A smart peek: Processing of rapid visual displays is disturbed in newly diagnosed, cognitively intact MS patients and refers to cognitive performance and disease progression in late stages

Published:April 23, 2019DOI:https://doi.org/10.1016/j.jns.2019.04.031


      • A theoretically integrated way to characterize visual information uptake is presented.
      • Efficiency of visual information uptake undergoes a staged decline in MS.
      • The incremental change may reflect two pathophysiological processes.
      • The threshold of conscious visual perception may be of particular clinical significance.



      MS can reduce the speed of information processing (IPS) leading to a variable pattern of cognitive impairment. To better understand this deficit, a separate evaluation of the sensory, cognitive, and motor speed component is required. Tests using rapid visual displays allow for assessment of separate components of information uptake. We utilized such a test to compare deficit profiles at the earlier and later stage of MS and their relation to cognitive ability and disease progression.


      Two groups were evaluated: “Early MS” comprised N = 24 patients with disease durations <2 years; “late MS” N = 45 with disease durations >12 years. Rapid visual displays of letters were utilized to derive individual profiles of visual information uptake according to the ‘theory of visual attention’ (TVA). The resulting data was then compared with measures of disability, fatigue, depression, IPS, visual-spatial ability, verbal and visual memory.


      In the EMS group, where cognitive impairment was the exception, three of the four main parameters of visual information uptake were already modified, i.e. processing rate C, storage capacity K, and iconic memory μ. In LMS an additional elevation of the fourth parameter, i.e., the perceptual threshold t0 was evident. Threshold values were related to most clinical and cognitive measures.


      An early deficit pattern of visual information uptake can be detected at a stage, when performance in tests of IPS is still well-preserved. At later disease stages, a single parameter reflecting the threshold of conscious visual perception may provide a valid estimate of cognitive performance and disease progression.



      AD (Alzheimer's disease), C (Processing rate), cEMS (with EMS matched control group), CES-D (Center for Epidemiologic Studies Depression Scale), cLMS (with LMS matched control group), EDSS (Expanded Disability Status Scale), EMS (early MS), IPS (information processing speed), LMS (late MS), K (Visual short-term memory capacity), SDMT (symbol digit modalities test), t0 (Perceptual threshold), TVA (theory of visual attention), VSTM (visual short term memory), Weimus (Wuerzburger Erschoepfungsinventar bei MS), μ (Iconic memory)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal


      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Rocca M.A.
        • Amato M.P.
        • De Stefano N.
        • Enzinger C.
        • Geurts J.J.
        • Penner I.K.
        • et al.
        Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis.
        Lancet Neurol. 2015; 14: 302-417https://doi.org/10.1016/S1474-4422(14)70250-9
        • Paul F.
        Pathology and MRI: exploring cognitive impairment in MS.
        Acta Neurol. Scand. 2016; 134: 24-33https://doi.org/10.1111/ane.12649
        • Costa S.L.
        • Genova H.M.
        • DeLuca J.
        • Chiaravalloti N.D.
        Information processing speed in multiple sclerosis: past, present, and future.
        Mult. Scler. J. 2017; 23: 772-789https://doi.org/10.1177/1352458516645869
        • Sandry J.
        • Zuppichini M.
        • Rothberg J.
        • Valdespino-Hayden Z.
        • DeLuca J.
        Poor encoding and weak early consolidation underlie memory acquisition deficits in multiple sclerosis: retroactive interference, processing speed, or working memory?.
        Arch. Clin. Neuropsychol. 2018; https://doi.org/10.1093/arclin/acy029
        • Kavcic V.
        • Scheid E.
        Attentional blink in patients with multiple sclerosis.
        Neuropsychologia. 2011; 49: 454-460https://doi.org/10.1016/j.neuropsychologia.2010.10.032
        • Lopes Costa S.
        • Gonçalves O.F.
        • DeLuca J.
        • Chiaravalloti N.
        • Chakravarthi R.
        • Almeida J.
        The temporal dynamics of visual processing in multiple sclerosis.
        Appl. Neuropsychol. Adult. 2016; 23: 133-140https://doi.org/10.1080/23279095.2015.1020157
        • Utz K.S.
        • Hankeln T.M.
        • Jung L.
        • Lämmer A.
        • Waschbisch A.
        • Lee D.-H.
        • et al.
        Visual search as a tool for a quick and reliable assessment of cognitive functions in patients with multiple sclerosis.
        PLoS One. 2013; 8e81531https://doi.org/10.1371/journal.pone.0081531
        • Balcer L.J.
        • Raynowska J.
        • Nolan R.
        • Galetta S.L.
        • Kapoor R.
        • Benedict R.H.B.
        • et al.
        Validity of low-contrast letter acuity as a visual performance outcome measure for multiple sclerosis.
        Mult. Scler. J. 2017; 23: 734-747https://doi.org/10.1177/1352458517690822
        • Laatu S.
        • Revonsuo A.
        • Hämäläinen P.
        • Ojanen V.
        • Ruutiainen J.
        Visual object recognition in multiple sclerosis.
        J. Neurol. Sci. 2001; 185: 77-88
        • Moster S.
        • Wilson J.A.
        • Galetta S.L.
        • Balcer L.J.
        The King-Devick (K-D) test of rapid eye movements: a bedside correlate of disability and quality of life in MS.
        J. Neurol. Sci. 2014; 343: 105-109https://doi.org/10.1016/j.jns.2014.05.047
        • Kluckow S.W.
        • Rehbein J.-G.
        • Schwab M.
        • Witte O.W.
        • Bublak P.
        What you get from what you see: parametric assessment of visual processing capacity in multiple sclerosis and its relation to cognitive fatigue.
        Cortex. 2016; 83: 167-180https://doi.org/10.1016/j.cortex.2016.07.018
        • Deary I.J.
        • Der G.
        • Ford G.
        Reaction times and intelligence differences: a population-based cohort study.
        Intelligence. 2001; 29: 389-399https://doi.org/10.1016/S0160-2896(01)00062-9
        • Tachibana R.
        • Namba Y.
        • Noguchi Y.
        Two speed factors of visual recognition independently correlated with fluid intelligence.
        PLoS One. 2014; 9https://doi.org/10.1371/journal.pone.0097429
        • Luck S.J.
        • Vogel E.K.
        Visual working memory capacity: from psychophysics and neurobiology to individual differences.
        Trends Cogn. Sci. 2013; 17: 391-400https://doi.org/10.1016/j.tics.2013.06.006
        • Foerster R.M.
        • Poth C.H.
        • Behler C.
        • Botsch M.
        • Schneider W.X.
        Using the virtual reality device oculus rift for neuropsychological assessment of visual processing capabilities.
        Sci. Rep. 2016; 637016https://doi.org/10.1038/srep37016
        • Kyllingsbaek S.
        Modeling visual attention.
        Behav. Res. Methods. 2006; 38: 123-133https://doi.org/10.3758/BF03192757
        • Habekost T.
        Clinical TVA-based studies: a general review.
        Front. Psychol. 2015; 6: 1-18https://doi.org/10.3389/fpsyg.2015.00290
        • Penner I.K.
        • Paul F.
        Fatigue as a symptom or comorbidity of neurological diseases.
        Nat. Rev. Neurol. 2017; 13: 662-675https://doi.org/10.1038/nrneurol.2017.117
        • Bundesen C.
        A theory of visual attention.
        Psychol. Rev. 1990; 97: 523-547https://doi.org/10.1037/0033-295X.97.4.523
        • Polman C.H.
        • Reingold S.C.
        • Edan G.
        • Filippi M.
        • Hartung Kappos L.
        • et al.
        Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald criteria”.
        Ann. Neurol. 2005; 58: 840-846https://doi.org/10.1002/ana.20703
        • Köhler W.
