Advertisement
Review article| Volume 404, P19-28, September 15, 2019

Download started.

Ok

Cost of disease modifying therapies for multiple sclerosis: Is front-loading the answer?

  • Lisa Batcheller
    Correspondence
    Corresponding author at: Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom.
    Affiliations
    Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
    Search for articles by this author
  • David Baker
    Affiliations
    Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
    Search for articles by this author

      Highlights

      • There are now over a dozen DMTs available to treat MS.
      • The literature on the cost effectiveness of DMTs is often confusing and contradictory.
      • Currently, the drugs with the most benefit tend to be those that carry the most risk and highest price tag.
      • CEAs support the idea that using more aggressive measures earlier on may mean the cost of long term disability is reduced.

      Abstract

      There are now over a dozen disease modifying therapies (DMTs) available to treat multiple sclerosis (MS). They vary in efficacy and safety as well as in cost.
      The literature on the cost effectiveness of these is often confusing and contradictory. There is a lack of quality evidence enabling the comparison of different DMTs. There are scarce randomized controlled trials which look at one DMT compared with another that is not IFN or GA. There is also a lack of systematic reviews comparing the efficacy and safety of different DMTs. This makes it difficult to perform good quality cost-effectiveness analyses (CEAs). Furthermore, CEAs in and of themselves are difficult to interpret or compare due to the variation in methods and cost estimations as well as the use of outcome measures which cannot be proven over a reasonable timeframe.
      This review looks at the different DMTs available for MS and attempts to draw some conclusions on their cost-effectiveness. It also considers the costs and benefits of front loading the cost of treatment for MS by using more expensive and effective treatment earlier on.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Compston A.
        • Coles A.
        Multiple sclerosis.
        Lancet. 2008; 372: 1502-1517
        • Alonso A.
        • Hernan M.A.
        Temporal trends in the incidence of multiple sclerosis: a systematic review.
        Neurology. 2008; 71: 129-135
        • Hernandez L.
        • O’Donnell M.
        • Postma M.
        Modeling approaches in cost-effectiveness analysis of disease-modifying therapies for relapsing-remitting multiple sclerosis: An updated systematic review and recommendations for future economic evaluations.
        Pharmacoeconomics. 2018; 36: 1223-1252
        • Compston A.
        • Coles A.
        Multiple sclerosis.
        Lancet. 2002; 359: 1221-1231
        • de Vos A.F.
        • van Meurs M.
        • Brok H.P.
        • Boven L.A.
        • Hintzen R.Q.
        • van der Valk P.
        • et al.
        Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs.
        Journal of Immunology. 2002; 169: 5415-5423
        • van Zwam M.
        • Huizinga R.
        • Melief M.J.
        • Wierenga-Wolf A.F.
        • van Meurs M.
        • Voerman J.S.
        • et al.
        Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE.
        Journal of Molecular Medicine (Berl). 2009; 87: 273-286
        • Viglietta V.
        • Baecher-Allan C.
        • Weiner H.L.
        • Hafler D.A.
        Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis.
        Journal of Experimental Medicine. 2004; 199: 971-979
        • Bartholomaus I.
        • Kawakami N.
        • Odoardi F.
        • Schlager C.
        • Miljkovic D.
        • Ellwart J.W.
        • et al.
        Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions.
        Nature. 2009; 462: 94-98
        • Magliozzi R.
        • Howell O.
        • Vora A.
        • Serafini B.
        • Nicholas R.
        • Puopolo M.
        • et al.
        Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology.
        Brain. 2007; 130: 1089-1104
        • Baker D.
        • Marta M.
        • Pryce G.
        • Giovannoni G.
        • Schmierer K.
        Memory B cells are major targets for effective immunotherapy in relapsing multiple sclerosis.
        EBioMedicine. 2017; 16: 41-50
        • Baker D.
        • Pryce G.
        • Amor S.
        • Giovannoni G.
        • Schmierer K.
        Learning from other autoimmunities to understand targeting of B cells to control multiple sclerosis.
        Brain. 2018; 141: 2834-2847
        • Orme M.
        • Kerrigan J.
        • Tyas D.
        • Russell N.
        • Nixon R.
        The effect of disease, functional status, and relapses on the utility of people with multiple sclerosis in the UK.
        Value Health. 2007; 10: 54-60
        • Murphy N.
        • Confavreux C.
        • Haas J.
        • Konig N.
        • Roullet E.
        • Sailer M.
        • et al.
        Quality of life in multiple sclerosis in France, Germany, and the United Kingdom.
        Journal of Neurology, Neurosurgery, and Psychiatry. 1998; 65: 460-466
        • Grytten Torkildsen N.
        • Lie S.A.
        • Aarseth J.H.
        • Nyland H.
        • Myhr K.M.
        Survival and cause of death in multiple sclerosis: Results from a 50-year follow-up in Western Norway.
