Altered hypothalamic metabolism in early multiple sclerosis – MR spectroscopy study

Published:September 11, 2019DOI:https://doi.org/10.1016/j.jns.2019.116458

      Highlights

      • Using 1H MRS was confirmed involvement of the hypothalamus to the early MS.
      • Neurodegeneration affects the hypothalamus in early MS more than inflammation.
      • Glutamate excitotoxicity causes neurodegeneration in the hypothalamus in early MS.
      • Glx/tNAA is a potential marker of early MS progression.

      Abstract

      Multiple sclerosis (MS) is a disease characterized by overlapping processes of neuroinflammation and neuro-axonal degeneration. Disturbances of the hypothalamo-pituitary axis in MS are supposed to modulate neuroinflammatory circuits, however, there is insufficient knowledge about the hypothalamic metabolism alterations in early MS. This 1H MRS study performed on a 1.5 T MR-scanner was focused on the hypothalamus of 31 pre-treatment patients after their first clinical MS episode/s, compared to 31 healthy controls. The metabolite ratios of N-acetyl-aspartate & N-acetyl-aspartyl-glutamate (tNAA), glutamate & glutamine (Glx), myo-Inositol (mIns), choline- and creatine-containing compounds (tCho, tCr) were further correlated with the Expanded Disability Status Scale (EDSS). In the hypothalamus of early MS patients compared to controls, we found decreased tNAA/tCr and increased tCho/tNAA, mIns/tNAA, Glx/tCr, and Glx/tNAA. In addition, tCho/tNAA, Glx/tNAA, and mIns/tNAA were positively and tNAA/tCr was negatively correlated with EDSS. Results suggest that the decline of the tNAA ratio, indicating neuro-axonal dysfunction in the hypothalamus, may be linked with glutamate excitotoxicity. Excessive glutamate concentrations may cause microglial activation and myelinated tracts degradation with subsequent gliosis, paralleled by increased mIns and tCho ratios. This indicates that glutamate excitotoxicity can play an important role in MS from its earliest stages.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Messina S.
        • Patti F.
        Gray matters in multiple sclerosis: cognitive impairment and structural MRI.
        Mult. Scler. Int. 2014; 2014609694https://doi.org/10.1155/2014/609694
        • Donadieu M.
        • Le Fur Y.
        • Lecocq A.
        • Maudsley A.A.
        • Gherib S.
        • Soulier E.
        • Confort-Gouny S.
        • Pariollaud F.
        • Ranjeva M.P.
        • Pelletier J.
        • Guye M.
        • Zaaraoui W.
        • Audoin B.
        • Ranjeva J.P.
        Metabolic voxel-based analysis of the complete human brain using fast 3D-MRSI: proof of concept in multiple sclerosis.
        J. Magn. Reson. Imaging. 2016; 44: 411-419https://doi.org/10.1002/jmri.25139
        • Dutta R.
        • McDonough J.
        • Yin X.
        • Peterson J.
        • Chang A.
        • Torres T.
        • Gudz T.
        • Macklin W.B.
        • Lewis D.A.
        • Fox R.J.
        • Rudick R.
        • Mirnics K.
        • Trapp B.D.
        Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients.
        Ann. Neurol. 2006; 59: 478-489https://doi.org/10.1002/ana.20736
        • Haussleiter I.S.
        • Brune M.
        • Juckel G.
        Psychopathology in multiple sclerosis: diagnosis, prevalence and treatment.
        Ther. Adv. Neurol. Disord. 2009; 2: 13-29https://doi.org/10.1177/1756285608100325
        • Burfeind K.G.
        • Yadav V.
        • Marks D.L.
        Hypothalamic dysfunction and multiple sclerosis: implications for fatigue and weight dysregulation.
        Curr. Neurol. Neurosci. Reports. 2016; 16: 98https://doi.org/10.1007/s11910-016-0700-3
        • Bergsland N.
        • Horakova D.
        • Dwyer M.G.
        • Dolezal O.
        • Seidl Z.K.
        • Vaneckova M.
        • Krasensky J.
        • Havrdova E.
        • Zivadinov R.
        Subcortical and cortical gray matter atrophy in a large sample of patients with clinically isolated syndrome and early relapsing-remitting multiple sclerosis.
        AJNR Am. J. Neuroradiol. 2012; 33: 1573-1578https://doi.org/10.3174/ajnr.A3086
        • Zivadinov R.
        • Heininen-Brown M.
        • Schirda C.V.
        • Poloni G.U.
        • Bergsland N.
        • Magnano C.R.
        • Durfee J.
        • Kennedy C.
        • Carl E.
        • Hagemeier J.
