Sensitivity and specificity of cardiac 123I-MIBG scintigraphy for diagnosis of early-phase Parkinson's disease

      Highlights

      • We assessed the diagnostic accuracy of cardiac 123I-MIBG scintigraphy in early PD.
      • We analyzed the relationship between MIBG uptake and symptoms and Hoehn & Yahr stage.
      • In early PD, the delayed H/M ratio had 68.7% sensitivity and 91.7% specificity.
      • The H/M ratio decreased with disease progression according to Hoehn & Yahr stage.
      • The H/M ratio was lower in PD patients with constipation, urinary disturbance, RBD.

      Abstract

      Introduction

      The purpose of this study was to investigate the diagnostic accuracy of cardiac 123I-metaiodobenzylguanidine (MIBG) scintigraphy for the diagnosis of Parkinson's disease (PD), especially in the early stages.

      Methods

      We investigated 600 patients who underwent cardiac 123I-MIBG scintigraphy to diagnose their parkinsonism and/or cognitive impairment. Of 600 research subjects, 272 patients were clinically diagnosed with PD. MIBG uptake was compared between patients with PD and other diseases. Furthermore, the sensitivity and specificity of cardiac 123I-MIBG scintigraphy to diagnose PD was estimated by disease duration (<3 years: early group vs. over 3 years: late group). We also assessed the relationship between MIBG uptake and Hoehn & Yahr stage.

      Results

      MIBG uptakes of PD patients were significantly decreased compared with those of other diseases except dementia with Lewy bodies and pure autonomic failure (p < .05 for all). In the early group, the sensitivity and specificity of the delayed heart to mediastinum (H/M) ratio were 68.7% and 91.7%, respectively, while in the late group, the sensitivity was 86.3% and the specificity was 74.0%. In addition, the early and delayed H/M ratios were decreased with higher Hoehn & Yahr stages in PD patients.

