Advertisement

Targeting kinases in Parkinson's disease: A mechanism shared by LRRK2, neurotrophins, exenatide, urate, nilotinib and lithium

      Highlights

      • LRRK2 mutations causing Parkinson's disease (PD) affect other kinases' activities.
      • Oligomeric tau and α-synuclein may cause progressive neurodegeneration in PD.
      • Activities of these kinases contribute to the formation of these toxic oligomers.
      • Exenatide, urate, nilotinib and lithium may slow neurodegeneration in PD.
      • These compounds all target kinases and may decrease toxic oligomer formation.

      Abstract

      Several kinases have been implicated in the pathogenesis of Parkinson's disease (PD), most notably leucine-rich repeat kinase 2 (LRRK2), as LRRK2 mutations are the most common genetic cause of a late-onset parkinsonism that is clinically indistinguishable from sporadic PD. More recently, several other kinases have emerged as promising disease-modifying targets in PD based on both preclinical studies and clinical reports on exenatide, the urate precursor inosine, nilotinib and lithium use in PD patients. These kinases include protein kinase B (Akt), glycogen synthase kinases-3β and -3α (GSK-3β and GSK-3α), c-Abelson kinase (c-Abl) and cyclin-dependent kinase 5 (cdk5). Activities of each of these kinases are involved either directly or indirectly in phosphorylating tau or increasing α-synuclein levels, intracellular proteins whose toxic oligomeric forms are strongly implicated in the pathogenesis of PD. GSK-3β, GSK-3α and cdk5 are the principle kinases involved in phosphorylating tau at sites critical for the formation of tau oligomers. Exenatide analogues, urate, nilotinib and lithium have been shown to affect one or more of the above kinases, actions that can decrease the formation and increase the clearance of intraneuronal phosphorylated tau and α-synuclein. Here we review the current preclinical and clinical evidence supporting kinase-targeting agents as potential disease-modifying therapies for PD patients enriched with these therapeutic targets and incorporate LRRK2 physiology into this novel model.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dorsey E.R.
        • Bloem B.R.
        The Parkinson pandemic-a call to action.
        JAMA Neurol. 2017; 75: 9-10
        • Dawson T.M.
        • Dawson V.L.
        Molecular pathways of neurodegeneration in Parkinson's disease.
        Science. 2003; 302: 819-822
        • Olanow C.W.
        • Kordower J.H.
        Modeling Parkinson's disease.
        Ann. Neurol. 2009; 66: 432-436
        • Olanow C.W.
        • Kieburtz K.
        • Katz R.
        Clinical approaches to the development of a neuroprotective therapy for PD.
        Exp. Neurol. 2017; 298: 246-251
        • Li Y.
        • Liu W.
        • Oo T.F.
        • et al.
        Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease.
        Nat. Neurosci. 2009; 12: 826-828
        • Cannon J.R.
        • Tapias V.
        • Na H.M.
        • Honick A.S.
        • Drolet R.E.
        • Greenamyre J.T.
        A highly reproducible rotenone model of Parkinson's disease.
        Neurobiol. Dis. 2009; 34: 279-290
        • Athauda D.
        • Maclagan K.
        • Skene S.S.
        • et al.
        Exenatide once weekly versus placebo in Parkinson's disease: a randomised, double-blind, placebo-controlled trial.
        Lancet. 2017; 390: 1664-1675
        • Ascherio A.
        • LeWitt P.A.
        • Xu K.
        • et al.
        Urate as a predictor of the rate of clinical decline in Parkinson disease.
        Arch. Neurol. 2009; 66: 1460-1468
        • Parkinson Study Group S-PDI
        • Schwarzschild M.A.
        • Ascherio A.
        • et al.
        Inosine to increase serum and cerebrospinal fluid urate in Parkinson disease: a randomized clinical trial.
        JAMA Neurol. 2014; 71: 141-150
        • Schwarzschild M.A.
        • Schwid S.R.
        • Marek K.
        • et al.
        Serum urate as a predictor of clinical and radiographic progression in Parkinson disease.
        Arch. Neurol. 2008; 65: 716-723
        • Pagan F.
        • Hebron M.
        • Valadez E.H.
        • et al.
        Nilotinib effects in Parkinson's disease and dementia with Lewy bodies.
        J. Park. Dis. 2016; 6: 503-517
        • Forlenza O.V.
        • Diniz B.S.
        • Radanovic M.
        • Santos F.S.
        • Talib L.L.
        • Gattaz W.F.
        Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial.
        Br. J. Psychiatry. 2011; 198: 351-356
        • Kessing L.V.
        • Forman J.L.
        • Andersen P.K.
        Does lithium protect against dementia?.
        Bipolar Disord. 2010; 12: 87-94
        • Kessing L.V.
        • Gerds T.A.
        • Knudsen N.N.
        • et al.
        Association of Lithium in drinking water with the incidence of dementia.
        JAMA Psychiatry. 2017; 74: 1005-1010
        • Kessing L.V.
        • Sondergard L.
        • Forman J.L.
        • Andersen P.K.
        Lithium treatment and risk of dementia.
        Arch. Gen. Psychiatry. 2008; 65: 1331-1335
        • Nunes M.A.
        • Viel T.A.
        • Buck H.S.
        Microdose lithium treatment stabilized cognitive impairment in patients with Alzheimer's disease.
        Curr. Alzheimer Res. 2013; 10: 104-107
        • Nunes P.V.
        • Forlenza O.V.
        • Gattaz W.F.
        Lithium and risk for Alzheimer's disease in elderly patients with bipolar disorder.
        Br. J. Psychiatry. 2007; 190: 359-360
        • Pagan F.
        Impact of Nilotinib on Safety, Tolerability, Pharmacokinetics and Biomarkers in Parkinson's Disease (PD Nilotinib).