        Multiple Sclerosis. 2008; 14: 1191-1198
        • Hoang H.
        • Laursen B.
        • Stenager E.N.
        • Stenager E.
        Psychiatric co-morbidity in multiple sclerosis: the risk of depression and anxiety before and after MS diagnosis.
        Multiple Sclerosis. 2016; 22: 347-353
        • Kobelt G.
        • Thompson A.
        • Berg J.
        • Gannedahl M.
        • Eriksson J.
        New insights into the burden and costs of multiple sclerosis in Europe.
        Multiple Sclerosis. 2017; 23: 1123-1136
        • Thompson A.
        • Kobelt G.
        • Berg J.
        • Capsa D.
        • Eriksson J.
        • Miller D.
        • et al.
        New insights into the burden and costs of multiple sclerosis in Europe: results for the United Kingdom.
        Multiple Sclerosis. 2017; 23: 204-216
        • PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group
        Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis.
        Lancet. 1998; 352: 1498-1504
        • Jacobs L.D.
        • Cookfair D.L.
        • Rudick R.A.
        • Herndon R.M.
        • Richert J.R.
        • Salazar A.M.
        • et al.
        Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG).
        Annals of Neurology. 1996; 39: 285-294
        • Jiang H.
        • Milo R.
        • Swoveland P.
        • Johnson K.P.
        • Panitch H.
        • Dhib-Jalbut S.
        Interferon beta-1b reduces interferon gamma-induced antigen-presenting capacity of human glial and B cells.
        Journal of Neuroimmunology. 1995; 61: 17-25
        • Teleshova N.
        • Bao W.
        • Kivisakk P.
        • Ozenci V.
        • Mustafa M.
        • Link H.
        Elevated CD40 ligand expressing blood T-cell levels in multiple sclerosis are reversed by interferon-beta treatment.
        Scandinavian Journal of Immunology. 2000; 51: 312-320
        • Liu Z.
        • Pelfrey C.M.
        • Cotleur A.
        • Lee J.C.
        • Rudick R.A.
        Immunomodulatory effects of interferon beta-1a in multiple sclerosis.
        Journal of Neuroimmunology. 2001; 112: 153-162
        • Saresella M.
        • Marventano I.
        • Longhi R.
        • Lissoni F.
        • Trabattoni D.
        • Mendozzi L.
        • et al.
        CD4+CD25+FoxP3+PD1- regulatory T cells in acute and stable relapsing-remitting multiple sclerosis and their modulation by therapy.
        The FASEB Journal. 2008; 22: 3500-3508
        • Muraro P.A.
        • Liberati L.
        • Bonanni L.
        • Pantalone A.
        • Caporale C.M.
        • Iarlori C.
        • et al.
        Decreased integrin gene expression in patients with MS responding to interferon-beta treatment.
        Journal of Neuroimmunology. 2004; 150: 123-131
        • Muraro P.A.
        • Leist T.
        • Bielekova B.
        • McFarland H.F.
        VLA-4/CD49d downregulated on primed T lymphocytes during interferon-beta therapy in multiple sclerosis.
        Journal of Neuroimmunology. 2000; 111: 186-194
        • Hunt D.
        • Kavanagh D.
        • Drummond I.
        • Weller B.
        • Bellamy C.
        • Overell J.
        • et al.
        Thrombotic microangiopathy associated with interferon beta.
        New England Journal of Medicine. 2014; 370: 1270-1271
        • Vosoughi R.
        • Freedman M.S.
        Therapy of MS.
        Clinical Neurology and Neurosurgery. 2010; 112: 365-385
        • Schmidt S.
        • Hertfelder H.J.
        • von Spiegel T.
        • Hering R.
        • Harzheim M.
        • Lassmann H.
        • et al.
        Lethal capillary leak syndrome after a single administration of interferon beta-1b.
        Neurology. 1999; 53: 220-222
        • Association of British Neurologists
        (Accessed 7/2/2017)
        • Cross A.H.
        • Naismith R.T.
        Established and novel disease-modifying treatments in multiple sclerosis.
        Journal of Internal Medicine. 2014; 275: 350-363
        • Paty D.W.
        • Li D.K.
        Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group.
        Neurology. 1993; 43: 662-667
        • Calabresi P.A.
        • Kieseier B.C.
        • Arnold D.L.
        • Balcer L.J.
        • Boyko A.
        • Pelletier J.
        • et al.
        Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study.
        Lancet Neurology. 2014; 13: 657-665
        • EMA
        Plegidry - Summary of product characteristics.
        European Medicines Agency, 2014
        • Johnson K.P.
        • Brooks B.R.
        • Cohen J.A.
        • Ford C.C.
        • Goldstein J.
        • Lisak R.P.
        • et al.
        Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group.
        Neurology. 1995; 45: 1268-1276
        • Miller A.
        • Shapiro S.