      Conclusion

      Our findings demonstrated that cardiac 123I-MIBG scintigraphy had sufficient diagnostic accuracy to detect the early phase of PD. Indeed, this study of a large number of patients provides further external validation that MIBG has diagnostic ability to distinguish PD from atypical parkinsonism.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hughes A.J.
        • Daniel S.E.
        • Kilford L.
        • Lees A.J.
        Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases.
        J. Neurol. Neurosurg. Psychiatry. 1992; 55: 181-184https://doi.org/10.1136/jnnp.55.3.181
        • Rizzo G.
        • Copetti M.
        • Arcuti S.
        • Martino D.
        • Fontana A.
        • Logroscino G.
        Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis.
        Neurology. 2016; 86: 566-576https://doi.org/10.1212/WNL.0000000000002350
        • Rascol O.
        • Schelosky L.
        123I-metaiodobenzylguanidine scintigraphy in Parkinson’s disease and related disorders.
        Mov. Disord. 2009; 24: S732-S741https://doi.org/10.1002/mds.22499
        • Nuvoli S.
        • Palumbo B.
        • Malaspina S.
        • Madeddu G.
        • Spanu A.
        (123)I-ioflupane SPET and (123)I-MIBG in the diagnosis of Parkinson's disease and parkinsonian disorders and in the differential diagnosis between Alzheimer's and Lewy's bodies dementias.
        Hell J. Nucl. Med. 2018; 21: 60-68https://doi.org/10.1967/s002449910707
        • Kim J.S.
        • Park H.E.
        • Oh Y.S.
        • Song I.U.
        • Yang D.W.
        • Park J.W.
        • Lee K.S.
        (123)I-MIBG myocardial scintigraphy and neurocirculatory abnormalities in patients with dementia with Lewy bodies and Alzheimer’s disease.
        J. Neurol. Sci. 2015; 357: 173-177https://doi.org/10.1016/j.jns.2015.07.025
        • Takahashi M.
        • Ikemura M.
        • Oka T.
        • Uchihara T.
        • Wakabayashi K.
        • Kakita A.
        • Takahashi H.
        • Yoshida M.
        • Toru S.
        • Kobayashi T.
        • Orimo S.
        Quantitative correlation between cardiac MIBG uptake and remaining axons in the cardiac sympathetic nerve in Lewy body disease.
        J. Neurol. Neurosurg. Psychiatry. 2015; 86: 939-944https://doi.org/10.1136/jnnp-2015-310686
        • Umemura A.
        • Oeda T.
        • Hayashi R.
        • Tomita S.
        • Kohsaka M.
        • Yamamoto K.
        • Sawada H.
        Diagnostic accuracy of apparent diffusion coefficient and 123I-metaiodobenzylguanidine for differentiation of multiple system atrophy and Parkinson’s disease.
        PLoS One. 2013; 8https://doi.org/10.1371/journal.pone.0061066
        • Uyama N.
        • Otsuka H.
        • Shinya T.
        • Otomi Y.
        • Harada M.
        • Sako W.
        • Izumi Y.
        • Kaji R.
        • Watanabe Y.
        • Takashi S.
        • Kunikane Y.
        The utility of the combination of a SPECT study with [123I]-FP-CIT of dopamine transporters and [123I]-MIBG myocardial scintigraphy in differentiating Parkinson disease from other degenerative parkinsonian syndromes.
        Nucl. Med. Commun. 2017; 38: 487-492https://doi.org/10.1097/MNM.0000000000000674
        • Kim J.S.
        • Park H.E.
        • Park I.S.
        • Oh Y.S.
        • Ryu D.W.
        • Song I.U.
        • Jung Y.A.
        • Yoo I.R.
        • Choi H.S.
        • Lee P.H.
        • Lee K.S.
        Normal ‘heart’ in Parkinson’s disease: is this a distinct clinical phenotype?.
        Eur. J. Neurol. 2017; 24: 349-356https://doi.org/10.1111/ene.13206
        • Stefanelli A.
        • Treglia G.
        • Bruno I.
        • Rufini V.
        • Giordano A.
        Pharmacological interference with 123I-metaiodobenzylguanidine: a limitation to developing cardiac innervation imaging in clinical practice?.
        Eur. Rev. Med. Pharmacol. Sci. 2013; 17: 1326-1333
        • McKeith I.G.