        (Available at:)
        • Schwarzschild M.
        Study of Urate Elevation in Parkinson's Disease, Phase 3 (SURE-PD3).
        (Available at)
        https://clinicaltrials.gov/ct2/show/NCT02642393
        Date: 2019
        Date accessed: December 13, 2018
        • Simuni T.
        Nilo-PD.
        (Available at)
        • Lang A.E.
        • Espay A.J.
        Disease modification in Parkinson's disease: current approaches, challenges, and future considerations.
        Mov. Disord. 2018; 33: 660-677
        • Wszolek Z.K.
        • Pfeiffer B.
        • Fulgham J.R.
        • et al.
        Western Nebraska family (family D) with autosomal dominant parkinsonism.
        Neurology. 1995; 45: 502-505
        • Haugarvoll K.
        • Rademakers R.
        • Kachergus J.M.
        • et al.
        Lrrk2 R1441C parkinsonism is clinically similar to sporadic Parkinson disease.
        Neurology. 2008; 70: 1456-1460
        • Roosen D.A.
        • Cookson M.R.
        LRRK2 at the interface of autophagosomes, endosomes and lysosomes.
        Mol. Neurodegener. 2016; 11: 73
        • West A.B.
        Achieving neuroprotection with LRRK2 kinase inhibitors in Parkinson disease.
        Exp. Neurol. 2017; 298: 236-245
        • Di Maio R.
        • Hoffman E.K.
        • Rocha E.M.
        • et al.
        LRRK2 activation in idiopathic Parkinson's disease.
        Sci. Transl. Med. 2018; 10
        • Skibinski G.
        • Nakamura K.
        • Cookson M.R.
        • Finkbeiner S.
        Mutant LRRK2 toxicity in neurons depends on LRRK2 levels and synuclein but not kinase activity or inclusion bodies.
        J. Neurosci. 2014; 34: 418-433
        • Lin X.
        • Parisiadou L.
        • Gu X.L.
        • et al.
        Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson's-disease-related mutant alpha-synuclein.
        Neuron. 2009; 64: 807-827
        • Kelly K.
        • Wang S.
        • Boddu R.
        • et al.
        The G2019S mutation in LRRK2 imparts resiliency to kinase inhibition.
        Exp. Neurol. 2018; 309: 1-13
        • Lobbestael E.
        • Civiero L.
        • De Wit T.
        • Taymans J.M.
        • Greggio E.
        • Baekelandt V.
        Pharmacological LRRK2 kinase inhibition induces LRRK2 protein destabilization and proteasomal degradation.
        Sci. Rep. 2016; 633897
        • Fuji R.N.
        • Flagella M.
        • Baca M.
        • et al.
        Effect of selective LRRK2 kinase inhibition on nonhuman primate lung.
        Sci. Transl. Med. 2015; 7273ra15
        • Herzig M.C.
        • Kolly C.
        • Persohn E.
        • et al.
        LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice.
        Hum. Mol. Genet. 2011; 20: 4209-4223
        • Zhao J.
        • Molitor T.P.
        • Langston J.W.
        • Nichols R.J.
        LRRK2 dephosphorylation increases its ubiquitination.
        Biochem. J. 2015; 469: 107-120
        • Blauwendraat C.
        • Reed X.
        • Kia D.A.
        • et al.
        Frequency of loss of function variants in LRRK2 in Parkinson disease.
        JAMA Neurol. 2018; 75: 1416-1422
        • Cook D.A.
        • Kannarkat G.T.
        • Cintron A.F.
        • et al.
        LRRK2 levels in immune cells are increased in Parkinson's disease.
        NPJ Parkinsons Dis. 2017; 3: 11
        • Fell M.J.
        • Mirescu C.
        • Basu K.
        • et al.
        MLi-2, a potent, selective, and centrally active compound for exploring the therapeutic potential and safety of LRRK2 kinase inhibition.
        J. Pharmacol. Exp. Ther. 2015; 355: 397-409
        • Baptista M.A.
        • Dave K.D.
        • Frasier M.A.
        • et al.
        Loss of leucine-rich repeat kinase 2 (LRRK2) in rats leads to progressive abnormal phenotypes in peripheral organs.
        PLoS One. 2013; 8e80705
        • Miklavc P.
        • Ehinger K.
        • Thompson K.E.
        • Hobi N.
        • Shimshek D.R.
        • Frick M.
        Surfactant secretion in LRRK2 knock-out rats: changes in lamellar body morphology and rate of exocytosis.
        PLoS One. 2014; 9e84926
        • Zimprich A.
        • Biskup S.
        • Leitner P.
        • et al.
        Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology.
        Neuron. 2004; 44: 601-607
        • Rajput A.
        • Dickson D.W.
        • Robinson C.A.
        • et al.
        Parkinsonism, Lrrk2 G2019S, and tau neuropathology.
        Neurology. 2006; 67: 1506-1508
        • Ross O.A.
        • Toft M.
        • Whittle A.J.
        • et al.
        Lrrk2 and Lewy body disease.
        Ann. Neurol. 2006; 59: 388-393
        • Satake W.
        • Nakabayashi Y.
        • Mizuta I.
        • et al.
        Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease.
        Nat. Genet. 2009; 41: 1303-1307
        • Simon-Sanchez J.
        • Schulte C.
        • Bras J.M.
        • et al.
        Genome-wide association study reveals genetic risk underlying Parkinson's disease.
        Nat. Genet. 2009; 41: 1308-1312
        • Edwards T.L.
        • Scott W.K.
        • Almonte C.
        • et al.
        Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease.
        Ann. Hum. Genet. 2010; 74: 97-109
        • Ishizawa T.
        • Mattila P.
        • Davies P.
        • Wang D.
        • Dickson D.W.
        Colocalization of tau and alpha-synuclein epitopes in Lewy bodies.
