opin. Otolaryngol. Head Neck Surg. 2008; 16: 530-535https://doi.org/10.1097/MOO.0b013e328316bd68
        • Esposito S.J.
        • Mitsumoto H.
        • Shanks M.
        Use of palatal lift and palatal augmentation prostheses to improve dysarthria in patients with amyotrophic lateral sclerosis: a case series.
        J. Prosthet. Dent. 2000; 83: 90-98https://doi.org/10.1016/S0022-3913(00)70093-X
        • Light J.
        • Edelman S.B.
        • Alba A.
        The dental prosthesis used for intraoral muscle therapy in the rehabilitation of the stroke patient. A preliminary research study.
        N. Y. State Dent. J. 2001; 67: 22-27
        • Alfwaress F.S.
        • Bibars A.R.
        • Hamasha A.
        • Maaitah E.A.
        Outcomes of palatal lift prosthesis on dysarthric speech.
        J. Craniofac. Surg. 2017; 28: 30-35https://doi.org/10.1097/SCS.0000000000003167
        • Aminpour S.
        • Leonard R.
        • Fuller S.C.
        • Belafsky P.C.
        Pharyngeal wall differences between normal younger and older adults.
        Ear Nose Throat J. 2011; 90 (epub)https://doi.org/10.1177/014556131109000421
        • Molfenter S.M.
        • Amin M.R.
        • Branski R.C.
        • Brumm J.D.
        • Hagiwara M.
        • Roof S.A.
        • Lazarus C.L.
        Age-related changes in pharyngeal lumen size: a retrospective MRI analysis.
        Dysphagia. 2015; 30: 321-327https://doi.org/10.1007/s00455-015-9602-9
        • Molfenter S.M.
        • Lenell C.
        • Lazarus C.L.
        Volumetric changes to the pharynx in healthy aging: consequence for pharyngeal swallow mechanics and function.
        Dysphagia. 2019; 34: 129-137https://doi.org/10.1007/s00455-018-9924-5
        • Leonard R.
        • Rees C.J.
        • Belafsky P.
        • Allen J.
        Fluoroscopic surrogate for pharyngeal strength: the pharyngeal construction ratio (PCR).
        Dysphagia. 2011; 26: 13-17https://doi.org/10.1007/s00455-009-9258-4
        • Bressmann T.
        Comparison of nasalance scores obtained with the Nasometer, the NasalView, and the OroNasal System.
        Cleft Palate Craniofac. J. 2005; 42: 423-433https://doi.org/10.1597/03-029.1
        • Watterson T.
        • Lewis K.E.
        Test-retest nasalance score variability in hypernasal speakers.
        Cleft Palate Craniofac. J. 2006; 43: 415-419https://doi.org/10.1597/05-104.1
        • Vitorino J.
        Velopharyngeal function in adult speakers of Portuguese diagnosed with multiple sclerosis.
        NeuroRehabilitation. 2009; 25: 279-287https://doi.org/10.3233/NRE-2009-0526
        • Poole M.L.
        • Wee J.S.
        • Folker J.E.
        • Corben L.A.
        • Delatycki M.B.
        • Vogel A.P.
        Nasality in Friedreich ataxia.
        Clin. Linguist. Phon. 2015; 29: 46-58https://doi.org/10.3109/02699206.2014.954734
        • Ogata Y.
        • Nakamura N.
        • Kubota Y.
        • Sasaguri M.
        • Kikuta R.
        • Shirasuna K.
        • Ohishi M.
        Nasometer test for analysis on velopharyngeal function of patients with cleft palate -objective criteria for velopharyngeal function.
        J. Jpn. Cleft Palate Assoc. 2003; 28: 9-19https://doi.org/10.11224/cleftpalate1976.28.1_9
        • Tachimura T.
        • Hirata S.
        • Fukumoto M.
        • Wada T.
        Paradoxical measure of nasometry in association with acquired borderline velopharyngeal incompetence in construction of speech appliances.
        Jpn. J. Logopedics Phoniatr. 1999; 40: 107-113https://doi.org/10.5112/jjlp.40.107
        • Hirata S.
        • Wada T.
        • Tachimura T.
        • Hara H.
        • Nohara K.
        • Satoh K.
        Nasalance of speech samples in Kansai (the mid-western part of Japan) dialect speakers and its availability as an evaluation tool for identifying patients with velopharyngeal incompetence following cleft palate surgery.
        J. Jpn. Cleft Palate Assoc. 2002; 27: 14-23https://doi.org/10.11224/cleftpalate1976.27.1_14
        • Kummer A.W.
        The MacKay-Kummer SNAP Test-R. Simplified Nasometric Assessment Procedures Revised.
        ResearchGate, 2005https://doi.org/10.13140/2.1.2614.6080
        • Karnell M.P.
        Nasometric discrimination of hypernasality and turbulent nasal airflow.
        Cleft Palate Craniofac. J. 1995; 32: 145-148https://doi.org/10.1597/1545-1569_1995_032_0145_ndohat_2.3.co_2
        • Freed D.B.
        Chapter 3 evaluation of motor speech disorders.
        in: Freed D.B. Motor Speech Disorders Diagnosis and Treatment. 2nd ed. DELMAR CENGAGE LearningTM, New York2012: 47-80
        • Johnson-Root B.A.
        Appendix A Recording froms.
        in: Johnson-Root B.A. Oral-Facial Evaluation for Speech-Language Pathologists. PLURAL PUBLISING Inc., San Diego2015: 211-372
        • Bibars A.R.M.
        • Alfaress F.S.D.