        • Gershtein R.
        • Kinarty A.
        • Rawashdeh H.
        • Honigman S.
        • et al.
        Treatment of multiple sclerosis with copolymer-1 (Copaxone): implicating mechanisms of Th1 to Th2/Th3 immune-deviation.
        Journal of Neuroimmunology. 1998; 92: 113-121
        • Racke M.K.
        • Martin R.
        • McFarland H.
        • Fritz R.B.
        Copolymer-1-induced inhibition of antigen-specific T cell activation: interference with antigen presentation.
        Journal of Neuroimmunology. 1992; 37: 75-84
        • Calabresi P.A.
        • Radue E.W.
        • Goodin D.
        • Jeffery D.
        • Rammohan K.W.
        • Reder A.T.
        • et al.
        Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial.
        Lancet Neurology. 2014; 13: 545-556
        • Cohen J.A.
        • Barkhof F.
        • Comi G.
        • Hartung H.P.
        • Khatri B.O.
        • Montalban X.
        • et al.
        Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis.
        New England Journal of Medicine. 2010; 362: 402-415
        • Mehling M.
        • Kappos L.
        • Derfuss T.
        Fingolimod for multiple sclerosis: mechanism of action, clinical outcomes, and future directions.
        Current Neurology and Neuroscience Reports. 2011; 11: 492-497
      1. New Recommendations to Minimise Risks of the Rare Brain Infection PML and a Type of Skin Cancer with Gilenya [press release]. EMA 2015.

        • Rommer P.S.
        • Zettl U.K.
        • Kieseier B.
        • Hartung H.P.
        • Menge T.
        • Frohman E.
        • et al.
        Requirement for safety monitoring for approved multiple sclerosis therapies: an overview.
        Clinical and Experimental Immunology. 2014; 175: 397-407
        • Confavreux C.
        • O’Connor P.
        • Comi G.
        • Freedman M.S.
        • Miller A.E.
        • Olsson T.P.
        • et al.
        Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial.
        Lancet Neurology. 2014; 13: 247-256
        • O’Connor P.
        • Wolinsky J.S.
        • Confavreux C.
        • Comi G.
        • Kappos L.
        • Olsson T.P.
        • et al.
        Randomized trial of oral teriflunomide for relapsing multiple sclerosis.
        New England Journal of Medicine. 2011; 365: 1293-1303
        • Vermersch P.
        • Czlonkowska A.
        • Grimaldi L.M.
        • Confavreux C.
        • Comi G.
        • Kappos L.
        • et al.
        Teriflunomide versus subcutaneous interferon beta-1a in patients with relapsing multiple sclerosis: a randomised, controlled phase 3 trial.
        Multiple Sclerosis. 2014; 20: 705-716
        • Bar-Or A.
        • Pachner A.
        • Menguy-Vacheron F.
        • Kaplan J.
        • Wiendl H.
        Teriflunomide and its mechanism of action in multiple sclerosis.
        Drugs. 2014; 74: 659-674
        • Gold R.
        • Kappos L.
        • Arnold D.L.
        • Bar-Or A.
        • Giovannoni G.
        • Selmaj K.
        • et al.
        Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis.
        New England Journal of Medicine. 2012; 367: 1098-1107
        • Fox R.J.
        • Miller D.H.
        • Phillips J.T.
        • Hutchinson M.
        • Havrdova E.
        • Kita M.
        • et al.
        Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis.
        New England Journal of Medicine. 2012; 367: 1087-1097
        • Ghoreschi K.
        • Bruck J.
        • Kellerer C.
        • Deng C.
        • Peng H.
        • Rothfuss O.
        • et al.
        Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells.
        Journal of Experimental Medicine. 2011; 208: 2291-2303
        • Litjens N.H.
        • Rademaker M.
        • Ravensbergen B.
        • Rea D.
        • van der Plas M.J.
        • Thio B.
        • et al.
        Monomethylfumarate affects polarization of monocyte-derived dendritic cells resulting in down-regulated Th1 lymphocyte responses.
        European Journal of Immunology. 2004; 34: 565-575
        • de Jong R.
        • Bezemer A.C.
        • Zomerdijk T.P.
        • van de Pouw-Kraan T.
        • Ottenhoff T.H.
        • Nibbering P.H.
        Selective stimulation of T helper 2 cytokine responses by the anti-psoriasis agent monomethylfumarate.
        European Journal of Immunology. 1996; 26: 2067-2074
        • Asadullah K.
        • Schmid H.
        • Friedrich M.
        • Randow F.
        • Volk H.D.
        • Sterry W.
        • et al.
        Influence of monomethylfumarate on monocytic cytokine formation--explanation for adverse and therapeutic effects in psoriasis?.
        Archives of Dermatological Research. 1997; 289: 623-630
        • Zhu K.
        • Mrowietz U.
        Inhibition of dendritic cell differentiation by fumaric acid esters.
