Smartwatch for the analysis of rest tremor in patients with Parkinson's disease

Published:April 09, 2019DOI:https://doi.org/10.1016/j.jns.2019.04.011

      Highlights

      • Smartwatches can be customized to register rest tremor in Parkinson's disease patients.
      • Tremor quantification is possible due to gyroscopes integrated in smartwatches.
      • Smartwatch tremor analysis showed good clinical correlation and test-retest reliability.
      • This commodity hardware obtained a good acceptation by Parkinson's disease patients.

      Abstract

      Wearable technology used in Parkinson's disease (PD) research has become an increasing focus of interest in this field. Our group assessed the feasibility, clinical correlation, reliability, and acceptance of smartwatches in order to quantify arm resting tremors in PD patients. An Android application on a smartwatch was used to obtain raw data from the smartwatch's gyroscopes. Twenty-two PD patients were consecutively recruited and followed for 1 year. Arm rest tremors were video filmed and scored by two independent raters using the motor subscale of the Unified Parkinson's Disease Rating Scale (UPDRS-III). The tremor intensity parameter was defined by the root mean square of the angular speed measured by the smartwatch at the wrist. Sixty-four smartwatch evaluations were completed. The Spearman coefficient among the mean of the resting tremor (UPDRS-III) scores and smartwatch measurements for tremor intensity was 0.81 (p < .001); smartwatch reliability to quantify tremors was checked by intraclass reliability coefficient with a resting tremor = 0.89, minimum detectable change = 59.03%. Good acceptance of the system was shown. Smartwatch use for PD tremor analysis is possible, reliable, well-correlated with clinical scores, and well-accepted by patients for clinical follow-up. The results from these experiments suggest that this commodity hardware has the potential to quantify PD patients' tremors objectively in a consulting-room.

      Keywords

      Abbreviations:

      PD (Parkinson's Disease), SW3 (Smartwatch3), UPDRS (Unified Parkinson's Disease Rating Scale), ICC (Intraclass Correlation Coefficient), MDC (Minimum detectable change), CR (Coefficient of repeatability), SEM (Standard error of measurement), tLogICC (Intraclass Correlation Coefficient with log10 transformed data), tLogMDC (Minimum detectable change with log10 transformed data), tLogMDC% (tLogMDC percentage), tLogSEM (Standard error of measurement with log10 transformed data.)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Postuma R.B.
        • Berg D.
        • Stern M.
        • Poewe W.
        • Olanow C.W.
        • Oertel W.
        • Obeso J.
        • Marek K.
        • Litvan I.
        • Lang A.E.
        • Halliday G.
        • Goetz C.G.
        • Gasser T.
        • Dubois B.
        • Chan P.
        • Bloem B.R.
        • Adler C.H.
        • Deuschl G.
        MDS clinical diagnostic criteria for Parkinson's disease.
        Mov. Disord. 2015; 30: 1591-1601https://doi.org/10.1002/mds.26424
        • Fahn S.
        • Elton R.
        • Members of the UPDRS Development Committee
        Unified Parkinson's disease rating scale.
        Recent Dev. Park. Dis. 1987; 2 (293-304): 153-163
        • Goetz C.G.
        • Tilley B.C.
        • Shaftman S.R.
        • Stebbins G.T.
        • Fahn S.
        • Martinez-Martin P.
        • Poewe W.
        • Sampaio C.
        • Stern M.B.
        • Dodel R.
        • Dubois B.
        • Holloway R.
        • Jankovic J.
        • Kulisevsky J.
        • Lang A.E.
        • Lees A.
        • Leurgans S.
        • LeWitt P.A.
        • Nyenhuis D.
        • Olanow C.W.
        • Rascol O.
        • Schrag A.
        • Teresi J.A.
        • van Hilten J.J.
        • LaPelle N.
        • Agarwal P.
        • Athar S.
        • Bordelan Y.
        • Bronte-Stewart H.M.
        • Camicioli R.
        • Chou K.
        • Cole W.
        • Dalvi A.
        • Delgado H.
        • Diamond A.
        • Dick J.P.
        • Duda J.
        • Elble R.J.
        • Evans C.
        • Evidente V.G.
        • Fernandez H.H.
        • Fox S.
        • Friedman J.H.
        • Fross R.D.
        • Gallagher D.
        • Goetz C.G.
        • Hall D.
        • Hermanowicz N.
        • Hinson V.
        • Horn S.
        • Hurtig H.
        • Kang U.J.
        • Kleiner-Fisman G.
        • Klepitskaya O.
        • Kompoliti K.
        • Lai E.C.
        • Leehey M.L.
        • Leroi I.
        • Lyons K.E.
        • McClain T.
        • Metzer S.W.
        • Miyasaki J.
        • Morgan J.C.
        • Nance M.
        • Nemeth J.
        • Pahwa R.
        • Parashos S.A.
        • Schneider J.S.J.S.
        • Schrag A.
        • Sethi K.
        • Shulman L.M.
        • Siderowf A.
        • Silverdale M.
        • Simuni T.
        • Stacy M.
        • Stern M.B.
        • Stewart R.M.
        • Sullivan K.
        • Swope D.M.
        • Wadia P.M.
        • Walker R.W.
        • Walker R.
        • Weiner W.J.
        • Wiener J.
        • Wilkinson J.
        • Wojcieszek J.M.
        • Wolfrath S.
        • Wooten F.
        • Wu A.
        • Zesiewicz T.A.
        • Zweig R.M.
        Movement Disorder Society-sponsored revision of the unified Parkinson's disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results.
        Mov. Disord. 2008; 23: 2129-2170https://doi.org/10.1002/mds.22340
        • Haubenberger D.
        • Abbruzzese G.
        • Bain P.G.
        • Bajaj N.
        • Benito-León J.
        • Bhatia K.P.
        • Deuschl G.
        • Forjaz M.J.
        • Hallett M.
        • Louis E.D.
        • Lyons K.E.
        • Mestre T.A.
        • Raethjen J.
        • Stamelou M.
        • Tan E.-K.
        • Testa C.M.
        • Elble R.J.
        Transducer-based evaluation of tremor.
        Mov. Disord. 2016; 31: 1327-1336https://doi.org/10.1002/mds.26671
        • Del Din S.
        • Godfrey A.
        • Mazzà C.
        • Lord S.
        • Rochester L.
        Free-living monitoring of Parkinson's disease: lessons from the field.
        Mov. Disord. 2016; 31: 1293-1313https://doi.org/10.1002/mds.26718
        • Tzallas A.T.
        • Tsipouras M.G.
        • Rigas G.
        • Tsalikakis D.G.
        • Karvounis E.C.
        • Chondrogiorgi M.
        • Psomadellis F.
        • Cancela J.
        • Pastorino M.