        J. Neuropathol. Exp. Neurol. 2003; 62: 389-397
        • Arima K.
        • Hirai S.
        • Sunohara N.
        • et al.
        Cellular co-localization of phosphorylated tau- and NACP/alpha-synuclein-epitopes in lewy bodies in sporadic Parkinson's disease and in dementia with Lewy bodies.
        Brain Res. 1999; 843: 53-61
        • Wills J.
        • Jones J.
        • Haggerty T.
        • Duka V.
        • Joyce J.N.
        • Sidhu A.
        Elevated tauopathy and alpha-synuclein pathology in postmortem Parkinson's disease brains with and without dementia.
        Exp. Neurol. 2010; 225: 210-218
        • Shi M.
        • Kovac A.
        • Korff A.
        • et al.
        CNS tau efflux via exosomes is likely increased in Parkinson's disease but not in Alzheimer's disease.
        Alzheimer's & Dementia : J. Alzheimer's Assoc. 2016; 12: 1125-1131
        • Shi M.
        • Liu C.
        • Cook T.J.
        • et al.
        Plasma exosomal alpha-synuclein is likely CNS-derived and increased in Parkinson's disease.
        Acta Neuropathol. 2014; 128: 639-650
        • Jucker M.
        • Walker L.C.
        Self-propagation of pathogenic protein aggregates in neurodegenerative diseases.
        Nature. 2013; 501: 45-51
        • Moussaud S.
        • Jones D.R.
        • Moussaud-Lamodiere E.L.
        • Delenclos M.
        • Ross O.A.
        • McLean P.J.
        Alpha-synuclein and tau: teammates in neurodegeneration?.
        Mol. Neurodegener. 2014; 9
        • Giasson B.I.
        • Forman M.S.
        • Higuchi M.
        • et al.
        Initiation and synergistic fibrillization of tau and alpha-synuclein.
        Science. 2003; 300: 636-640
        • Castillo-Carranza D.L.
        • Guerrero-Munoz M.J.
        • Sengupta U.
        • Gerson J.E.
        • Kayed R.
        Alpha-synuclein oligomers induce a unique toxic tau strain.
        Biol. Psychiatry. 2018; 84: 499-508
        • Gerson J.E.
        • Farmer K.M.
        • Henson N.
        • et al.
        Tau oligomers mediate alpha-synuclein toxicity and can be targeted by immunotherapy.
        Mol. Neurodegener. 2018; 13: 13
        • Lee V.M.
        • Giasson B.I.
        • Trojanowski J.Q.
        More than just two peas in a pod: common amyloidogenic properties of tau and alpha-synuclein in neurodegenerative diseases.
        Trends Neurosci. 2004; 27: 129-134
        • Wallings R.
        • Manzoni C.
        • Bandopadhyay R.
        Cellular processes associated with LRRK2 function and dysfunction.
        FEBS J. 2015; 282: 2806-2826
        • Kawakami F.
        • Shimada N.
        • Ohta E.
        • et al.
        Leucine-rich repeat kinase 2 regulates tau phosphorylation through direct activation of glycogen synthase kinase-3beta.
        FEBS J. 2014; 281: 3-13
        • Shanley M.R.
        • Hawley D.
        • Leung S.
        • et al.
        LRRK2 facilitates tau phosphorylation through strong interaction with tau and cdk5.
        Biochemistry. 2015; 54: 5198-5208
        • Lasagna-Reeves C.A.
        • Castillo-Carranza D.L.
        • Sengupta U.
        • et al.
        Identification of oligomers at early stages of tau aggregation in Alzheimer's disease.
        FASEB J. 2012; 26: 1946-1959
        • Sengupta A.
        • Kabat J.
        • Novak M.
        • Wu Q.
        • Grundke-Iqbal I.
        • Iqbal K.
        Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules.
        Arch. Biochem. Biophys. 1998; 357: 299-309
        • Lee S.J.
        • Desplats P.
        • Sigurdson C.
        • Tsigelny I.
        • Masliah E.
        Cell-to-cell transmission of non-prion protein aggregates.
        Nat. Rev. Neurol. 2010; 6: 702-706
        • Khandelwal P.J.
        • Dumanis S.B.
        • Herman A.M.
        • Rebeck G.W.
        • Moussa C.E.
        Wild type and P301L mutant tau promote neuro-inflammation and alpha-Synuclein accumulation in lentiviral gene delivery models.
        Mol. Cell. Neurosci. 2012; 49: 44-53
        • Kozikowski A.P.
        • Gaisina I.N.
        • Petukhov P.A.
        • et al.
        Highly potent and specific GSK-3beta inhibitors that block tau phosphorylation and decrease alpha-synuclein protein expression in a cellular model of Parkinson's disease.
        ChemMedChem. 2006; 1: 256-266
        • Lasagna-Reeves C.A.
        • Castillo-Carranza D.L.
        • Guerrero-Muoz M.J.
        • Jackson G.R.
        • Kayed R.
        Preparation and characterization of neurotoxic tau oligomers.
        Biochemistry. 2010; 49: 10039-10041
        • Yang S.D.
        • Song J.S.
        • Yu J.S.
        • Shiah S.G.
        Protein kinase FA/GSK-3 phosphorylates tau on Ser235-pro and Ser404-pro that are abnormally phosphorylated in Alzheimer's disease brain.
        J. Neurochem. 1993; 61: 1742-1747
        • Duka T.
        • Duka V.
        • Joyce J.N.
        • Sidhu A.
        Alpha-Synuclein contributes to GSK-3beta-catalyzed tau phosphorylation in Parkinson's disease models.
        FASEB J. 2009; 23: 2820-2830
        • Sengupta A.
        • Novak M.
        • Grundke-Iqbal I.
        • Iqbal K.
