Tau progression in single severe frontal traumatic brain injury in human brains

Published:October 09, 2019DOI:https://doi.org/10.1016/j.jns.2019.116495

      Highlights

      • We examined the neuropathology of schizophrenia with prefrontal leucotomy as a single severe traumatic brain injury (sTBI).
      • Neuronal loss/gliosis with tau pathology were found not only in the ablated region, but also in secondary areas connected to the primary lesions.
      • Abnormal tau might progress to connected regions via neuronal circuits over time.
      • The mechanism of progression in sTBI might be different from that in the diagnostic criteria for CTE.

      Abstract

      The neuropathological features of chronic traumatic encephalopathy (CTE), caused by repeated traumatic brain injury (TBI), include abnormal accumulations of hyper-phosphorylated tau (p-tau) protein in neurons, neurites and astrocytes, considered to progress via neuronal circuits in brains. Some previous reports suggest that a single severe TBI (sTBI) can also induce CTE and p-tau accumulation, but it is not clear whether the pathology is the same as that of repetitive TBI (rTBI). Since prefrontal leucotomy could be regarded as a model of sTBI, in this study we evaluated two autopsied schizophrenia with this procedure. Histopathologically, gliosis and neuronal loss were found not only in the primary ablated prefrontal region, but also in secondary affected areas, i.e., cingulate gyrus, medial nucleus of the thalamus, and nucleus accumbens, which are connected to prefrontal areas. Accumulation of p-tau was mostly seen in neurons, neurites and glias around small blood vessels in the leucotomized prefrontal region. In addition, secondary regions showed some p-tau-positive neurons/glias, as well as many axonal spheroids. Regions of neuronal/glial p-tau pathology showed immunoreactivity to both 3R/4R tau antibodies. Immunoblot analyses of sarkosyl-insoluble tau from frozen brains showed an AD-type tau banding pattern with strong immunoreactivities. sTBI patients showed limited comorbidities, such as TDP-43, alpha-synuclein or AD pathology, whereas rTBI patients have high frequencies of them. The findings suggest that p-tau in the primary affected lesion might progress to connected regions via neuronal circuits over time, and a single severe axonal injury might lead to CTE pathology different from that caused by rTBI.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • McKee A.C.
        • Cairns N.J.
        • Dickson D.W.
        • Folkerth R.D.
        • Keene C.D.
        • Litvan I.
        • Perl D.P.
        • Stein T.D.
        • Vonsattel J.P.
        • Stewart W.
        • Tripodis Y.
        • Crary J.F.
        • Bieniek K.F.
        • Dams-O'Connor K.
        • Alvarez V.E.
        • Gordon W.A.
        • T.C. group
        The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy.
        Acta Neuropathol. 2016; 131: 75-86
        • McKee A.C.
        • Stern R.A.
        • Nowinski C.J.
        • Stein T.D.
        • Alvarez V.E.
        • Daneshvar D.H.
        • Lee H.S.
        • Wojtowicz S.M.
        • Hall G.
        • Baugh C.M.
        • Riley D.O.
        • Kubilus C.A.
        • Cormier K.A.
        • Jacobs M.A.
        • Martin B.R.
        • Abraham C.R.
        • Ikezu T.
        • Reichard R.R.
        • Wolozin B.L.
        • Budson A.E.
        • Goldstein L.E.
        • Kowall N.W.
        • Cantu R.C.
        The spectrum of disease in chronic traumatic encephalopathy.
        Brain. 2013; 136: 43-64
        • McKee A.C.
        • Robinson M.E.
        Military-related traumatic brain injury and neurodegeneration.
        Alzheimers Dement. 2014; 10: S242-S253
        • Smith D.H.
        • Johnson V.E.
        • Stewart W.
        Chronic neuropathologies of single and repetitive TBI: substrates of dementia?.
        Nat. Rev. Neurol. 2013; 9: 211-221
        • Smith D.H.
        • Johnson V.E.
        • Trojanowski J.Q.
        • Stewart W.
        Chronic traumatic encephalopathy - confusion and controversies.
        Nat. Rev. Neurol. 2019; 15: 179-183
        • Iacono D.
        • Lee P.
        • Hallett M.
        • Perl D.
        Possible post-traumatic focal dystonia associated with tau pathology localized to putamen-Globus pallidus.