        • Benedict R.H.
        • Weinstock-Guttman B.
        • Dwyer M.G.
        Abnormal subcortical deep-gray matter susceptibility-weighted imaging filtered phase measurements in patients with multiple sclerosis: a case-control study.
        NeuroImage. 2012; 59: 331-339https://doi.org/10.1016/j.neuroimage.2011.07.045
        • Horakova D.
        • Kalincik T.
        • Dusankova J.B.
        • Dolezal O.
        Clinical correlates of grey matter pathology in multiple sclerosis.
        BMC Neurol. 2012; 12: 10https://doi.org/10.1186/1471-2377-12-10
        • Deckx N.
        • Lee W.P.
        • Berneman Z.N.
        • Cools N.
        Neuroendocrine immunoregulation in multiple sclerosis.
        Clin. Dev. Immunol. 2013; 2013705232https://doi.org/10.1155/2013/705232
        • Huitinga I.
        • De Groot C.J.
        • Van der Valk P.
        • Kamphorst W.
        • Tilders F.J.
        • Swaab D.F.
        Hypothalamic lesions in multiple sclerosis.
        J. Neuropathol. Exp. Neurol. 2001; 60: 1208-1218
        • Kantorova E.
        • Polacek H.
        • Bittsansky M.
        • Baranovicova E.
        • Hnilicova P.
        • Cierny D.
        • Sivak S.
        • Nosal V.
        • Zelenak K.
        • Kurca E.
        Hypothalamic damage in multiple sclerosis correlates with disease activity, disability, depression, and fatigue.
        Neurol. Res. 2017; 39: 323-330https://doi.org/10.1080/01616412.2016.1275460
        • Polacek H.
        • Kantorova E.
        • Hnilicova P.
        • Grendar M.
        • Zelenak K.
        • Kurca E.
        Increased glutamate and deep brain atrophy can predict the severity of multiple sclerosis.
        Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2019; 163: 45-53https://doi.org/10.5507/bp.2018.036
        • Stojanovic I.R.
        • Kostic M.
        • Ljubisavljevic S.
        The role of glutamate and its receptors in multiple sclerosis.
        J. Neural Transm. 2014; 121: 945-955https://doi.org/10.1007/s00702-014-1188-0
        • Macrez R.
        • Stys P.K.
        • Vivien D.
        • Lipton S.A.
        • Docagne F.
        Mechanisms of glutamate toxicity in multiple sclerosis: biomarker and therapeutic opportunities.
        Lancet Neurol. 2016; 15: 1089-1102https://doi.org/10.1016/S1474-4422(16)30165-X
        • Azevedo C.J.
        • Kornak J.
        • Chu P.
        • Sampat M.
        • Okuda D.T.
        • Cree B.A.
        • Nelson S.J.
        • Hauser S.L.
        • Pelletier D.
        In vivo evidence of glutamate toxicity in multiple sclerosis.
        Ann. Neurol. 2014; 76: 269-278https://doi.org/10.1002/ana.24202
        • Srinivasan R.
        • Sailasuta N.
        • Hurd R.
        • Nelson S.
        • Pelletier D.
        Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T.
        Brain. 2005; 128 (Pt 5): 1016-1025https://doi.org/10.1093/brain/awh467
        • De Stefano N.
        • Bartolozzi M.L.
        • Guidi L.
        • Stromillo M.L.
        • Federico A.
        Magnetic resonance spectroscopy as a measure of brain damage in multiple sclerosis.
        J. Neurol. Sci. 2005; 233: 203-208https://doi.org/10.1016/j.jns.2005.03.018
        • Llufriu S.
        • Kornak J.
        • Ratiney H.
        • Oh J.
        • Brenneman D.
        • Cree B.A.
        • Sampat M.
        • Hauser S.L.
        • Nelson S.J.
        • Pelletier D.
        Magnetic resonance spectroscopy markers of disease progression in multiple sclerosis.
        JAMA Neurol. 2014; 71: 840-847https://doi.org/10.1001/jamaneurol.2014.895
        • Tiberio M.
        • Chard D.T.
        • Altmann D.R.
        • Davies G.
        • Griffin C.M.
        • McLean M.A.
        • Rashid W.
        • Sastre-Garriga J.
        • Thompson A.J.
        • Miller D.H.
        Metabolite changes in early relapsing-remitting multiple sclerosis - a two year follow-up study.
        J. Neurol. 2006; 253: 224-230https://doi.org/10.1007/s00415-005-0964-z
        • Soares D.P.
        • Law M.
        Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications.
        Clin. Radiol. 2009; 64: 12-21https://doi.org/10.1016/j.crad.2008.07.002
        • Sajja B.R.