        • Dickson D.W.
        • Lowe J.
        • Emre M.
        • O’Brien J.T.
        • Feldman H.
        • Cummings J.
        • Duda J.E.
        • Lippa C.
        • Perry E.K.
        • Aarsland D.
        • Arai H.
        • Ballard C.G.
        • Boeve B.
        • Burn D.J.
        • Costa D.
        • Del Ser T.
        • Dubois B.
        • Galasko D.
        • Gauthier S.
        • Goetz C.G.
        • Gomez-Tortosa E.
        • Halliday G.
        • Hansen L.A.
        • Hardy J.
        • Iwatsubo T.
        • Kalaria R.N.
        • Kaufer D.
        • Kenny R.A.
        • Korczyn A.
        • Kosaka K.
        • Lee V.M.
        • Lees A.
        • Litvan I.
        • Londos E.
        • Lopez O.L.
        • Minoshima S.
        • Mizuno Y.
        • Molina J.A.
        • Mukaetova-Ladinska E.B.
        • Pasquier F.
        • Perry R.H.
        • Schulz J.B.
        • Trojanowski J.Q.
        • Yamada M.
        • D.L.B. Consortium on
        Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium.
        Neurology. 2005; 65: 1863-1872https://doi.org/10.1212/01.wnl.0000187889.17253.b1
        • Singer W.
        • Berini S.E.
        • Sandroni P.
        • Fealey R.D.
        • Coon E.A.
        • Suarez M.D.
        • Benarroch E.E.
        • Low P.A.
        Pure autonomic failure predictors of conversion to clinical CNS involvement.
        Neurology. 2017; 88: 1129-1136https://doi.org/10.1212/Wnl.0000000000003737
        • Gilman S.
        • Wenning G.K.
        • Low P.A.
        • Brooks D.J.
        • Mathias C.J.
        • Trojanowski J.Q.
        • Wood N.W.
        • Colosimo C.
        • Durr A.
        • Fowler C.J.
        • Kaufmann H.
        • Klockgether T.
        • Lees A.
        • Poewe W.
        • Quinn N.
        • Revesz T.
        • Robertson D.
        • Sandroni P.
        • Seppi K.
        • Vidailhet M.
        Second consensus statement on the diagnosis of multiple system atrophy.
        Neurology. 2008; 71: 670-676https://doi.org/10.1212/01.wnl.0000324625.00404.15
        • Litvan I.
        • Agid Y.
        • Calne D.
        • Campbell G.
        • Dubois B.
        • Duvoisin R.C.
        • Goetz C.G.
        • Golbe L.I.
        • Grafman J.
        • Growdon J.H.
        • Hallett M.
        • Jankovic J.
        • Quinn N.P.
        • Tolosa E.
        • Zee D.S.
        • Chase T.N.
        • FitzGibbon E.J.
        • Hall Z.
        • Juncos J.
        • Nelson K.B.
        • Oliver E.
        • Pramstaller P.
        • Reich S.G.
        • Verny M.
        Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop.
        Neurology. 1996; 47: 1-9https://doi.org/10.1212/Wnl.47.1.1
        • Armstrong M.J.
        • Litvan I.
        • Lang A.E.
        • Bak T.H.
        • Bhatia K.P.
        • Borroni B.
        • Boxer A.L.
        • Dickson D.W.
        • Grossman M.
        • Hallett M.
        • Josephs K.A.
        • Kertesz A.
        • Lee S.E.
        • Miller B.L.
        • Reich S.G.
        • Riley D.E.
        • Tolosa E.
        • Troster A.I.
        • Vidailhet M.
        • Weiner W.J.
        Criteria for the diagnosis of corticobasal degeneration.
        Neurology. 2013; 80: 496-503https://doi.org/10.1212/WNL.0b013e31827f0fd1
        • Folstein M.F.
        • Folstein S.E.
        • McHugh P.R.
        “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician.
        J. Psychiatr. Res. 1975; 12: 189-198
        • Nakamura T.
        • Suzuki M.
        • Ueda M.
        • Hirayama M.
        • Katsuno M.
        Lower body mass index is associated with orthostatic hypotension in Parkinson’s disease.
        J. Neurol. Sci. 2017; 372: 14-18https://doi.org/10.1016/j.jns.2016.11.027
        • Nomura T.
        • Inoue Y.
        • Högl B.
        • Uemura Y.
        • Kitayama M.
        • Abe T.
        • Miyoshi H.
        • Nakashima K.
        Relationship between 123I-MIBG scintigrams and REM sleep behavior disorder in Parkinson’s disease.