        • rredondo Waldmeyer M.T.A.
        • Konitsiotis S.
        • Fotiadis D.I.
        PERFORM: a system for monitoring, assessment and management of patients with Parkinson's disease.
        Sensors (Basel). 2014; 14: 21329-21357https://doi.org/10.3390/s141121329
        • Sánchez-Ferro Á.
        • Elshehabi M.
        • Godinho C.
        • Salkovic D.
        • Hobert M.A.
        • Domingos J.
        • van Uem J.M.
        • Ferreira J.J.
        • Maetzler W.
        New methods for the assessment of Parkinson's disease (2005 to 2015): a systematic review.
        Mov. Disord. 2016; 31: 1283-1292https://doi.org/10.1002/mds.26723
        • Salarian A.
        • Russmann H.
        • Wider C.
        • Burkhard P.R.
        • Vingerhoets F.J.G.
        • Aminian K.
        Quantification of tremor and bradykinesia in Parkinson's disease using a novel ambulatory monitoring system.
        IEEE Trans. Biomed. Eng. 2007; 54: 313-322https://doi.org/10.1109/TBME.2006.886670
        • Gallego J.A.
        • Rocon E.
        • Roa J.O.
        • Moreno J.C.
        • Pons J.L.
        Real-time estimation of pathological tremor parameters from gyroscope data.
        Sensors (Basel). 2010; 10: 2129-2149https://doi.org/10.3390/s100302129
        • Kim H.B.
        • Lee W.W.
        • Kim A.
        • Lee H.J.
        • Park H.Y.
        • Jeon H.S.
        • Kim S.K.
        • Jeon B.
        • Park K.S.
        Wrist sensor-based tremor severity quantification in Parkinson's disease using convolutional neural network.
        Comput. Biol. Med. 2018; 95: 140-146https://doi.org/10.1016/j.compbiomed.2018.02.007
        • Sanchez-Perez L.A.
        • Sanchez-Fernandez L.P.
        • Shaout A.
        • Martinez-Hernandez J.M.
        • Alvarez-Noriega M.J.
        Rest tremor quantification based on fuzzy inference systems and wearable sensors.
        Int. J. Med. Inform. 2018; 114: 6-17https://doi.org/10.1016/j.ijmedinf.2018.03.002
        • Zhou Y.
        • Jenkins M.E.
        • Naish M.D.
        • Trejos A.L.
        Characterization of parkinsonian hand tremor and validation of a high-order tremor estimator.
        IEEE Trans. Neural Syst. Rehabil. Eng. 2018; 1https://doi.org/10.1109/TNSRE.2018.2859793
        • Giuffrida J.P.
        • Riley D.E.
        • Maddux B.N.
        • Heldmann D.A.
        Clinically deployable kinesiaTM technology for automated tremor assessment.
        Mov. Disord. 2009; 24: 723-730https://doi.org/10.1002/mds.22445
        • Heldman D.A.
        • Harris D.A.
        • Felong T.
        • Andrzejewski K.L.
        • Dorsey E.R.
        • Giuffrida J.P.
        • Goldberg B.
        • Burack M.A.
        Telehealth Management of Parkinson's disease using wearable sensors: an exploratory study.
        Digit. Biomarkers. 2017; 44125: 43-51https://doi.org/10.1159/000475801
        • Arroyo-Gallego T.
        • Ledesma-Carbayo M.J.
        • Sanchez-Ferro A.
        • Butterworth I.
        • Sanchez-Mendoza C.
        • Matarazzo M.
        • Montero P.
        • Lopez-Blanco R.
        • Puertas-Martin V.
        • Trincado R.
        • Giancardo L.
        Detection of motor impairment in Parkinson's disease via Mobile touchscreen typing.
        IEEE Trans. Biomed. Eng. 2017; 9294: 1https://doi.org/10.1109/TBME.2017.2664802
        • Arroyo-Gallego T.
        • Ledesma-Carbayo M.J.
        • Butterworth I.
        • Matarazzo M.
        • Montero-Escribano P.
        • Puertas-Martín V.
        • Gray M.L.
        • Giancardo L.
        • Sánchez-Ferro Á.
        Detecting motor impairment in early Parkinson's disease via natural typing interaction with keyboards: validation of the neuroQWERTY approach in an uncontrolled at-home setting.
        J. Med. Internet Res. 2018; 20e89https://doi.org/10.2196/jmir.9462
        • Aghanavesi S.
        • Nyholm D.
        • Senek M.
        • Bergquist F.
        • Memedi M.
        A smartphone-based system to quantify dexterity in Parkinson's disease patients.
        Informatics Med. Unlocked. 2017; 9: 11-17https://doi.org/10.1016/j.imu.2017.05.005
        • Silva de Lima A.L.
        • Hahn T.
        • Evers L.J.W.
        • de Vries N.M.
        • Cohen E.
        • Afek M.
        • Bataille L.
        • Daeschler M.
        • Claes K.
        • Boroojerdi B.
        • Terricabras D.
        • Little M.A.
        • Baldus H.