        • Wolinsky J.S.
        • Narayana P.A.
        Proton magnetic resonance spectroscopy in multiple sclerosis.
        Neuroimaging Clin. N. Am. 2009; 19: 45-58https://doi.org/10.1016/j.nic.2008.08.002
        • Tisell A.
        • Leinhard O.D.
        • Warntjes J.B.
        • Aalto A.
        • Smedby O.
        • Landtblom A.M.
        • Lundberg P.
        Increased concentrations of glutamate and glutamine in normal-appearing white matter of patients with multiple sclerosis and normal MR imaging brain scans.
        PLoS ONE. 2013; 8e61817https://doi.org/10.1371/journal.pone.0061817
        • Ruiz-Pena J.L.
        • Pinero P.
        • Sellers G.
        • Argente J.
        • Casado A.
        • Foronda J.
        • Ucles A.
        • Izquierdo G.
        Magnetic resonance spectroscopy of normal appearing white matter in early relapsing-remitting multiple sclerosis: correlations between disability and spectroscopy.
        BMC Neurol. 2004; 4https://doi.org/10.1186/1471-2377-4-8
        • Zaini W.H.
        • Giuliani F.
        • Beaulieu C.
        • Kalra S.
        • Hanstock C.
        Fatigue in multiple sclerosis: assessing pontine involvement using proton MR spectroscopic imaging.
        PLoS ONE. 2016; 11e0149622https://doi.org/10.1371/journal.pone.0149622
        • Quarantelli M.
        MRI/MRS in neuroinflammation: methodology and applications.
        Clin. Transl. Imaging. 2015; 3: 475-489https://doi.org/10.1007/s40336-015-0142-y
        • Kirov I.I.
        • Tal A.
        • Babb J.S.
        • Herbert J.
        • Gonen O.
        Serial proton MR spectroscopy of gray and white matter in relapsing-remitting MS.
        Neurology. 2013; 80: 39-46https://doi.org/10.1212/WNL.0b013e31827b1a8c
        • Fernando K.T.
        • McLean M.A.
        • Chard D.T.
        • MacManus D.G.
        • Dalton C.M.
        • Miszkiel K.A.
        • Gordon R.M.
        • Plant G.T.
        • Thompson A.J.
        • Miller D.H.
        Elevated white matter myo-inositol in clinically isolated syndromes suggestive of multiple sclerosis.
        Brain. 2004; 127 (Pt 6): 1361-1369https://doi.org/10.1093/brain/awh153
        • Gillard J.
        • Wladman A.
        • Barker P.
        Clinical MR Neuroimaging.
        Cambridge University Press, Cambridge2010
        • Duong M.V.A.
        • Audoin B.
        • Le Fur Y.
        • Confort-Gouny S.
        • Malikova I.
        • Soulier E.
        • Viout P.
        • Ali-Cherif A.
        • Pelletier J.
        • Cozzone P.J.
        • Ranjeva J.P.
        Relationships between gray matter metabolic abnormalities and white matter inflammation in patients at the very early stage of MS - a MRSI study.
        J. Neurol. 2007; 254: 914-923https://doi.org/10.1007/s00415-006-0474-7
        • Polman C.H.
        • Reingold S.C.
        • Banwell B.
        • Clanet M.
        • Cohen J.A.
        • Filippi M.
        • Fujihara K.
        • Havrdova E.
        • Hutchinson M.
        • Kappos L.
        • Lublin F.D.
        • Montalban X.
        • O'Connor P.
        • Sandberg-Wollheim M.
        • Thompson A.J.
        • Waubant E.
        • Weinshenker B.
        • Wolinsky J.S.
        Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria.
        Ann. Neurol. 2011; 69: 292-302https://doi.org/10.1002/ana.22366
        • Moheet A.
        • Emir U.E.
        • Terpstra M.
        • Kumar A.
        • Eberly L.E.
        • Seaquist E.R.
        • Oz G.
        Initial experience with seven tesla magnetic resonance spectroscopy of hypothalamic GABA during hyperinsulinemic euglycemia and hypoglycemia in healthy humans.
        Magn. Reson. Med. 2014; 71: 12-18https://doi.org/10.1002/mrm.24663
        • Joers J.M.
        • Deelchand D.K.
        • Kumar A.
        • Moheet A.
        • Seaquist E.
        • Henry P.G.
        • Oz G.
        Measurement of hypothalamic glucose under Euglycemia and hyperglycemia by MRI at 3T.
        J. Magn. Reson. Imaging. 2017; 45: 681-691https://doi.org/10.1002/jmri.25383
        • van den Bogaard S.J.
