Additional Queen Square (QS) screening items improve the test accuracy of the Montreal Cognitive Assessment (MoCA) after acute stroke

Published:August 31, 2019DOI:


      • The MoCA inadequately assesses common post-stroke cognitive impairments.
      • Queen Square (QS) screening items were added to target domains inadequately/not assessed.
      • Items assessed speed of processing, non-verbal memory and executive functions.
      • QS-screening items are useful for assessing post-stroke cognitive impairment.



      The Montreal Cognitive Assessment (MoCA) is a popular cognitive screening tool used in stroke, but lacks sensitivity for detecting impairment in stroke-relevant domains of processing speed, non-verbal memory and executive functions. Our aim was to assess whether the test accuracy of the MoCA can be improved with additional tailored screening items targeting these three domains.


      We included 196 patients admitted to an acute stroke unit at the National Hospital for Neurology and Neurosurgery, Queen Square (QS), London. Participants completed the MoCA as well as a series of additional QS-screening items designed to assess speed of processing, non-verbal memory and executive functions. Performance on the MoCA and QS screening items was compared with performance on “gold standard” neuropsychological assessment.


      In our sample, 22% of patients were classified as “cognitively intact” on the traditional MoCA alone (≥ 25). However, when tested on the QS-screening items, 40% of these patients failed on speed of processing, 56% failed on non-verbal memory and 26% failed on executive functions. Compared with neuropsychological assessment, the QS-screening items had good sensitivity (QS-Speed: 0.85; QS-Vis: 0.71; QS-EF: 0.73) and modest specificity (QS-Speed: 0.59; QS-Vis: 0.39; QS-EF: 0.54), regardless of stroke lateralisation.


      Additional screening items detected impairments in speed of processing, non-verbal memory and executive functions over and above those captured using the standard MoCA. The use of these QS-screening items improves the detection of post-stroke cognitive deficits in domains not adequately covered by the standard MoCA.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal


      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Feigin V.L.
        • Roth G.A.
        • Naghavi M.
        • Parmar P.
        • Krishnamurthi R.
        • Chugh S.
        • Estep K.
        Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the Global Burden of disease Study 2013.
        The Lancet Neurol. 2016; 15: 913-924
        • Sun J.
        • Tan L.
        • Yu J.T.
        Post-stroke cognitive impairment: epidemiology, mechanisms and management.
        Annals Transl Med. 2014; 2: 1-16
        • Kauhanen M.
        • Korpelainen J.
        • Hiltunen P.
        • Brusin E.
        • Mononen H.
        • Maatta R.
        • Nieminen P.
        • Sotaniemi K.
        • Myllyla V.
        Poststroke depression correlates with cognitive impairment and neurological deficits.
        Stroke. 1999; 30: 1875-1880
        • Cumming T.
        • Marshall R.
        • Lazar R.
        Stroke, cognitive deficits, and rehabilitation: still an incomplete picture.
        Int. J. Stroke. 2013; 8: 38-45
        • Umarova R.
        • Nitschke K.
        • Kaller C.
        • Klöppel S.
        • Beume L.
        • Mader I.
        • Martin M.
        • Hennig J.
        • Weiller C.
        Predictors and signatures of recovery from neglect in acute stroke.
        Ann. Neurol. 2016; 79: 673-686
        • Blackburn D.
        • Bafadhel L.
        • Randall M.
        • Harkness K.
        Cognitive screening in the acute stroke setting.
        Age Ageing. 2012; 42: 113-116
        • Mole J.A.
        • Demeyere N.
        The relationship between early post-stroke cognition and longer term activities and participation: a systematic review.
        Neuropsychol Rehabil. 2018; : 1-25
        • van Zandvoort M.
        • Kessels R.
        • Nys G.
        • de Haan E.
        • Kappelle L.
        Early neuropsychological evaluation in patients with ischaemic stroke provides valid information.
        Clin. Neurol. Neurosurg. 2005; 107: 385-392
        • Massa M.
        • Wang N.
        • Bickerton W.
        • Demeyere N.
        • Riddoch M.
        • Humphreys G.
        On the importance of cognitive profiling: a graphical modelling analysis of domain-specific and domain-general deficits after stroke.
        Cortex. 2015; 71: 190-204
        • Burton L.
        • Tyson S.
        Screening for cognitive impairment after stroke: a systematic review of psychometric properties and clinical utility.
        J. Rehabil. Med. 2015; 47: 193-203
        • van Heugten C.
        • Walton L.
        • Hentschel U.
        Can we forget the Mini-Mental State Examination? A systematic review of the validity of cognitive screening instruments within one month after stroke.
        Clin. Rehabil. 2014; 29: 694-704
        • Stolwyk R.
        • O'Neill M.
        • McKay A.
        • Wong D.
        Are cognitive screening tools sensitive and specific enough for use after stroke.
        Stroke. 2014; 45: 3129-3134
        • Srikanth V.
        • Thrift A.
        • Saling M.
        • Anderson J.
        • Dewey H.
        • Macdonell R.
        • Donnan G.
        Increased risk of cognitive impairment 3 months after mild to moderate first-ever stroke: a community-based prospective study of nonaphasic english-speaking survivors.
        Stroke. 2003; 34: 1136-1143
        • Hurford R.
        • Charidimou A.
        • Fox Z.
        • Cipolotti L.
        • Werring D.
        Domain-specific trends in cognitive impairment after acute ischaemic stroke.
        J. Neurol. 2012; 260: 237-241
        • Chan E.
        • Khan S.
        • Oliver R.
        • Gill S.
        • Werring D.
        • Cipolotti L.
        Underestimation of cognitive impairments by the Montreal Cognitive Assessment (MoCA) in an acute stroke unit population.
        J. Neurol. Sci. 2014; 343: 176-179
        • Jaywant A.
        • Toglia J.
        • Gunning F.M.
        • O'Dell M.W.
        The clinical utility of a 30-min neuropsychological assessment battery in inpatient stroke rehabilitation.
        J. Neurol. Sci. 2018; 390: 54-62
        • Chan E.
        • Altendorff S.
        • Healy C.
        • Werring D.
        • Cipolotti L.
        The test accuracy of the Montreal Cognitive Assessment (MoCA) by stroke lateralisation.
        J. Neurol. Sci. 2017; 373: 100-104
        • Demeyere N.
        • Riddoch M.
        • Slavkova E.
        • Jones K.
        • Reckless I.
        • Mathieson P.
        • Humphreys G.
        Domain-specific versus generalized cognitive screening in acute stroke.
        J. Neurol. 2015; 263: 306-315
        • Galski T.
        • Bruno R.L.
        • Zorowitz R.
        • Walker J.
        Predicting length of stay, functional outcome, and aftercare in the rehabilitation of stroke patients. The dominant role of higher-order cognition.