        Journal of Investigative Dermatology. 2001; 116: 203-208
        • Linker R.A.
        • Lee D.H.
        • Ryan S.
        • van Dam A.M.
        • Conrad R.
        • Bista P.
        • et al.
        Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway.
        Brain. 2011; 134: 678-692
        • Scannevin R.H.
        • Chollate S.
        • Jung M.Y.
        • Shackett M.
        • Patel H.
        • Bista P.
        • et al.
        Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway.
        Journal of Pharmacology and Experimental Therapeutics. 2012; 341: 274-284
        • Gold R.
        • Giovannoni G.
        • Phillips J.T.
        • Fox R.J.
        • Zhang A.
        • Meltzer L.
        • et al.
        Efficacy and safety of delayed-release dimethyl fumarate in patients newly diagnosed with relapsing-remitting multiple sclerosis (RRMS).
        Multiple Sclerosis. 2015; 21: 57-66
      2. Updated Recommendations to Minimise the Risk of the Rare Brain Infection PML with Tecfidera [press release]. EMA2015.

        • Salmen A.
        • Gold R.
        Mode of action and clinical studies with fumarates in multiple sclerosis.
        Exp Neurol. 2014; 262: 52-56
        • Bomprezzi R.
        Dimethyl fumarate in the treatment of relapsing-remitting multiple sclerosis: an overview.
        Ther Adv Neurol Disord. 2015; 8: 20-30
        • Polman C.H.
        • O’Connor P.W.
        • Havrdova E.
        • Hutchinson M.
        • Kappos L.
        • Miller D.H.
        • et al.
        A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis.
        N Engl J Med. 2006; 354: 899-910
        • Bloomgren G.
        • Richman S.
        • Hotermans C.
        • Subramanyam M.
        • Goelz S.
        • Natarajan A.
        • et al.
        Risk of Natalizumab-Associated Progressive Multifocal Leukoencephalopathy.
        366. 2012: 1870-1880
        • Calabresi P.A.
        • Giovannoni G.
        • Confavreux C.
        • Galetta S.L.
        • Havrdova E.
        • Hutchinson M.
        • et al.
        The incidence and significance of anti-natalizumab antibodies: results from AFFIRM and SENTINEL.
        Neurology. 2007; 69: 1391-1403
        • McGuigan C.
        • Craner M.
        • Guadagno J.
        • Kapoor R.
        • Mazibrada G.
        • Molyneux P.
        • et al.
        Stratification and monitoring of natalizumab-associated progressive multifocal leukoencephalopathy risk: recommendations from an expert group.
        Journal of Neurology, Neurosurgery, and Psychiatry. 2016; 87: 117-125
        • Cohen J.A.
        • Coles A.J.
        • Arnold D.L.
        • Confavreux C.
        • Fox E.J.
        • Hartung H.P.
        • et al.
        Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial.
        Lancet. 2012; 380: 1819-1828
      3. Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. The Lancet.380:1829–39.

        • Coles A.J.
        • Cox A.
        • Le Page E.
        • Jones J.
        • Trip S.A.
        • Deans J.
        • et al.
        The window of therapeutic opportunity in multiple sclerosis: evidence from monoclonal antibody therapy.
        Journal of Neurology. 2006; 253: 98-108
        • Willis M.D.
        • Harding K.E.
        • Pickersgill T.P.
        • Wardle M.
        • Pearson O.R.
        • Scolding N.J.
        • et al.
        Alemtuzumab for multiple sclerosis: Long term follow-up in a multi-centre cohort.
        Multiple Sclerosis. 2016; 22: 1215-1223
        • Coles A.J.
        Alemtuzumab therapy for multiple sclerosis.
        Neurotherapeutics. 2013; 10: 29-33
        • Hauser S.L.
        • Bar-Or A.
        • Comi G.
        • Giovannoni G.
        • Hartung H.P.
        • Hemmer B.
        • et al.
        Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis.
        New England Journal of Medicine. 2017; 376: 221-234
        • Montalban X.
        • Hauser S.L.
        • Kappos L.
        • Arnold D.L.
        • Bar-Or A.
        • Comi G.
        • et al.
        Ocrelizumab versus placebo in primary progressive multiple sclerosis.
        New England Journal of Medicine. 2017; 376: 209-220
        • European Medicines Agency
        Ocrevus - Summary of Product Characteristics.
        EMA, 2018
        • Giovannoni G.
        • Comi G.
        • Cook S.
        • Rammohan K.
        • Rieckmann P.
        • Soelberg Sorensen P.
        • et al.
        A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis.
        New England Journal of Medicine. 2010; 362: 416-426
        • Ceronie B.
        • Jacobs B.M.
        • Baker D.
        • Dubuisson N.
        • Mao Z.
        • Ammoscato F.
        • et al.