        Parkinsonism Relat. Disord. 2010; 16: 683-685https://doi.org/10.1016/j.parkreldis.2010.08.011
        • Hoehn M.M.
        • Yahr M.D.
        Parkinsonism: onset, progression and mortality.
        Neurology. 1967; 17: 427-442
        • Tateno F.
        • Sakakibara R.
        • Kishi M.
        • Ogawa E.
        • Terada H.
        • Ogata T.
        • Haruta H.
        Sensitivity and specificity of metaiodobenzylguanidine (MIBG) myocardial accumulation in the diagnosis of Lewy body diseases in a movement disorder clinic.
        Parkinsonism Relat. Disord. 2011; 17: 395-397https://doi.org/10.1016/j.parkreldis.2011.02.001
        • Mizutani Y.
        • Ito S.
        • Murate K.
        • Hirota S.
        • Fukui T.
        • Hikichi C.
        • Ishikawa T.
        • Shima S.
        • Ueda A.
        • Kizawa M.
        • Asakura K.
        • Mutoh T.
        Retrospective analysis of parkinsonian patients exhibiting normal (123)I-MIBG cardiac uptake.
        J. Neurol. Sci. 2015; 359: 236-240https://doi.org/10.1016/j.jns.2015.10.059
        • Treglia G.
        • Cason E.
        • Stefanelli A.
        • Cocciolillo F.
        • Di Giuda D.
        • Fagioli G.
        • Giordano A.
        MIBG scintigraphy in differential diagnosis of parkinsonism: a meta-analysis.
        Clin. Auton. Res. 2012; 22: 43-55https://doi.org/10.1007/s10286-011-0135-5
        • Orimo S.
        • Suzuki M.
        • Inaba A.
        • Mizusawa H.
        123I-MIBG myocardial scintigraphy for differentiating Parkinson’s disease from other neurodegenerative parkinsonism: a systematic review and meta-analysis.
        Parkinsonism Relat. Disord. 2012; 18: 494-500https://doi.org/10.1016/j.parkreldis.2012.01.009
        • Orimo S.
        • Kanazawa T.
        • Nakamura A.
        • Uchihara T.
        • Mori F.
        • Kakita A.
        • Wakabayashi K.
        • Takahashi H.
        Degeneration of cardiac sympathetic nerve can occur in multiple system atrophy.
        Acta Neuropathol. 2007; 113: 81-86https://doi.org/10.1007/s00401-006-0160-y
        • Hamada K.
        • Hirayama M.
        • Watanabe H.
        • Kobayashi R.
        • Ito H.
        • Ieda T.
        • Koike Y.
        • Sobue G.
        Onset age and severity of motor impairment are associated with reduction of myocardial 123I-MIBG uptake in Parkinson’s disease.
        J. Neurol. Neurosurg. Psychiatry. 2003; 74: 423-426https://doi.org/10.1136/jnnp.74.4.423
        • Nagayama H.
        • Hamamoto M.
        • Ueda M.
        • Nagashima J.
        • Katayama Y.
        Reliability of MIBG myocardial scintigraphy in the diagnosis of Parkinson’s disease.
        J. Neurol. Neurosurg. Psychiatry. 2005; 76: 249-251https://doi.org/10.1136/jnnp.2004.037028
        • Chiaravalloti A.
        • Stefani A.
        • Tavolozza M.
        • Pierantozzi M.
        • Di Biagio D.
        • Olivola E.
        • Di Pietro B.
        • Stampanoni M.
        • Danieli R.
        • Simonetti G.
        • Stanzione P.
        • Schillaci O.
        Different patterns of cardiac sympathetic denervation in tremor-type compared to akinetic-rigid-type Parkinson’s disease: molecular imaging with 123I-MIBG.
        Mol. Med. Rep. 2012; 6: 1337-1342https://doi.org/10.3892/mmr.2012.1104
        • Saiki S.
        • Hirose G.
        • Sakai K.
        • Kataoka S.
        • Hori A.
        • Saiki M.
        • Kaito M.
        • Higashi K.
        • Taki S.
        • Kakeshita K.
        • Fujino S.
        • Miaki M.
        Cardiac 123I-MIBG scintigraphy can assess the disease severity and phenotype of PD.
        J. Neurol. Sci. 2004; 220: 105-111https://doi.org/10.1016/j.jns.2004.02.018
        • Spiegel J.
        • Hellwig D.
        • Farmakis G.
        • Jost W.H.
        • Samnick S.
        • Fassbender K.
        • Kirsch C.M.
        • Dillmann U.