        Regulation of phosphorylation of tau by cyclin-dependent kinase 5 and glycogen synthase kinase-3 at substrate level.
        FEBS Lett. 2006; 580: 5925-5933
        • Cho J.H.
        • Johnson G.V.
        Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau's ability to bind and stabilize microtubules.
        J. Neurochem. 2004; 88: 349-358
        • Lin C.H.
        • Tsai P.I.
        • Wu R.M.
        • Chien C.T.
        LRRK2 G2019S mutation induces dendrite degeneration through mislocalization and phosphorylation of tau by recruiting autoactivated GSK3ss.
        J. Neurosci. 2010; 30: 13138-13149
        • Kawakami F.
        • Suzuki M.
        • Shimada N.
        • et al.
        Stimulatory effect of alpha-synuclein on the tau-phosphorylation by GSK-3beta.
        FEBS J. 2011; 278: 4895-4904
        • Steger M.
        • Tonelli F.
        • Ito G.
        • et al.
        Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases.
        Elife. 2016; 5
        • Zou W.
        • Yadav S.
        • DeVault L.
        • Nung Jan Y.
        • Sherwood D.R.
        RAB-10-dependent membrane transport is required for dendrite arborization.
        PLoS Genet. 2015; 11e1005484
        • Ohta E.
        • Kawakami F.
        • Kubo M.
        • Obata F.
        LRRK2 directly phosphorylates Akt1 as a possible physiological substrate: impairment of the kinase activity by Parkinson's disease-associated mutations.
        FEBS Lett. 2011; 585: 2165-2170
        • Manning B.D.
        • Toker A.
        AKT/PKB signaling: navigating the network.
        Cell. 2017; 169: 381-405
        • Athauda D.
        • Foltynie T.
        The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson's disease: mechanisms of action.
        Drug Discov. Today. 2016; 21: 802-818
        • Kim S.R.
        • Chen X.
        • Oo T.F.
        • et al.
        Dopaminergic pathway reconstruction by Akt/Rheb-induced axon regeneration.
        Ann. Neurol. 2011; 70: 110-120
        • Ries V.
        • Henchcliffe C.
        • Kareva T.
        • et al.
        Oncoprotein Akt/PKB induces trophic effects in murine models of Parkinson's disease.
        Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 18757-18762
        • Timmons S.
        • Coakley M.F.
        • Moloney A.M.
        C ON. Akt signal transduction dysfunction in Parkinson's disease.
        Neurosci. Lett. 2009; 467: 30-35
        • Malagelada C.
        • Jin Z.H.
        • Greene L.A.
        RTP801 is induced in Parkinson's disease and mediates neuron death by inhibiting Akt phosphorylation/activation.
        J. Neurosci. 2008; 28: 14363-14371
        • Ohta E.
        • Nihira T.
        • Uchino A.
        • et al.
        I2020T mutant LRRK2 iPSC-derived neurons in the Sagamihara family exhibit increased tau phosphorylation through the AKT/GSK-3beta signaling pathway.
        Hum. Mol. Genet. 2015; 24: 4879-4900
        • Heckman M.G.
        • Elbaz A.
        • Soto-Ortolaza A.I.
        • et al.
        Protective effect of LRRK2 p.R1398H on risk of Parkinson's disease is independent of MAPT and SNCA variants.
        Neurobiol. Aging. 2014; 35 (266 e5-14)
        • Berwick D.C.
        • Javaheri B.
        • Wetzel A.
        • et al.
        Pathogenic LRRK2 variants are gain-of-function mutations that enhance LRRK2-mediated repression of beta-catenin signaling.
        Mol. Neurodegener. 2017; 12: 9
        • Nixon-Abell J.
        • Berwick D.C.
        • Granno S.
        • Spain V.A.
        • Blackstone C.
        • Harvey K.
        Protective LRRK2 R1398H variant enhances GTPase and Wnt signaling activity.
        Front. Mol. Neurosci. 2016; 9: 18
        • Purro S.A.
        • Galli S.
        • Salinas P.C.
        Dysfunction of Wnt signaling and synaptic disassembly in neurodegenerative diseases.
        J. Mol. Cell Biol. 2014; 6: 75-80
        • MacDonald B.T.
        • Tamai K.
        • He X.
        Wnt/beta-catenin signaling: components, mechanisms, and diseases.
        Dev. Cell. 2009; 17: 9-26
        • Berwick D.C.
        • Harvey K.
        The importance of Wnt signalling for neurodegeneration in Parkinson's disease.
        Biochem. Soc. Trans. 2012; 40: 1123-1128
        • Gollamudi S.
        • Johri A.
        • Calingasan N.Y.
        • Yang L.
        • Elemento O.
        • Beal M.F.
        Concordant signaling pathways produced by pesticide exposure in mice correspond to pathways identified in human Parkinson's disease.
        PLoS One. 2012; 7e36191
        • Zancan I.
        • Bellesso S.
        • Costa R.
        • et al.
        Glucocerebrosidase deficiency in zebrafish affects primary bone ossification through increased oxidative stress and reduced Wnt/beta-catenin signaling.
        Hum. Mol. Genet. 2015; 24: 1280-1294
        • Awad O.
        • Panicker L.M.
        • Deranieh R.M.
        • et al.
        Altered differentiation potential of Gaucher's disease iPSC neuronal progenitors due to Wnt/beta-catenin downregulation.
        Stem Cell. Rep. 2017; 9: 1853-1867
        • Kwok J.B.
        • Hallupp M.
        • Loy C.T.
        • et al.
        GSK3B polymorphisms alter transcription and splicing in Parkinson's disease.
        Ann. Neurol. 2005; 58: 829-839
        • van Amerongen R.
        • Nusse R.
        Towards an integrated view of Wnt signaling in development.
        Development. 2009; 136: 3205-3214
        • Verheyen E.M.