        Cladribine treatment of multiple sclerosis is associated with depletion of memory B cells.
        Journal of Neurology. 2018; 265: 1199-1209
        • Cook S.
        • Vermersch P.
        • Comi G.
        • Giovannoni G.
        • Rammohan K.
        • Rieckmann P.
        • et al.
        Safety and tolerability of cladribine tablets in multiple sclerosis: the CLARITY (CLAdRIbine Tablets treating multiple sclerosis orallY) study.
        Multiple Sclerosis. 2011; 17: 578-593
        • European Medicines Agency
        Mavenclad - Summary of Product Characteristics.
        EMA, 2017
        • Fogarty E.
        • Schmitz S.
        • Tubridy N.
        • Walsh C.
        • Barry M.
        Comparative efficacy of disease-modifying therapies for patients with relapsing remitting multiple sclerosis: systematic review and network meta-analysis.
        Multiple Sclerosis and Related Disorders. 2016; 9: 23-30
        • Zimmermann M.
        • Brouwer E.
        • Tice J.A.
        • Seidner M.
        • Loos A.M.
        • Liu S.
        • et al.
        Disease-modifying therapies for relapsing-remitting and primary progressive multiple sclerosis: a cost-utility analysis.
        CNS Drugs. 2018; 32: 1145-1157
        • Dashputre A.A.
        • Kamal K.M.
        • Pawar G.
        Cost-effectiveness of peginterferon Beta-1a and alemtuzumab in relapsing-remitting multiple sclerosis.
        Journal of Managed Care & Specialty Pharmacy. 2017; 23: 666-676
        • Soini E.
        • Joutseno J.
        • Sumelahti M.L.
        Cost-utility of first-line disease-modifying treatments for relapsing-remitting multiple sclerosis.
        Clinical Therapeutics. 2017; 39: 537-557
        • Frasco M.A.
        • Shih T.
        • Incerti D.
        • Diaz Espinosa O.
        • Vania D.K.
        • Thomas N.
        Incremental net monetary benefit of ocrelizumab relative to subcutaneous interferon beta-1a.
        Journal of Medical Economics. 2017; 20: 1074-1082
        • Bozkaya D.
        • Livingston T.
        • Migliaccio-Walle K.
        • Odom T.
        The cost-effectiveness of disease-modifying therapies for the treatment of relapsing-remitting multiple sclerosis.
        Journal of Medical Economics. 2017; 20: 297-302
        • Duddy M.
        • Palace J.
        The UK risk-sharing scheme for interferon-beta and glatiramer acetate in multiple sclerosis. Outcome of the year-6 analysis.
        Practical Neurology. 2016; 16: 4-6
        • National Institute for Health and Care Excellence
        (Accessed 15/10/2018)
        • Xu Y.
        • Mao N.
        • Chirikov V.
        • Du F.
        • Yeh Y.C.
        • Liu L.
        • et al.
        Cost-effectiveness of teriflunomide compared to interferon beta-1b for relapsing multiple sclerosis patients in China.
        Clinical Drug Investigation. 2019; 39: 331-340
        • Chevalier J.
        • Chamoux C.
        • Hammes F.
        • Chicoye A.
        Cost-effectiveness of treatments for relapsing remitting multiple sclerosis: a french societal perspective.
        PLoS One. 2016; 11e0150703
        • Zhang X.
        • Hay J.W.
        • Niu X.
        Cost effectiveness of fingolimod, teriflunomide, dimethyl fumarate and intramuscular interferon-beta1a in relapsing-remitting multiple sclerosis.
        CNS Drugs. 2015; 29: 71-81
        • Su W.
        • Kansal A.
        • Vicente C.
        • Deniz B.
        • Sarda S.
        The cost-effectiveness of delayed-release dimethyl fumarate for the treatment of relapsing-remitting multiple sclerosis in Canada.
        Journal of Medical Economics. 2016; 19: 718-727
        • Maruszczak M.J.
        • Montgomery S.M.
        • Griffiths M.J.
        • Bergvall N.
        • Adlard N.
        Cost-utility of fingolimod compared with dimethyl fumarate in highly active relapsing-remitting multiple sclerosis (RRMS) in England.
        Journal of Medical Economics. 2015; 18: 874-885
        • Hernandez L.
        • Guo S.
        • Toro-Diaz H.
        • Carroll S.
        • Syed Farooq S.F.
        Peginterferon beta-1a versus other self-injectable disease-modifying therapies in the treatment of relapsing-remitting multiple sclerosis in Scotland: a cost-effectiveness analysis.
        Journal of Medical Economics. 2017; 20: 228-238
        • Darba J.
        • Kaskens L.
        • Sanchez-de la Rosa R.
        Cost-effectiveness of glatiramer acetate and interferon beta-1a for relapsing-remitting multiple sclerosis, based on the CombiRx study.
        Journal of Medical Economics. 2014; 17: 215-222
        • Dembek C.