        Mov. Disord. Clin. Pract. 2018; 5: 492-498
        • Stern R.A.
        • Riley D.O.
        • Daneshvar D.H.
        • Nowinski C.J.
        • Cantu R.C.
        • McKee A.C.
        Long-term consequences of repetitive brain trauma: chronic traumatic encephalopathy.
        PM&R. 2011; 3: S460-S467
        • Shively S.B.
        • Edgerton S.L.
        • Iacono D.
        • Purohit D.P.
        • Qu B.X.
        • Haroutunian V.
        • Davis K.L.
        • Diaz-Arrastia R.
        • Perl D.P.
        Localized cortical chronic traumatic encephalopathy pathology after single, severe axonal injury in human brain.
        Acta Neuropathol. 2017; 133: 353-366
        • Hirose S.
        Orbito-ventromedial undercutting 1957–1963; follow-up study of 77 cases.
        Am. J. Psychiatry. 1965; 121: 1194-1202
        • Tan E.
        • Marks I.M.
        • Marset P.
        Bimedial leucotomy in obsessive-compulsive neurosis: a controlled serial enquiry.
        Br. J. Psychiatry. 1971; 118: 155-164
        • Tsuchiya M.
        A pathological investigation of brains subjected to orbito-ventromedial undercutting (Hirose).
        Seishin Shinkeigaku Zasshi. 1972; 74: 536-545
        • Arai Y.
        • Tsutsui Y.
        • Shinmura Y.
        • Kosugi T.
        • Nishikage H.
        • Yamamoto J.
        An autopsy case of the schizophrenic 32 years after lobotomy.
        Neuropathology. 2001; 21: 53-60
        • Greenwood Jr., J.
        Post mortem findings in prefrontal lobotomy; report of a case.
        Dis. Nerv. Syst. 1948; 9: 279-282
        • Pakkenberg B.
        What happens in the leucotomised brain? A postmortem morphological study of brains from schizophrenic patients.
        J. Neurol. Neurosurg. Psychiatry. 1989; 52: 156-161
        • Braak H.
        • Braak E.
        Neuropathological stageing of Alzheimer-related changes.
        Acta Neuropathol. 1991; 82: 239-259
        • Braak H.
        • Del Tredici K.
        • Rub U.
        • de Vos R.A.
        • Jansen Steur E.N.
        • Braak E.
        Staging of brain pathology related to sporadic Parkinson's disease.
        Neurobiol. Aging. 2003; 24: 197-211
        • Braak H.
        • Ludolph A.
        • Thal D.R.
        • Del Tredici K.
        Amyotrophic lateral sclerosis: dash-like accumulation of phosphorylated TDP-43 in somatodendritic and axonal compartments of somatomotor neurons of the lower brainstem and spinal cord.
        Acta Neuropathol. 2010; 120: 67-74
        • Kawakami I.
        • Hasegawa M.
        • Arai T.
        • Ikeda K.
        • Oshima K.
        • Niizato K.
        • Aoki N.
        • Omi K.
        • Higashi S.
        • Hosokawa M.
        • Hirayasu Y.
        • Akiyama H.
        Tau accumulation in the nucleus accumbens in tangle-predominant dementia.
        Acta Neuropathol. Commun. 2014; 2: 40
        • Seeley W.W.
        • Crawford R.K.
        • Zhou J.
        • Miller B.L.
        • Greicius M.D.
        Neurodegenerative diseases target large-scale human brain networks.
        Neuron. 2009; 62: 42-52
        • Hasegawa M.
        • Nonaka T.
        • Masuda-Suzukake M.
        Prion-like mechanisms and potential therapeutic targets in neurodegenerative disorders.
        Pharmacol. Ther. 2017; 172: 22-33
        • Cauley K.A.
        • Waheed W.
        • Salmela M.
        • Filippi C.G.
        MR imaging of psychosurgery: rostral atrophy following stereotacic subcaudate tractotomy.
        Br. J. Radiol. 2010; 83: e239-e242
        • Uchino A.
        • Kato A.
        • Yuzuriha T.
        • Takashima Y.
        • Kudo S.
        Cranial MR imaging of sequelae of prefrontal lobotomy.
        AJNR Am. J. Neuroradiol. 2001; 22: 301-304
        • Watanabe K.
        • Isoo A.
        • Niizato K.
        • Nonaka T.
        • Oshima K.