        • Gottardi C.J.
        Regulation of Wnt/beta-catenin signaling by protein kinases.
        Dev. Dyn. 2010; 239: 34-44
        • Zhang L.
        • Cen L.
        • Qu S.
        • et al.
        Enhancing Beta-catenin activity via GSK3beta inhibition protects PC12 cells against rotenone toxicity through Nurr1 induction.
        PLoS One. 2016; 11e0152931
        • Decressac M.
        • Volakakis N.
        • Bjorklund A.
        • Perlmann T.
        NURR1 in Parkinson disease--from pathogenesis to therapeutic potential.
        Nat. Rev. Neurol. 2013; 9: 629-636
        • Le W.
        • Conneely O.M.
        • Zou L.
        • et al.
        Selective agenesis of mesencephalic dopaminergic neurons in Nurr1-deficient mice.
        Exp. Neurol. 1999; 159: 451-458
        • Chu Y.
        • Kompoliti K.
        • Cochran E.J.
        • Mufson E.J.
        • Kordower J.H.
        Age-related decreases in Nurr1 immunoreactivity in the human substantia nigra.
        J. Comp. Neurol. 2002; 450: 203-214
        • Yang Y.X.
        • Latchman D.S.
        Nurr1 transcriptionally regulates the expression of alpha-synuclein.
        Neuroreport. 2008; 19: 867-871
        • Decressac M.
        • Kadkhodaei B.
        • Mattsson B.
        • Laguna A.
        • Perlmann T.
        • Bjorklund A.
        Alpha-Synuclein-induced down-regulation of Nurr1 disrupts GDNF signaling in nigral dopamine neurons.
        Sci. Transl. Med. 2012; 4: 163ra56
        • Lin X.
        • Parisiadou L.
        • Sgobio C.
        • et al.
        Conditional expression of Parkinson's disease-related mutant alpha-synuclein in the midbrain dopaminergic neurons causes progressive neurodegeneration and degradation of transcription factor nuclear receptor related 1.
        J. Neurosci. 2012; 32: 9248-9264
        • Chu Y.
        • Le W.
        • Kompoliti K.
        • Jankovic J.
        • Mufson E.J.
        • Kordower J.H.
        Nurr1 in Parkinson's disease and related disorders.
        J. Comp. Neurol. 2006; 494: 495-514
        • Dong J.
        • Li S.
        • Mo J.L.
        • Cai H.B.
        • Le W.D.
        Nurr1-based therapies for Parkinson's disease.
        CNS Neurosci. Ther. 2016; 22: 351-359
        • Zheng K.
        • Heydari B.
        • Simon D.K.
        A common NURR1 polymorphism associated with Parkinson disease and diffuse Lewy body disease.
        Arch. Neurol. 2003; 60: 722-725
        • Espay A.J.
        • Vizcarra J.A.
        • Marsili L.
        • et al.
        Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases.
        Neurology. 2019; 92: 329-337
        • Aviles-Olmos I.
        • Dickson J.
        • Kefalopoulou Z.
        • et al.
        Exenatide and the treatment of patients with Parkinson's disease.
        J. Clin. Invest. 2013; 123: 2730-2736
        • Aviles-Olmos I.
        • Dickson J.
        • Kefalopoulou Z.
        • et al.
        Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson's disease.
        J. Park. Dis. 2014; 4: 337-344
        • Lolekha P.
        • Wongwan P.
        • Kulkantrakorn K.
        Association between serum uric acid and motor subtypes of Parkinson's disease.
        J. Clin. Neurosci. 2015; 22: 1264-1267
        • Gerhard T.
        • Devanand D.P.
        • Huang C.
        • Crystal S.
        • Olfson M.
        Lithium treatment and risk for dementia in adults with bipolar disorder: population-based cohort study.
        Br. J. Psychiatry. 2015; 207: 46-51
        • Guttuso Jr., T.
        • Russak E.
        • De Blanco M.T.
        • Ramanathan M.
        Could high lithium levels in tobacco contribute to reduced risk of Parkinson's disease in smokers?.
        J. Neurol. Sci. 2019; 397: 179-180
        • Gash D.M.
        • Zhang Z.
        • Ovadia A.
        • et al.
        Functional recovery in parkinsonian monkeys treated with GDNF.
        Nature. 1996; 380: 252-255
        • Marks Jr., W.J.
        • Bartus R.T.
        • Siffert J.
        • et al.
        Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial.
        Lancet Neurol. 2010; 9: 1164-1172
        • Lang A.E.
        • Gill S.
        • Patel N.K.
        • et al.
        Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease.
        Ann. Neurol. 2006; 59: 459-466
        • Yoshii A.
        • Constantine-Paton M.
        Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease.
        Dev. Neurobiol. 2010; 70: 304-322
        • Kang S.S.
        • Zhang Z.
        • Liu X.
        • et al.
        TrkB neurotrophic activities are blocked by alpha-synuclein, triggering dopaminergic cell death in Parkinson's disease.
        Proc. Natl. Acad. Sci. U. S. A. 2017; 114: 10773-10778
        • Kieffer T.J.
        • McIntosh C.H.
        • Pederson R.A.
        Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV.
        Endocrinology. 1995; 136: 3585-3596
        • Parkes D.G.
        • Mace K.F.
        • Trautmann M.E.
        Discovery and development of exenatide: the first antidiabetic agent to leverage the multiple benefits of the incretin hormone, GLP-1.
        Expert Opin. Drug Discovery. 2013; 8: 219-244
        • Alvarez E.
        • Martinez M.D.
        • Roncero I.
        • et al.
        The expression of GLP-1 receptor mRNA and protein allows the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem.
        J. Neurochem. 2005; 92: 798-806
        • Li Y.
        • Perry T.
        • Kindy M.S.
        • et al.
        GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism.