        • Hamasha A.A.H.
        • Al-Hourani Z.A.
        • Almhdawi K.
        Prosthodontic rehabilitation of Arabic speaking individuals with velopharyngeal incompetence: a preliminary study.
        Open Dent. J. 2017; 30: 436-446https://doi.org/10.2174/1874210601711010436
        • Logemann J.A.
        • Kahrilas P.J.
        • Kobara M.
        • Vakil N.B.
        The benefit of head rotation on pharyngoesophageal dysphagia.
        Arch. Phys. Med. Rehabil. 1989; 70: 767-771
        • Logemann J.A.
        • Pauloski B.R.
        • Rademaker A.W.
        • Colangelo L.A.
        • Kahrilas P.J.
        • Smith C.H.
        Temporal and biomechanical characteristics of oropharyngeal swallow in younger and older man.
        J. Speech Lang. Hear Res. 2000; 43: 1264-1274https://doi.org/10.1044/jslhr.4305.1264
        • Rosenbek J.C.
        • Robbins J.A.
        • Roecker E.B.
        • Coyle J.L.
        • Wood J.L.
        A penetration-aspiration scale.
        Dysphagia. 1996; 11: 93-98https://doi.org/10.1007/BF00417897
        • Johal A.
        • Sheriteh Z.
        • Battagel J.
        • Marshall C.
        The use of videofluoroscopy in the assessment of the pharyngeal airway in obstructive sleep apnoea.
        Eur. J. Orthod. 2011; 33: 212-219https://doi.org/10.1093/ejo/cjq058
        • Schneider C.A.
        • Rasband W.S.
        • Eliceiri K.W.
        NIH image to ImageJ: 25 years of image analysis.
        Nat. Methods. 2012; 9: 671-675https://doi.org/10.1038/nmeth.2089
        • Kaur S.
        • Rai S.
        • Kaur M.
        Comparison of reliability of lateral cephalogram and computed tomography for assessment of airway space.
        Niger. J. Clin. Pract. 2014; 17: 629-636https://doi.org/10.4103/1119-3077.141431
        • The ALS CNTF Treatment Study (ACTS) Phase I-II Study Group, The Amyotrophic Lateral Sclerosis Functional Rating Scale
        Assessment of activities of daily living in patients with amyotrophic lateral sclerosis.
        Arch. Neurol. 1996; 53: 141-147https://doi.org/10.1001/archneur.1996.00550020045014
        • Ohashi Y.
        • Tashiro K.
        • Itoyama Y.
        • Nakano I.
        • Sobue G.
        • Nakamura S.
        • Sumino S.
        • Yanagisawa N.
        Study of functional rating scale for amyotrophic lateral sclerosis: revised ALSFRS (ALSFRS-R) Japanese version.
        No To Shinkei. 2001; 53: 346-355https://doi.org/10.11477/mf.1406901755
        • Katsuno M.
        • Banno H.
        • Suzuki K.
        • Takeuchi Y.
        • Kawashima M.
        • Yabe I.
        • Sasaki H.
        • Aoki M.
        • Morita M.
        • Nakano I.
        • Kanai K.
        • Ito S.
        • Ishikawa K.
        • Mizusawa H.
        • Yamamoto T.
        • Tsuji S.
        • Hasegawa K.
        • Shimohata T.
        • Nishizawa M.
        • Miyajima H.
        • Kanda F.
        • Watanabe Y.
        • Nakashima K.
        • Tsujino A.
        • Yamashita T.
        • Uchino M.
        • Fujimoto Y.
        • Tanaka F.
        • Sobue G.
        • Japan SBMA Interventional Trial for TAP-144-SR (JASMITT) Study Group
        Efficacy and safety of leuprorelin in patients with spinal and bulbar muscular atrophy (JASMITT study): a multicenter, randomized, double-blind, placebo-controlled trial.
        Lancet Neurol. 2010; 9: 875-884https://doi.org/10.1016/S1474-4422(10)70182-4
        • McHorney C.A.
        • Robbins J.
        • Lomax K.
        • Rosenbek J.C.
        • Chignell K.
        • Kramer A.E.
        • Bricker D.E.
        The SWAL-QOL and SWAL-CARE outcomes tool for oropharyngeal dysphagia in adults: III. Documentation of reliability and validity.
        Dysphagia. 2002; 17: 97-114https://doi.org/10.1007/s00455-001-0109-1
        • Wada M.
        • Hoshino Y.
        • Okudaira N.
        • Kanai H.
        • Mineshita K.
        • Kusumoto K.
        • Fujitani J.
        Assessment of quality of life for people with dysphagia: use of the SF-36 and trial use of the SWAL-QOL and SWAL-CARE outcomes tool in Japan.
        Jpn. J. Dysphagia Rehab. 2003; 7: 109-116
        • Doyu M.
        • Sobue G.
        • Mukai E.
        • Kachi T.
        • Yasuda T.
        • Mitsuma T.
        • Takahashi A.
        Severity of X-linked recessive bulbospinal neuronopathy correlates with size of the tandem CAG repeat in androgen receptor gene.
        Ann. Neurol. 1992; 32: 707-710https://doi.org/10.1002/ana.410320517
        • Akobeng A.K.
        Understanding diagnostic test 3: receiver operating characteristics curves.
        Acta Paediatr. 2007; 96: 644-647https://doi.org/10.1111/j.1651-2227.2006.00178.x
        • Imatomi S.
        Effects of breathy voice source on ratings of hypernasality.
        Cleft Palate Craniofac. J. 2005; 42: 641-648https://doi.org/10.1597/03-146.1