        • Inui T.
        • et al.
        What happened in the lobotomized brain?-Tractographic analysis of prefontal lobotomy for mental illness.
        Funct. Neurosurg. 2013; 52: 31-37
        • Goldman-Rakic P.S.
        • Porrino L.J.
        The primate mediodorsal (MD) nucleus and its projection to the frontal lobe.
        J. Comp. Neurol. 1985; 242: 535-560
        • Eg J.
        • Bilenberg N.
        • Costello E.J.
        • Wesselhoeft R.
        Self- and parent-reported depressive symptoms rated by the mood and feelings questionnaire.
        Psychiatry Res. 2018; 268: 419-425
        • Saleem K.S.
        • Kondo H.
        • Price J.L.
        Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey.
        J. Comp. Neurol. 2008; 506: 659-693
        • Yokoi S.
        Neuropathological study of prefrontal lobotomy.
        J. Neuropathol. Exp. Neurol. 1957; 16: 251-260
        • Falcon B.
        • Zivanov J.
        • Zhang W.
        • Murzin A.G.
        • Garringer H.J.
        • Vidal R.
        • Crowther R.A.
        • Newell K.L.
        • Ghetti B.
        • Goedert M.
        • Scheres S.H.W.
        Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules.
        Nature. 2019; 568: 420-423
        • Stewart W.
        • Allinson K.
        • Al-Sarraj S.
        • Bachmeier C.
        • Barlow K.
        • Belli A.
        • Burns M.P.
        • Carson A.
        • Crawford F.
        • Dams-O'Connor K.
        • Diaz-Arrastia R.
        • Dixon C.E.
        • Edlow B.L.
        • Ferguson S.
        • Fischl B.
        • Folkerth R.D.
        • Gentleman S.
        • Giza C.C.
        • Grady M.S.
        • Helmy A.
        • Herceg M.
        • Holton J.L.
        • Howell D.
        • Hutchinson P.J.
        • Iacono D.
        • Iglesias J.E.
        • Ikonomovic M.D.
        • Johnson V.E.
        • Keene C.D.
        • Kofler J.K.
        • Koliatsos V.E.
        • Lee E.B.
        • Levin H.
        • Lifshitz J.
        • Ling H.
        • Loane D.J.
        • Love S.
        • Maas A.I.
        • Marklund N.
        • Master C.L.
        • McElvenny D.M.
        • Meaney D.F.
        • Menon D.K.
        • Montine T.J.
        • Mouzon B.
        • Mufson E.J.
        • Ojo J.O.
        • Prins M.
        • Revesz T.
        • Ritchie C.W.
        • Smith C.
        • Sylvester R.
        • Tang C.Y.
        • Trojanowski J.Q.
        • Urankar K.
        • Vink R.
        • Wellington C.
        • Wilde E.A.
        • Wilson L.
        • Yeates K.
        • Smith D.H.
        Primum non nocere: a call for balance when reporting on CTE.
        Lancet Neurol. 2019; 18: 231-233
        • Kaufman S.K.
        • Sanders D.W.
        • Thomas T.L.
        • Ruchinskas A.J.
        • Vaquer-Alicea J.
        • Sharma A.M.
        • Miller T.M.
        • Diamond M.I.
        Tau prion strains dictate patterns of cell pathology, progression rate, and regional vulnerability in vivo.
        Neuron. 2016; 92: 796-812
        • Narasimhan S.
        • Guo J.L.
        • Changolkar L.
        • Stieber A.
        • McBride J.D.
        • Silva L.V.
        • He Z.
        • Zhang B.
        • Gathagan R.J.
        • Trojanowski J.Q.
        • Lee V.M.Y.
        Pathological tau strains from human brains recapitulate the diversity of Tauopathies in nontransgenic mouse brain.
        J. Neurosci. 2017; 37: 11406-11423
        • Smith C.
        • Graham D.I.
        • Murray L.S.
        • Nicoll J.A.
        Tau immunohistochemistry in acute brain injury.
        Neuropathol. Appl. Neurobiol. 2003; 29: 496-502
        • Graham D.I.
        • Gentleman S.M.
        • Lynch A.
        • Roberts G.W.
        Distribution of beta-amyloid protein in the brain following severe head injury.
        Neuropathol. Appl. Neurobiol. 1995; 21: 27-34
        • Johnson V.E.