        • White L.A.
        • Quach J.
        • Szkurhan A.
        • Rashid N.
        • Blasco M.R.
        Cost-effectiveness of injectable disease-modifying therapies for the treatment of relapsing forms of multiple sclerosis in Spain.
        European Journal of Health Economics. 2014; 15: 353-362
        • Hernandez L.
        • Guo S.
        • Kinter E.
        • Fay M.
        Cost-effectiveness analysis of peginterferon beta-1a compared with interferon beta-1a and glatiramer acetate in the treatment of relapsing-remitting multiple sclerosis in the United States.
        Journal of Medical Economics. 2016; 19: 684-695
        • Chirikov V.
        • Ma I.
        • Joshi N.
        • Patel D.
        • Smith A.
        • Giambrone C.
        • et al.
        Cost-effectiveness of alemtuzumab in the treatment of relapsing forms of multiple sclerosis in the United States.
        Value Health. 2019; 22: 168-176
        • O’Day K.
        • Meyer K.
        • Stafkey-Mailey D.
        • Watson C.
        Cost-effectiveness of natalizumab vs fingolimod for the treatment of relapsing-remitting multiple sclerosis: analyses in Sweden.
        Journal of Medical Economics. 2015; 18: 295-302
        • Montgomery S.M.
        • Maruszczak M.J.
        • Slater D.
        • Kusel J.
        • Nicholas R.
        • Adlard N.
        A discrete event simulation to model the cost-utility of fingolimod and natalizumab in rapidly evolving severe relapsing-remitting multiple sclerosis in the UK.
        Journal of Medical Economics. 2017; 20: 474-482
        • Kobelt G.
        • Berg J.
        • Lindgren P.
        • Jonsson B.
        • Stawiarz L.
        • Hillert J.
        Modeling the cost-effectiveness of a new treatment for MS (natalizumab) compared with current standard practice in Sweden.
        Multiple Sclerosis. 2008; 14: 679-690
        • Pavlovic D.
        • Patera A.C.
        • Nyberg F.
        • Gerber M.
        • Liu M.
        Progressive multifocal leukoencephalopathy: current treatment options and future perspectives.
        Therapeutic Advances in Neurological Disorders. 2015; 8: 255-273
        • Dong-Si T.
        • Gheuens S.
        • Gangadharan A.
        • Wenten M.
        • Philip J.
        • McIninch J.
        • et al.
        Predictors of survival and functional outcomes in natalizumab-associated progressive multifocal leukoencephalopathy.
        Journal of Neurovirology. 2015; 21: 637-644
        • Hellwig K.
        • Gold R.
        Progressive multifocal leukoencephalopathy and natalizumab.
        Journal of Neurology. 2011; 258: 1920-1928
        • Balak D.
        • Hajdarbegovic E.
        More on PML in patients treated with dimethyl fumarate.
        New England Journal of Medicine. 2016; 374: 295
        • Kadish R.
        • Robertson D.
        • Sweeney M.
        Fatal leukoencephalopathy in a patient with multiple sclerosis following treatment with ocrelizumab (P5.353).
        Neurology. 2018; 90
        • Sorensen P.S.
        • Blinkenberg M.
        The potential role for ocrelizumab in the treatment of multiple sclerosis: current evidence and future prospects.
        Therapeutic Advances in Neurological Disorders. 2016; 9: 44-52
        • Vennegoor A.
        • van Rossum J.A.
        • Leurs C.
        • Wattjes M.P.
        • Rispens T.
        • Murk J.L.
        • et al.
        High cumulative JC virus seroconversion rate during long-term use of natalizumab.
        European Journal of Neurology. 2016; 23: 1079-1085
      4. EMA Confirms Recommendations to Minimise Risk of Brain Infection PML with Tysabri [press release]. EMA2016.

        • Baker D.
        • Herrod S.S.
        • Alvarez-Gonzalez C.
        • Giovannoni G.
        • Schmierer K.
        Interpreting lymphocyte reconstitution data from the pivotal phase 3 trials of alemtuzumab.
        JAMA Neurology. 2017; 74: 961-969
        • Dubuisson N.
        • Baker D.
        • Kang A.S.
        • Pryce G.
        • Marta M.
        • Visser L.H.
        • et al.
        Alemtuzumab depletion failure can occur in multiple sclerosis.
        Immunology. 2018; 154: 253-260
        • Schippling S.
        • Cohen J.
        • Coles A.
        • Compston D.A.
        • Fox E.
        • Filippi M.
        • et al.
        Alemtuzumab-treated patients with RRMS demonstrate durable slowing of brain volume loss over 5 years despite most being treatment-free for 4 years: CARE-MS I and II extension study (S51.001).
        Neurology. 2016; 86
        • Limmroth V.
        • Giovannoni G.
        • Arnold D.
        • Cohen J.