        Stroke. 1993; 24: 1794-1800
        • Park Y.H.
        • Jang J.W.
        • Park S.Y.
        • Wang M.J.
        • Lim J.S.
        • Baek M.J.
        • Kim S.
        Executive function as a strong predictor of recovery from disability in patients with acute stroke: a preliminary study.
        J. Stroke Cerebrovasc. Dis. 2015; 24: 554-561
        • Crow J.
        A 2-week stroke review identifies unmet needs in patients discharged home from a hyperacute stroke unit.
        Br. J. Neurosci. Nurs. 2018; 14: 29-35
        • McKevitt C.
        • Fudge N.
        • Redfern J.
        • Sheldenkar A.
        • Crichton S.
        • Rudd A.R.
        • Rothwell P.M.
        Self-reported long-term needs after stroke.
        Stroke. 2011; 42: 1398-1403
        • Nasreddine Z.
        • Phillips N.
        • Bédirian V.
        • Charbonneau S.
        • Whitehead V.
        • Collin I.
        • Cummings J.
        • Chertkow H.
        The montreal cognitive assessment, moca: a brief screening tool for mild cognitive impairment.
        J. Am. Geriatr. Soc. 2005; 53: 695-699
        • Pendlebury S.
        • Mariz J.
        • Bull L.
        • Mehta Z.
        • Rothwell P.
        MoCA, ACE-R, and MMSE Versus the National institute of neurological disorders and stroke-canadian stroke network vascular cognitive impairment harmonization standards neuropsychological battery after TIA and stroke.
        Stroke. 2011; 43: 464-469
        • Willison J.
        Neuropsychological Investigations of a Set of Mental Speed Tests.
        PhD. Institute of Neurology, University of London, 1987
        • Benton A.
        A visual retention test for clinical use.
        Arch. Neurol. Psychiatr. 1945; 54: 212-216
        • Coughlan A.K.
        • Hollows S.E.
        The Adult Memory And Information Processing Battery: The Manual.
        Coughlan, Leeds1985
        • Dubois B.
        • Slachevsky A.
        • Litvan I.
        • Pillon B.
        The FAB: A frontal assessment battery at bedside.
        Neurology. 2000; 55: 1621-1626
        • Luria A.
        Higher Cortical Functions in Man.
        Springer Science & Business Media, New York1966
        • Chan E.
        • MacPherson S.E.
        • Robinson G.
        • Turner M.
        • Lecce F.
        • Shallice T.
        • Cipolotti L.
        Limitations of the trail making test part-B in assessing frontal executive dysfunction.
        J. Int. Neuropsychol. Soc. 2015; 21: 169-174
        • Varjacic A.
        • Mantini D.
        • Demeyere N.
        • Gillebert C.R.
        Neural signatures of trail making test performance: evidence from lesion-mapping and neuroimaging studies.
        Neuropsychologia. 2018; 115: 78-87
        • Shallice T.
        • Cipolotti L.
        The prefrontal cortex and neurological impairments of active thought.
        Annu. Rev. Psychol. 2018; 69
        • Hachinski V.
        • Iadecola C.
        • Petersen R.C.
        • Breteler M.M.
        • Nyenhuis D.L.
        • Black S.E.
        • Vinters H.V.
        National institute of neurological disorders and stroke–Canadian stroke network vascular cognitive impairment harmonization standards.
        Stroke. 2006; 37: 2220-2241
        • Smith A.
        Symbol Digit Modalities Test.
        Western Psychological Services, Los Angeles, CA1982: 22
        • Dong Y.
        • Slavin M.J.
        • Chan B.P.L.
        • Venketasubramanian N.
        • Sharma V.K.
        • Collinson S.L.
        • Chen C.L.H.
        Improving screening for vascular cognitive impairment at three to six months after mild ischemic stroke and transient ischemic attack.
        Int. Psychogeriatr. 2014; 26: 787-793
        • Milosevich E.
        • Pendlebury S.
        • Demeyere N.
        Reply to:“Diagnostic test accuracy of the Montreal Cognitive Assessment in the detection of post-stroke cognitive impairment under different stages and cutoffs: a systematic review and meta-analysis”.
        Neurol. Sci. 2019; : 1-2
        • Pendlebury S.T.
        • Mariz J.
        • Bull L.
        • Mehta Z.
        • Rothwell P.M.
        Impact of different operational definitions on mild cognitive impairment rate and MMSE and MoCA performance in transient ischaemic attack and stroke.
        Cerebrovasc. Dis. 2013; 36: 355-362
        • Lees R.
        • Selvarajah J.
        • Fenton C.
        • Pendlebury S.T.
        • Langhorne P.
        • Stott D.J.
        • Quinn T.J.
        Test accuracy of cognitive screening tests for diagnosis of dementia and multidomain cognitive impairment in stroke.
        Stroke. 2014; 45: 3008-3018
        • Takwoingi Y.
        • Quinn T.J.
        Review of Diagnostic Test Accuracy (DTA) studies in older people.
        Age Ageing. 2018; 47: 349-355