        • Stewart W.
        • Trojanowski J.Q.
        • Smith D.H.
        Acute and chronically increased immunoreactivity to phosphorylation-independent but not pathological TDP-43 after a single traumatic brain injury in humans.
        Acta Neuropathol. 2011; 122: 715-726
        • Mez J.
        • Daneshvar D.H.
        • Kiernan P.T.
        • Abdolmohammadi B.
        • Alvarez V.E.
        • Huber B.R.
        • Alosco M.L.
        • Solomon T.M.
        • Nowinski C.J.
        • McHale L.
        • Cormier K.A.
        • Kubilus C.A.
        • Martin B.M.
        • Murphy L.
        • Baugh C.M.
        • Montenigro P.H.
        • Chaisson C.E.
        • Tripodis Y.
        • Kowall N.W.
        • Weuve J.
        • McClean M.D.
        • Cantu R.C.
        • Goldstein L.E.
        • Katz D.I.
        • Stern R.A.
        • Stein T.D.
        • McKee A.C.
        Clinicopathological evaluation of chronic traumatic encephalopathy in players of American football.
        JAMA. 2017; 318: 360-370
        • Dong D.W.
        • Zhang Y.S.
        • Yang W.Y.
        • Wang-Qin R.Q.
        • Xu A.D.
        • Ruan Y.W.
        Hyperphosphorylation of tau protein in the ipsilateral thalamus after focal cortical infarction in rats.
        Brain Res. 2014; 1543: 280-289
        • Hatsuta H.
        • Takao M.
        • Nogami A.
        • Uchino A.
        • Sumikura H.
        • Takata T.
        • Morimoto S.
        • Kanemaru K.
        • Adachi T.
        • Arai T.
        • Hasegawa M.
        • Murayama S.
        Tau and TDP-43 accumulation of the basal nucleus of Meynert in individuals with cerebral lobar infarcts or hemorrhage.
        Acta Neuropathol. Commun. 2019; 7: 49
        • Kato T.
        • Hirano A.
        • Katagiri T.
        • Sasaki H.
        • Yamada S.
        Neurofibrillary tangle formation in the nucleus basalis of Meynert ipsilateral to a massive cerebral infarct.
        Ann. Neurol. 1988; 23: 620-623
        • Purushothuman S.
        • Marotte L.
        • Stowe S.
        • Johnstone D.M.
        • Stone J.
        The response of cerebral cortex to haemorrhagic damage: experimental evidence from a penetrating injury model.
        PLoS One. 2013; 8e59740
        • Roberts G.W.
        • Gentleman S.M.
        • Lynch A.
        • Graham D.I.
        Beta A4 amyloid protein deposition in brain after head trauma.
        Lancet. 1991; 338: 1422-1423
        • Johnson V.E.
        • Stewart W.
        • Smith D.H.
        Widespread tau and amyloid-beta pathology many years after a single traumatic brain injury in humans.
        Brain Pathol. 2012; 22: 142-149
        • Jellinger K.A.
        • Gabriel E.
        No increased incidence of Alzheimer's disease in elderly schizophrenics.
        Acta Neuropathol. 1999; 97: 165-169
        • Higaki J.
        • Murphy Jr., G.M.
        • Cordell B.
        Inhibition of beta-amyloid formation by haloperidol: a possible mechanism for reduced frequency of Alzheimer's disease pathology in schizophrenia.
        J. Neurochem. 1997; 68: 333-336
        • Jellinger K.A.
        Dementia as a complication of schizophrenia.
        J. Neurol. Neurosurg. Psychiatry. 2001; 71: 707-708
        • Harrison P.J.
        The neuropathology of schizophrenia. A critical review of the data and their interpretation.
        Brain. 1999; 122 (Pt 4): 593-624
        • Iritani S.
        Neuropathology of schizophrenia: a mini review.
        Neuropathology. 2007; 27: 604-608
        • Catts V.S.
        • Fung S.J.
        • Long L.E.
        • Joshi D.
        • Vercammen A.
        • Allen K.M.
        • Fillman S.G.
        • Rothmond D.A.
        • Sinclair D.
        • Tiwari Y.
        • Tsai S.Y.
        • Weickert T.W.
        • Shannon Weickert C.
        Rethinking schizophrenia in the context of normal neurodevelopment.
        Front. Cell. Neurosci. 2013; 7: 60