        • Coles A.
        • Fox E.
        • et al.
        Treatment-naive patients with active RRMS demonstrate durable improvements in relapse and disability following treatment with alemtuzumab: 5-year follow-up of the CARE-MS I study (S51.004).
        Neurology. 2016; 86
        • Coles A.
        • Arnold D.
        • Cohen J.
        • Fox E.
        • Giovannoni G.
        • Hartung H.-P.
        • et al.
        Patients with active RRMS and an inadequate response to prior therapy demonstrate durable improvements in relapse and disability following treatment with alemtuzumab: 5-year follow-up of the CARE-MS II study (P3.022).
        Neurology. 2016; 86
        • Arnold D.
        • Cohen J.
        • Coles A.
        • Compston D.A.
        • Fox E.
        • Hartung H.-P.
        • et al.
        Treatment-naive patients with active RRMS who received alemtuzumab demonstrate durable suppression of new MRI lesion formation: 5-year follow-up of the CARE-MS I study (S51.002).
        Neurology. 2016; 86
        • Emery P.
        • Rigby W.
        • Tak P.P.
        • Dörner T.
        • Olech E.
        • Martin C.
        • et al.
        Safety with ocrelizumab in rheumatoid arthritis: results from the ocrelizumab phase III program.
        PLoS One. 2014; 9
        • Mysler E.F.
        • Spindler A.J.
        • Guzman R.
        • Bijl M.
        • Jayne D.
        • Furie R.A.
        • et al.
        Efficacy and safety of ocrelizumab in active proliferative lupus nephritis: results from a randomized, double-blind, phase III study.
        Arthritis Rheumatology. 2013; 65: 2368-2379
        • National Institute for Health and Care Excellence
        (Accessed 15/10/2018)
        • Hettle R.
        • Harty G.
        • Wong S.L.
        Cost-effectiveness of cladribine tablets, alemtuzumab, and natalizumab in the treatment of relapsing-remitting multiple sclerosis with high disease activity in England.
        Journla of Medical Economics. 2018; : 1-11
        • Atkins H.L.
        • Bowman M.
        • Allan D.
        • Anstee G.
        • Arnold D.L.
        • Bar-Or A.
        • et al.
        Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial.
        Lancet. 2016; 388: 576-585
        • Nash R.A.
        • Hutton G.J.
        • Racke M.K.
        • Popat U.
        • Devine S.M.
        • Griffith L.M.
        • et al.
        High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for relapsing-remitting multiple sclerosis (HALT-MS): a 3-year interim report.
        JAMA Neurology. 2015; 72: 159-169
        • Burman J.
        • Iacobaeus E.
        • Svenningsson A.
        • Lycke J.
        • Gunnarsson M.
        • Nilsson P.
        • et al.
        Autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: the Swedish experience.
        Journal of Neurology, Neurosurgery, and Psychiatry. 2014; 85: 1116-1121
        • Burt R.K.
        • Balabanov R.
        • Han X.
        • Sharrack B.
        • Morgan A.
        • Quigley K.
        • et al.
        Association of nonmyeloablative hematopoietic stem cell transplantation with neurological disability in patients with relapsing-remitting multiple sclerosis.
        Jama. 2015; 313: 275-284
        • Snowden J.A.
        • Pearce R.M.
        • Lee J.
        • Kirkland K.
        • Gilleece M.
        • Veys P.
        • et al.
        Haematopoietic stem cell transplantation (HSCT) in severe autoimmune diseases: analysis of UK outcomes from the British Society of Blood and Marrow Transplantation (BSBMT) data registry 1997–2009.
        British Journal of Haematology. 2012; 157: 742-746
        • Mancardi G.
        • Saccardi R.
        Autologous haematopoietic stem-cell transplantation in multiple sclerosis.
        Lancet Neurology. 2008; 7: 626-636
        • Cohen J.A.
        • Baldassari L.E.
        • Atkins H.
        • Bowen J.D.
        • Bredeson C.
        • Carpenter P.A.
        • et al.
        Autologous hematopoietic cell transplantation for treatment-refractory relapsing multiple sclerosis: position statement from the American Society for Blood and Marrow Transplantation.
        Biology of Blood and Marrow Transplantation. 2019; 5: 845-854
        • Tur C.
        • Montalban X.
        • Tintore M.
        • Nos C.
        • Rio J.
        • Aymerich F.X.
        • et al.
        Interferon beta-1b for the treatment of primary progressive multiple sclerosis: five-year clinical trial follow-up.
        Archives of Neurology. 2011; 68: 1421-1427
        • Montgomery S.M.
        • Kusel J.
        • Nicholas R.
        • Adlard N.
        Costs and effectiveness of fingolimod versus alemtuzumab in the treatment of highly active relapsing-remitting multiple sclerosis in the UK: re-treatment, discount, and disutility.