        • Fischer M.
        • Bublak P.
        • Faiss J.H.
        • Hoffmann F.
        • Kunkel A.
        • et al.
        Information processing deficits as a driving force for memory impairment in MS: a cross­-sectional study of memory functions and MRI in early and late stage MS.
        Mult. Scler. Relat. Disord. 2017; 18: 119-127https://doi.org/10.1016/j.msard.2017.09.026
        • Bublak P.
        • Redel P.
        • Sorg C.
        • Kurz A.
        • Förstl H.
        • Müller H.J.
        • et al.
        Staged decline of visual processing capacity in mild cognitive impairment and Alzheimer's disease.
        Neurobiol. Aging. 2011; 32: 1219-1230https://doi.org/10.1016/j.neurobiolaging.2009.07.012
        • Van Schependom J.
        • D'hooghe M.B.
        • Cleynhens K.
        • D'hooge M.
        • Haelewyck M.C.
        • De Keyser J.
        • et al.
        The symbol digit modalities test as sentinel test for cognitive impairment in multiple sclerosis.
        Eur. J. Neurol. 2014; 21: 1219-1225https://doi.org/10.1111/ene.12463
        • Sakai R.E.
        • Feller D.J.
        • Galetta K.M.
        • Galetta S.L.
        • Balcer L.J.
        Vision in multiple sclerosis.
        J. Neuro-Ophthalmol. 2011; 31: 362-373https://doi.org/10.1097/WNO.0b013e318238937f
        • von Bismarck O.
        • Dankowski T.
        • Ambrosius B.
        • Hessler N.
        • Antony G.
        • Ziegler A.
        • et al.
        Treatment choices and neuropsychological symptoms of a large cohort of early MS.
        Neurol. Neuroimmunol. Neuroinflammation. 2018; 5e446https://doi.org/10.1212/NXI.0000000000000446
        • Heesen C.
        • Haase R.
        • Melzig S.
        • Poettgen J.
        • Berghoff M.
        • Paul F.
        • et al.
        Perceptions on the value of bodily functions in multiple sclerosis.
        Acta Neurol. Scand. 2018; 137: 356-362https://doi.org/10.1111/ane.12881
        • Nguyen J.
        • Rothman A.
        • Fitzgerald K.
        • Whetstone A.
        • Syc-Mazurek S.
        • Aquino J.
        • et al.
        Visual pathway measures are associated with neuropsychological function in multiple sclerosis.
        Curr. Eye Res. 2018; 43: 941-948https://doi.org/10.1080/02713683.2018.1459730
        • Ayadi N.
        • Dörr J.
        • Motamedi S.
        • Gawlik K.
        • Bellmann-Strobl J.
        • Mikolajczak J.
        • et al.
        Temporal visual resolution and disease severity in MS.
        Neurol. Neuroimmunol. Neuroinflammation. 2018; 5e492https://doi.org/10.1212/NXI.0000000000000492
        • Pettigrew C.
        • Soldan A.
        • Zhu Y.
        • Wang M.C.
        • Brown T.
        • Miller M.
        • et al.
        Cognitive reserve and cortical thickness in preclinical Alzheimer's disease.
        Brain Imaging Behav. 2017; 11: 357-367https://doi.org/10.1007/s11682-016-9581-y
        • Gabilondo I.
        • Rilo O.
        • Ojeda N.
        • Pena J.
        • Gómez-Gastiasoro A.
        • Bilbao M.M.
        • et al.
        The influence of posterior visual pathway damage on visual information processing speed in multiple sclerosis.
        Mult. Scler. J. 2017; 23: 1276-1288https://doi.org/10.1177/1352458516676642
        • Chechlacz M.
        • Gillebert C.R.
        • Vangkilde S.A.
        • Petersen A.
        • Humphreys G.W.
        Structural variability within frontoparietal networks and individual differences in attentional functions: an approach using the theory of visual attention.
        J. Neurosci. 2015; 35: 10647-10658https://doi.org/10.1523/JNEUROSCI.0210-15.2015
        • Fielding J.
        • Clough M.
        • Beh S.
        • Millist L.
        • Sears D.
        • Frohman A.N.
        • et al.
        Ocular motor signatures of cognitive dysfunction in multiple sclerosis.
        Nat. Rev. Neurol. 2015; 11: 637-645https://doi.org/10.1038/nrneurol.2015.174
        • Felleman D.J.
        • Van Essen D.C.
        Distributed hierarchical processing in the primate cerebral cortex.
        Cereb. Cortex. 1991; 1: 1-47
        • Backner Y.
        • Kuchling J.
        • Massarwa S.
        • Oberwahrenbrock T.
        • Finke C.
        • Bellmann-Strobl J.
        • et al.
        Anatomical wiring and functional networking changes in the visual system following optic neuritis.
        JAMA Neurol. 2018; 75: 287-295https://doi.org/10.1001/jamaneurol.2017.3880
        • Wu G.F.
        • Schwartz E.D.
        • Lei T.
        • Souza A.
        • Mishra S.
        • Jacobs D.A.
        • et al.
        Relation of vision to global and regional brain MRI in multiple sclerosis.
        Neurology. 2007; 69: 2128-2135https://doi.org/10.1212/01.wnl.0000278387.15090.5a
        • Wieder L.
        • Gäde G.
        • Pech L.M.
        • Zimmermann H.
        • Wernecke K.D.
        • Dörr J.M.
        • et al.
        Low contrast visual acuity testing is associated with cognitive performance in multiple sclerosis: a cross-sectional pilot study.
        BMC Neurol. 2013; 13https://doi.org/10.1186/1471-2377-13-167