        • Dumas E.M.
        • Teeuwisse W.M.
        • Kan H.E.
        • Webb A.
        • Roos R.A.
        • van der Grond J.
        Exploratory 7-tesla magnetic resonance spectroscopy in Huntington's disease provides in vivo evidence for impaired energy metabolism.
        J. Neurol. 2011; 258: 2230-2239https://doi.org/10.1007/s00415-011-6099-5
        • Hulst H.E.
        • Geurts J.J.
        Gray matter imaging in multiple sclerosis: what have we learned?.
        BMC Neurol. 2011; 11: 153https://doi.org/10.1186/1471-2377-11-153
        • Filippi M.
        • Rocca M.A.
        MR imaging of gray matter involvement in multiple sclerosis: implications for understanding disease pathophysiology and monitoring treatment efficacy.
        AJNR Am. J. Neuroradiol. 2010; 31: 1171-1177https://doi.org/10.3174/ajnr.A1944
        • Inglese M.
        • Liu S.
        • Babb J.S.
        • Mannon L.J.
        • Grossman R.I.
        • Gonen O.
        Three-dimensional proton spectroscopy of deep gray matter nuclei in relapsing-remitting MS.
        Neurology. 2004; 63: 170-172
        • Wylezinska M.
        • Cifelli A.
        • Jezzard P.
        • Palace J.
        • Alecci M.
        • Matthews P.M.
        Thalamic neurodegeneration in relapsing-remitting multiple sclerosis.
        Neurology. 2003; 60: 1949-1954
        • Geurts J.J.
        • Reuling I.E.
        • Vrenken H.
        • Uitdehaag B.M.
        • Polman C.H.
        • Castelijns J.A.
        • Barkhof F.
        • Pouwels P.J.
        MR spectroscopic evidence for thalamic and hippocampal, but not cortical, damage in multiple sclerosis.
        Magn. Reson. Med. 2006; 55: 478-483https://doi.org/10.1002/mrm.20792
        • Khan O.
        • Seraji-Bozorgzad N.
        • Bao F.
        • Razmjou S.
        • Caon C.
        • Santiago C.
        • Latif Z.
        • Aronov R.
        • Zak I.
        • Ashtamker N.
        • Kolodny S.
        • Ford C.
        • Sidi Y.
        The relationship between brain MR spectroscopy and disability in multiple sclerosis.
        J. Neuroimaging. 2017; 27: 97-106
        • Muhlert N.
        • Atzori M.
        • De Vita E.
        • Thomas D.L.
        • Samson R.S.
        • Wheeler-Kingshott C.A.M.
        • Geurts J.J.G.
        • Miller D.H.
        • Thompson A.J.
        • Ciccarelli O.
        Memory in multiple sclerosis is linked to glutamate concentration in grey matter regions.
        J. Neurol. Neurosurg. Psychiatry. 2014; 85: 834-840https://doi.org/10.1136/jnnp-2013-306662
        • Jafari N.
        Risk Factors in Cause and Course of Multiple Sclerosis.
        Ridderprint BV, Amsterdam2011
        • Burton E.V.
        • Greenberg B.M.
        • Frohman E.M.
        Optic neuritis: a mechanistic view.
        Pathophysiology. 2011; 18: 81-92https://doi.org/10.1016/j.pathophys.2010.04.009
        • Hauser S.L.
        • Oksenberg J.R.
        The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration.
        Neuron. 2006; 52: 61-76https://doi.org/10.1016/j.neuron.2006.09.011
        • Voss E.
        • Raab P.
        • Trebst C.
        • Stangel M.
        Clinical approach to optic neuritis: pitfalls, red flags and differential diagnosis.
        Ther. Adv. Neurol. Disord. 2011; 4: 123-134https://doi.org/10.1177/1756285611398702
        • Haider L.
        • Simeonidou C.
        • Steinberger G.
        • Hametner S.
        • Grigoriadis N.
        • Deretzi G.
        • Kovacs G.G.
        • Kutzelnigg A.
        • Lassmann H.
        • Frischer J.M.
        Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron.
        J. Neurol. Neurosurg. Psychiatry. 2014; 85: 1386-1395https://doi.org/10.1136/jnnp-2014-307712
        • Casanova B.
        • Martinez-Bisbal M.C.
        • Valero C.
        • Celda B.
        • Marti-Bonmati L.
        • Pascual A.
        • Landente L.
        • Coret F.
        Evidence of Wallerian degeneration in normal appearing white matter in the early stages of relapsing-remitting multiple sclerosis - A HMRS study.
        J. Neurol. 2003; 250: 22-28https://doi.org/10.1007/s00415-003-0928-0