        Proc. Natl. Acad. Sci. U. S. A. 2009; 106: 1285-1290
        • Chen S.
        • An F.M.
        • Yin L.
        • et al.
        Glucagon-like peptide-1 protects hippocampal neurons against advanced glycation end product-induced tau hyperphosphorylation.
        Neuroscience. 2014; 256: 137-146
        • Xu W.
        • Yang Y.
        • Yuan G.
        • Zhu W.
        • Ma D.
        • Hu S.
        Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces Alzheimer disease-associated tau hyperphosphorylation in the hippocampus of rats with type 2 diabetes.
        J. Invest. Med.: Off. Publ. Am. Fed. Clin. Res. 2015; 63: 267-272
        • Embi N.
        • Rylatt D.B.
        • Cohen P.
        Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase.
        Eur. J. Biochem. 1980; 107: 519-527
        • Cross D.A.
        • Alessi D.R.
        • Cohen P.
        • Andjelkovich M.
        • Hemmings B.A.
        Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B.
        Nature. 1995; 378: 785-789
        • Liu W.
        • Jalewa J.
        • Sharma M.
        • Li G.
        • Li L.
        • Holscher C.
        Neuroprotective effects of lixisenatide and liraglutide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease.
        Neuroscience. 2015; 303: 42-50
        • Olanow C.W.
        • Kieburtz K.
        Defining disease-modifying therapies for PD—a road map for moving forward.
        Mov. Disord. 2010; 25: 1774-1779
        • Vaillancourt D.
        Effects of Exenatide on Motor Function and the Brain.
        2019 (Available at)
        • Burciu R.G.
        • Ofori E.
        • Archer D.B.
        • et al.
        Progression marker of Parkinson's disease: a 4-year multisite imaging study.
        Brain. 2017; 140: 2183-2192
        • Guttuso Jr., T.
        • Bergsland N.
        • Hagemeier J.
        • Lichter D.G.
        • Pasternak O.
        • Zivadinov R.
        Substantia Nigra free water increases longitudinally in Parkinson disease.
        AJNR Am. J. Neuroradiol. 2018; 39: 479-484
        • Crotty G.F.
        • Ascherio A.
        • Schwarzschild M.A.
        Targeting urate to reduce oxidative stress in Parkinson disease.
        Exp. Neurol. 2017; 298: 210-224
        • Yeum K.J.
        • Russell R.M.
        • Krinsky N.I.
        • Aldini G.
        Biomarkers of antioxidant capacity in the hydrophilic and lipophilic compartments of human plasma.
        Arch. Biochem. Biophys. 2004; 430: 97-103
        • Blesa J.
        • Trigo-Damas I.
        • Quiroga-Varela A.
        • Jackson-Lewis V.R.
        Oxidative stress and Parkinson's disease.
        Front. Neuroanat. 2015; 9: 91
        • Xu J.
        • Kao S.Y.
        • Lee F.J.
        • Song W.
        • Jin L.W.
        • Yankner B.A.
        Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease.
        Nat. Med. 2002; 8: 600-606
        • Church W.H.
        • Ward V.L.
        Uric acid is reduced in the substantia nigra in Parkinson's disease: effect on dopamine oxidation.
        Brain Res. Bull. 1994; 33: 419-425
        • Vieru E.
        • Koksal A.
        • Mutluay B.
        • Dirican A.C.
        • Altunkaynak Y.
        • Baybas S.
        The relation of serum uric acid levels with L-Dopa treatment and progression in patients with Parkinson's disease.
        Neurol. Sci. 2016; 37: 743-747
        • Huertas I.
        • Jesus S.
        • Lojo J.A.
        • et al.
        Lower levels of uric acid and striatal dopamine in non-tremor dominant Parkinson's disease subtype.
        PLoS One. 2017; 12e0174644
        • Gong L.
        • Zhang Q.L.
        • Zhang N.
        • et al.
        Neuroprotection by urate on 6-OHDA-lesioned rat model of Parkinson's disease: linking to Akt/GSK3beta signaling pathway.
        J. Neurochem. 2012; 123: 876-885
        • Sheng Y.L.
        • Chen X.
        • Hou X.O.
        • et al.
        Urate promotes SNCA/alpha-synuclein clearance via regulating mTOR-dependent macroautophagy.
        Exp. Neurol. 2017; 297: 138-147
        • Moors T.
        • Paciotti S.
        • Chiasserini D.
        • et al.
        Lysosomal dysfunction and alpha-synuclein aggregation in Parkinson's disease: diagnostic links.
        Mov. Disord. 2016; 31: 791-801
        • Xilouri M.
        • Brekk O.R.
        • Stefanis L.
        Autophagy and alpha-synuclein: relevance to Parkinson's disease and related synucleopathies.
        Mov. Disord. 2016; 31: 178-192
        • Jin M.
        • Yang F.
        • Yang I.
        • et al.
        Uric acid, hyperuricemia and vascular diseases.
        Front. Biosci. (Landmark Ed). 2012; 17: 656-669
        • Bhattacharyya S.
        • Bakshi R.
        • Logan R.
        • Ascherio A.
        • Macklin E.A.
        • Schwarzschild M.A.
        Oral inosine persistently elevates plasma antioxidant capacity in Parkinson's disease.
        Mov. Disord. 2016; 31: 417-421
        • Salomoni P.
        • Calabretta B.
        Targeted therapies and autophagy: new insights from chronic myeloid leukemia.
        Autophagy. 2009; 5: 1050-1051
        • Hebron M.L.
        • Lonskaya I.
        • Olopade P.
        • Selby S.T.
        • Pagan F.
        • Moussa C.E.
        Tyrosine kinase inhibition regulates early systemic immune changes and modulates the neuroimmune response in alpha-synucleinopathy.
        J. Clin. Cell Immunol. 2014; 5: 259
        • Hebron M.L.