        Myocardial sympathetic degeneration correlates with clinical phenotype of Parkinson’s disease.
        Mov. Disord. 2007; 22: 1004-1008https://doi.org/10.1002/mds.21499
        • Chung E.J.
        • Kim E.G.
        • Kim M.S.
        • Bae S.K.
        • Seog D.H.
        • Oh S.J.
        • Oh M.
        • Kim S.J.
        Differences in myocardial sympathetic degeneration and the clinical features of the subtypes of Parkinson’s disease.
        J. Clin. Neurosci. 2011; 18: 922-925https://doi.org/10.1016/j.jocn.2010.12.024
        • Matsui H.
        • Nishinaka K.
        • Oda M.
        • Komatsu K.
        • Kubori T.
        • Udaka F.
        Does cardiac metaiodobenzylguanidine (MIBG) uptake in Parkinson’s disease correlate with major autonomic symptoms?.
        Parkinsonism Relat. Disord. 2006; 12: 284-288https://doi.org/10.1016/j.parkreldis.2005.12.008
        • Sakakibara R.
        • Tateno F.
        • Kishi M.
        • Tsuyusaki Y.
        • Terada H.
        • Inaoka T.
        MIBG myocardial scintigraphy in pre-motor Parkinson’s disease: a review.
        Parkinsonism Relat. Disord. 2014; 20: 267-273https://doi.org/10.1016/j.parkreldis.2013.11.001
        • Kim J.S.
        • Shim Y.S.
        • Song I.U.
        • Yoo J.Y.
        • Kim H.T.
        • Kim Y.I.
        • Lee K.S.
        Cardiac sympathetic denervation and its association with cognitive deficits in Parkinson’s disease.
        Parkinsonism Relat. Disord. 2009; 15: 706-708https://doi.org/10.1016/j.parkreldis.2009.01.008
        • Postuma R.B.
        • Berg D.
        • Stern M.
        • Poewe W.
        • Olanow C.W.
        • Oertel W.
        • Obeso J.
        • Marek K.
        • Litvan I.
        • Lang A.E.
        • Halliday G.
        • Goetz C.G.
        • Gasser T.
        • Dubois B.
        • Chan P.
        • Bloem B.R.
        • Adler C.H.
        • Deuschl G.
        MDS clinical diagnostic criteria for Parkinson’s disease.
        Mov. Disord. 2015; 30: 1591-1601https://doi.org/10.1002/mds.26424
        • Postuma R.B.
        • Poewe W.
        • Litvan I.
        • Lewis S.
        • Lang A.E.
        • Halliday G.
        • Goetz C.G.
        • Chan P.
        • Slow E.
        • Seppi K.
        • Schaffer E.
        • Rios-Romenets S.
        • Mi T.
        • Maetzler C.
        • Li Y.
        • Heim B.
        • Bledsoe I.O.
        • Berg D.
        Validation of the MDS clinical diagnostic criteria for Parkinson's disease.
        Mov. Disord. 2018; 33: 1601-1608https://doi.org/10.1002/mds.27362
        • Orimo S.
        • Amino T.
        • Yokochi M.
        • Kojo T.
        • Uchihara T.
        • Takahashi A.
        • Wakabayashi K.
        • Takahashi H.
        • Hattori N.
        • Mizuno Y.
        Preserved cardiac sympathetic nerve accounts for normal cardiac uptake of MIBG in PARK2.
        Mov. Disord. 2005; 20: 1350-1353https://doi.org/10.1002/mds.20594
        • De Rosa A.
        • Pellegrino T.
        • Pappata S.
        • Lieto M.
        • Bonifati V.
        • Palma V.
        • Topa A.
        • Santoro L.
        • Bilo L.
        • Cuocolo A.
        • De Michele G.
        Non-motor symptoms and cardiac innervation in SYNJ1-related parkinsonism.
        Parkinsonism Relat. Disord. 2016; 23: 102-105https://doi.org/10.1016/j.parkreldis.2015.12.006
        • Fahn S.
        • Oakes D.
        • Shoulson I.
        • Kieburtz K.
        • Rudolph A.
        • Lang A.
        • Olanow C.W.
        • Tanner C.
        • Marek K.
        • G. Parkinson Study Group
        Levodopa and the progression of Parkinson’s disease.
        N. Engl. J. Med. 2004; 351: 2498-2508https://doi.org/10.1056/NEJMoa033447
        • Kang U.J.
        • Auinger P.
        • E.I. Parkinson Study Group
        Activity enhances dopaminergic long-duration response in Parkinson disease.
        Neurology. 2012; 78: 1146-1149https://doi.org/10.1212/WNL.0b013e31824f8056