        Journal of Medical Economics. 2017; 20: 962-973
        • Taheri S.
        • Sahraian M.A.
        • Yousefi N.
        Cost-effectiveness of alemtuzumab and natalizumab for relapsing-remitting multiple sclerosis treatment in Iran: decision analysis based on an indirect comparison.
        Journal of Medical Economics. 2019; 22: 71-84
        • Comi G.
        • Cook S.
        • Rammohan K.
        • Soelberg Sorensen P.
        • Vermersch P.
        • Adeniji A.K.
        • et al.
        Long-term effects of cladribine tablets on MRI activity outcomes in patients with relapsing-remitting multiple sclerosis: the CLARITY extension study.
        Therapeutic Advances in Neurological Disorders. 2018; 11
        • Yamamoto D.
        • Campbell J.D.
        Cost-effectiveness of multiple sclerosis disease-modifying therapies: a systematic review of the literature.
        Autoimmune Disorders. 2012; 2012: 784364
        • Ontaneda D.
        • Henry O.
        Cost effectiveness of multiple sclerosis therapeutic strategies for achieving no evidence of disease activity (P2.193).
        Neurology. 2016; 86
        • Smith A.
        • Hashemi L.
        • Ma I.
        Cost-utility analysis of alemtuzumab versus natalizumab for the treatment of relapsing-remitting multiple sclerosis: us payer perspective.
        Value in Health. 2016; 19
        • Rog D.
        • Salford Royal NHS Foundation Trust S, UK, Guo J, Sanofi C, MA, USA, Nucit A, Ividata L-P, France
        • et al.
        Alemtuzumab is the most cost-effective option in comparison to available therapies in the treatment of RRMS from the UK NHS perspective.
        Value in Health. 2017; 20
        • Cerqueira J.J.
        • Compston D.A.S.
        • Geraldes R.
        • Rosa M.M.
        • Schmierer K.
        • Thompson A.
        • et al.
        Time matters in multiple sclerosis: can early treatment and long-term follow-up ensure everyone benefits from the latest advances in multiple sclerosis?.
        Journal of Neurology, Neurosurgery, and Psychiatry. 2018; 89: 844-850
        • Moccia M.
        • Palladino R.
        • Lanzillo R.
        • Carotenuto A.
        • Russo C.V.
        • Triassi M.
        • et al.
        Healthcare costs for treating relapsing multiple sclerosis and the risk of progression: a retrospective italian cohort study from 2001 to 2015.
        PLoS One. 2017; 12
        • Guo S.
        • Pelligra C.
        • Saint-Laurent Thibault C.
        • Hernandez L.
        • Kansal A.
        Cost-effectiveness analyses in multiple sclerosis: a review of modelling approaches.
        Pharmacoeconomics. 2014; 32: 559-572
        • Versteegh M.
        Impact on the incremental cost-effectiveness ratio of using alternatives to EQ-5D in a Markov model for multiple sclerosis.
        Pharmacoeconomics. 2016; 34: 1133-1144
        • Kalincik T.
        • Brown J.W.L.
        • Robertson N.
        • Willis M.
        • Scolding N.
        • Rice C.M.
        • et al.
        Treatment effectiveness of alemtuzumab compared with natalizumab, fingolimod, and interferon beta in relapsing-remitting multiple sclerosis: a cohort study.
        Lancet Neurology. 2017; 16: 271-281
        • Rotstein D.L.
        • Healy B.C.
        • Malik M.T.
        • Chitnis T.
        • Weiner H.L.
        Evaluation of no evidence of disease activity in a 7-year longitudinal multiple sclerosis cohort.
        JAMA Neurology. 2015; 72: 152-158
        • Stangel M.
        • Penner I.K.
        • Kallmann B.A.
        • Lukas C.
        • Kieseier B.C.
        Towards the implementation of ‘no evidence of disease activity’ in multiple sclerosis treatment: the multiple sclerosis decision model.
        Therapeutic Advances in Neurological Disorders. 2015; 8: 3-13
        • Hakansson I.
        • Tisell A.
        • Cassel P.
        • Blennow K.
        • Zetterberg H.
        • Lundberg P.
        • et al.
        Neurofilament levels, disease activity and brain volume during follow-up in multiple sclerosis.
        Journal of Neuroinflammation. 2018; 15: 209
        • Schommer J.C.
        • Carlson A.M.
        • Rhee T.G.
        Validating pharmaceutical product claims: questions a formulary committee should ask.
        Journal of Medical Economics. 2015; 18: 1000-1006
        • Mao Z.
        • Alvarez-Gonzalez C.
        • De Trane S.
        • Yildiz O.
        • Albor C.
        • Doctor G.
        • et al.
        Cladribine: off-label disease modification for people with multiple sclerosis in resource-poor settings?.
        Multiple Sclerosis Journal – Experimental, Translational and Clinical. 2018; 4