        • Lonskaya I.
        • Moussa C.E.
        Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of alpha-synuclein in Parkinson's disease models.
        Hum. Mol. Genet. 2013; 22: 3315-3328
        • Pan B.
        • Yang L.
        • Wang J.
        • et al.
        C-Abl tyrosine kinase mediates neurotoxic prion peptide-induced neuronal apoptosis via regulating mitochondrial homeostasis.
        Mol. Neurobiol. 2014; 49: 1102-1116
        • Pan Y.
        • Sun L.
        • Wang J.
        • et al.
        STI571 protects neuronal cells from neurotoxic prion protein fragment-induced apoptosis.
        Neuropharmacology. 2015; 93: 191-198
        • Imam S.Z.
        • Zhou Q.
        • Yamamoto A.
        • et al.
        Novel regulation of parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson's disease.
        J. Neurosci. 2011; 31: 157-163
        • Mahul-Mellier A.L.
        • Fauvet B.
        • Gysbers A.
        • et al.
        c-Abl phosphorylates alpha-synuclein and regulates its degradation: implication for alpha-synuclein clearance and contribution to the pathogenesis of Parkinson's disease.
        Hum. Mol. Genet. 2014; 23: 2858-2879
        • Shimura H.
        • Hattori N.
        • Kubo S.
        • et al.
        Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase.
        Nat. Genet. 2000; 25: 302-305
        • Matsuda N.
        • Kitami T.
        • Suzuki T.
        • Mizuno Y.
        • Hattori N.
        • Tanaka K.
        Diverse effects of pathogenic mutations of parkin that catalyze multiple monoubiquitylation in vitro.
        J. Biol. Chem. 2006; 281: 3204-3209
        • Cancino G.I.
        • Perez de Arce K.
        • Castro P.U.
        • Toledo E.M.
        • von Bernhardi R.
        • Alvarez A.R.
        c-Abl tyrosine kinase modulates tau pathology and Cdk5 phosphorylation in AD transgenic mice.
        Neurobiol. Aging. 2011; 32: 1249-1261
        • Forlenza O.V.
        • De-Paula V.J.
        • Diniz B.S.
        Neuroprotective effects of lithium: implications for the treatment of Alzheimer's disease and related neurodegenerative disorders.
        ACS Chem. Neurosci. 2014; 5: 443-450
        • Lazzara C.A.
        • Kim Y.H.
        Potential application of lithium in Parkinson's and other neurodegenerative diseases.
        Front. Neurosci. 2015; 9: 403
        • Yuan Y.H.
        • Yan W.F.
        • Sun J.D.
        • Huang J.Y.
        • Mu Z.
        • Chen N.H.
        The molecular mechanism of rotenone-induced alpha-synuclein aggregation: emphasizing the role of the calcium/GSK3beta pathway.
        Toxicol. Lett. 2015; 233: 163-171
        • Motoi Y.
        • Shimada K.
        • Ishiguro K.
        • Hattori N.
        Lithium and autophagy.
        ACS Chem. Neurosci. 2014; 5: 434-442
        • Sarkar S.
        • Floto R.A.
        • Berger Z.
        • et al.
        Lithium induces autophagy by inhibiting inositol monophosphatase.
        J. Cell Biol. 2005; 170: 1101-1111
        • Kim Y.H.
        • Rane A.
        • Lussier S.
        • Andersen J.K.
        Lithium protects against oxidative stress-mediated cell death in alpha-synuclein-overexpressing in vitro and in vivo models of Parkinson's disease.
        J. Neurosci. Res. 2011; 89: 1666-1675
        • Lieu C.A.
        • Dewey C.M.
        • Chinta S.J.
        • et al.
        Lithium prevents parkinsonian behavioral and striatal phenotypes in an aged parkin mutant transgenic mouse model.
        Brain Res. 2014; 1591: 111-117
        • Youdim M.B.
        • Arraf Z.
        Prevention of MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) dopaminergic neurotoxicity in mice by chronic lithium: involvements of Bcl-2 and Bax.
        Neuropharmacology. 2004; 46: 1130-1140
        • Freland L.
        • Beaulieu J.M.
        Inhibition of GSK3 by lithium, from single molecules to signaling networks.
        Front. Mol. Neurosci. 2012; 5: 14
        • De Sarno P.
        • Li X.
        • Jope R.S.
        Regulation of Akt and glycogen synthase kinase-3 beta phosphorylation by sodium valproate and lithium.
        Neuropharmacology. 2002; 43: 1158-1164
        • Noble W.
        • Planel E.
        • Zehr C.
        • et al.
        Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo.
        Proc. Natl. Acad. Sci. U. S. A. 2005; 102: 6990-6995
        • Beaulieu J.M.
        • Sotnikova T.D.
        • Yao W.D.
        • et al.
        Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade.
        Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 5099-5104
        • Pan J.Q.
        • Lewis M.C.
        • Ketterman J.K.
        • et al.
        AKT kinase activity is required for lithium to modulate mood-related behaviors in mice.
        Neuropsychopharmacology. 2011; 36: 1397-1411
        • Li X.
        • Friedman A.B.
        • Zhu W.
        • et al.
        Lithium regulates glycogen synthase kinase-3beta in human peripheral blood mononuclear cells: implication in the treatment of bipolar disorder.
        Biol. Psychiatry. 2007; 61: 216-222
        • de Sousa R.T.
        • Zanetti M.V.
        • Talib L.L.
        • et al.
        Lithium increases platelet serine-9 phosphorylated GSK-3beta levels in drug-free bipolar disorder during depressive episodes.
        J. Psychiatr. Res. 2015; 62: 78-83
        • Das G.
        • Misra A.K.
        • Das S.K.
        • Ray K.
        • Ray J.
        Role of tau kinases (CDK5R1 and GSK3B) in Parkinson's disease: a study from India.
        Neurobiol. Aging. 2012; 33 (1485 e9-15)
        • Crespo-Biel N.
        • Camins A.
        • Pallas M.
        • Canudas A.M.
        Evidence of calpain/cdk5 pathway inhibition by lithium in 3-nitropropionic acid toxicity in vivo and in vitro.
        Neuropharmacology. 2009; 56: 422-428
        • Lazzara C.A.
        • Riley R.R.
        • Rane A.
        • Andersen J.K.
        • Kim Y.H.
        The combination of lithium and l-Dopa/Carbidopa reduces MPTP-induced abnormal involuntary movements (AIMs) via calpain-1 inhibition in a mouse model: relevance for Parkinsons disease therapy.
        Brain Res. 2015; 1622: 127-136
        • Jorda E.G.
        • Verdaguer E.
        • Canudas A.M.
        • et al.
        Implication of cyclin-dependent kinase 5 in the neuroprotective properties of lithium.
        Neuroscience. 2005; 134: 1001-1011
        • Aarsland D.
        • Creese B.
        • Politis M.
        • et al.
        Cognitive decline in Parkinson disease.
        Nat. Rev. Neurol. 2017; 13: 217-231
        • Aarsland D.
        • Andersen K.
        • Larsen J.P.
        • Lolk A.
        • Kragh-Sorensen P.
        Prevalence and characteristics of dementia in Parkinson disease: an 8-year prospective study.
        Arch. Neurol. 2003; 60: 387-392
        • Takashima A.
        GSK-3 is essential in the pathogenesis of Alzheimer's disease.
        J. Alzheimers Dis. 2006; 9: 309-317
        • Su Y.
        • Ryder J.
        • Li B.
        • et al.
        Lithium, a common drug for bipolar disorder treatment, regulates amyloid-beta precursor protein processing.
        Biochemistry. 2004; 43: 6899-6908
        • Phiel C.J.
        • Wilson C.A.
        • Lee V.M.
        • Klein P.S.
        GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides.
        Nature. 2003; 423: 435-439
        • Sun X.
        • Sato S.
        • Murayama O.
        • et al.
        Lithium inhibits amyloid secretion in COS7 cells transfected with amyloid precursor protein C100.
        Neurosci. Lett. 2002; 321: 61-64
        • Hall S.
        • Surova Y.
        • Ohrfelt A.
        • et al.
        Longitudinal measurements of cerebrospinal fluid biomarkers in Parkinson's disease.
        Mov. Disord. 2016; 31: 898-905
        • Lipton J.O.
        • Sahin M.
        The neurology of mTOR.
        Neuron. 2014; 84: 275-291
        • Ren M.
        • Senatorov V.V.
        • Chen R.W.
        • Chuang D.M.
        Postinsult treatment with lithium reduces brain damage and facilitates neurological recovery in a rat ischemia/reperfusion model.
        Proc. Natl. Acad. Sci. U. S. A. 2003; 100: 6210-6215
        • Chu Y.
        • Kordower J.H.
        Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: is this the target for Parkinson's disease?.
        Neurobiol. Dis. 2007; 25: 134-149
        • Cuervo A.M.
        • Stefanis L.
        • Fredenburg R.
        • Lansbury P.T.
        • Sulzer D.
        Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy.
        Science. 2004; 305: 1292-1295
        • Dorn H.F.
        Tobacco consumption and mortality from cancer and other diseases.
        Public Health Rep. 1959; 74: 581-593
        • Ritz B.
        • Ascherio A.
        • Checkoway H.
        • et al.
        Pooled analysis of tobacco use and risk of Parkinson disease.
        Arch. Neurol. 2007; 64: 990-997
        • Gallo V.
        • Vineis P.
        • Cancellieri M.
        • et al.
        Exploring causality of the association between smoking and Parkinson's disease.
        Int. J. Epidemiol. 2018;
        • Searles Nielsen S.
        • Gallagher L.G.
        • Lundin J.I.
        • et al.
        Environmental tobacco smoke and Parkinson's disease.
        Mov. Disord. 2012; 27: 293-296
        • Morozova N.
        • O'Reilly E.J.
        • Ascherio A.
        Variations in gender ratios support the connection between smoking and Parkinson's disease.
        Mov. Disord. 2008; 23: 1414-1419
        • Savica R.
        • Grossardt B.R.
        • Bower J.H.
        • Ahlskog J.E.
        • Rocca W.A.
        Time trends in the incidence of Parkinson disease.
        JAMA Neurol. 2016; 73: 981-989
        • Jathar V.S.
        • Pendharkar P.R.
        • Pandey V.K.
        • et al.
        Manic depressive psychosis in India and the possible role of lithium as a natural prophylactic. II—Lithium content of diet and some biological fluids in Indian subjects.
        J. Postgrad. Med. 1980; 26: 39-44
        • Marras C.
        • Herrmann N.
        • Fischer H.D.
        • et al.
        Lithium use in older adults is associated with increased prescribing of Parkinson medications.
        Am. J. Geriatr. Psychiatry. 2016; 24: 301-309
        • Coffey C.E.
        • Ross D.R.
        • Ferren E.L.
        • Sullivan J.L.
        • Olanow C.W.
        Treatment of the "on-off" phenomenon in parkinsonism with lithium carbonate.
        Ann. Neurol. 1982; 12: 375-379
        • Coffey C.E.
        • Ross D.R.
        • Massey E.W.
        • Olanow C.W.
        Dyskinesias associated with lithium therapy in parkinsonism.
        Clin. Neuropharmacol. 1984; 7: 223-229
        • Guttuso Jr., T.
        Low-dose lithium adjunct therapy associated with reduced off-time in Parkinson's disease: a case series.
        J. Neurol. Sci. 2016; 368: 221-222