        • Bloem B.R.
        • Faber M.J.
        Feasibility of large-scale deployment of multiple wearable sensors in Parkinson's disease.
        PLoS One. 2017; 12e0189161https://doi.org/10.1371/journal.pone.0189161
        • Tsiouris K.M.
        • Gatsios D.
        • Rigas G.
        • Miljkovic D.
        • Koroušić Seljak B.
        • Bohanec M.
        • Arredondo M.T.
        • Antonini A.
        • Konitsiotis S.
        • Koutsouris D.D.
        • Fotiadis D.I.
        PD_Manager: an mHealth platform for Parkinson's disease patient management.
        Healthc. Technol. Lett. 2017; 4: 102-108https://doi.org/10.1049/htl.2017.0007
        • Zhan A.
        • Mohan S.
        • Tarolli C.
        • Schneider R.B.
        • Adams J.L.
        • Sharma S.
        • Elson M.J.
        • Spear K.L.
        • Glidden A.M.
        • Little M.A.
        • Terzis A.
        • Dorsey E.R.
        • Saria S.
        Using smartphones and machine learning to quantify Parkinson disease severity: the Mobile Parkinson disease score.
        JAMA Neurol. 2018; 75: 876-880https://doi.org/10.1001/jamaneurol.2018.0809
        • Lipsmeier F.
        • Taylor K.I.
        • Kilchenmann T.
        • Wolf D.
        • Scotland A.
        • Schjodt-Eriksen J.
        • Cheng W.-Y.
        • Fernandez-Garcia I.
        • Siebourg-Polster J.
        • Jin L.
        • Soto J.
        • Verselis L.
        • Boess F.
        • Koller M.
        • Grundman M.
        • Monsch A.U.
        • Postuma R.B.
        • Ghosh A.
        • Kremer T.
        • Czech C.
        • Gossens C.
        • Lindemann M.
        Evaluation of smartphone-based testing to generate exploratory outcome measures in a phase 1 Parkinson's disease clinical trial.
        Mov. Disord. 2018; 00: 1-11https://doi.org/10.1002/mds.27376
        • López-Blanco R.
        • Velasco M.A.
        • Méndez-Guerrero A.
        • Romero J.P.
        • Del Castillo M.D.
        • Serrano J.I.
        • Benito-León J.
        • Bermejo-Pareja F.
        • Rocon E.
        Essential tremor quantification based on the combined use of a smartphone and a smartwatch: the NetMD study.
        J. Neurosci. Methods. 2018; 303: 95-102https://doi.org/10.1016/j.jneumeth.2018.02.015
        • Timmermann L.
        • Gross J.
        • Dirks M.
        • Volkmann J.
        • Freund H.-J.
        • Schnitzler A.
        The cerebral oscillatory network of parkinsonian resting tremor.
        Brain. 2003; 126: 199-212https://doi.org/10.1093/brain/awg022
        • Vaz S.
        • Falkmer T.
        • Passmore A.E.
        • Parsons R.
        • Andreou P.
        The case for using the repeatability coefficient when calculating test-retest reliability.
        PLoS One. 2013; 8e73990https://doi.org/10.1371/journal.pone.0073990
        • Elble R.J.
        • Ellenbogen A.
        Digitizing tablet and Fahn-Tolosa-Marín ratings of Archimedes spirals have comparable minimum detectable change in essential tremor.
        Tremor Other Hyperkinet. Mov. (N. Y). 2017; 7: 481https://doi.org/10.7916/D89S20H7
        • Weir J.P.
        Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM.
        J. Strength Cond. Res. 2005; 19: 231-240https://doi.org/10.1519/15184.1
        • Parrinello C.M.
        • Grams M.E.
        • Sang Y.
        • Couper D.
        • Wruck L.M.
        • Li D.
        • Eckfeldt J.H.
        • Selvin E.
        • Coresh J.
        Iterative outlier removal: a method for identifying outliers in laboratory recalibration studies.
        Clin. Chem. 2016; 62: 966-972https://doi.org/10.1373/clinchem.2016.255216
        • Heldman D.A.
        • Espay A.J.
        • LeWitt P.A.
        • Giuffrida J.P.
        Clinician versus machine: reliability and responsiveness of motor endpoints in Parkinson's disease.
        Parkinsonism Relat. Disord. 2014; 20: 590-595https://doi.org/10.1016/j.parkreldis.2014.02.022
        • Synnott J.
        • Chen L.
        • Nugent C.D.
        • Moore G.
        WiiPD—an approach for the objective home assessment of Parkinson's disease.
        in: Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf. 2011. 2011: 2388-2391https://doi.org/10.1109/IEMBS.2011.6090666
        • Metman L.V.
        • Myre B.
        • Verwey N.
        • Hassin-Baer S.
        • Arzbaecher J.
        • Sierens D.
        • Bakay R.
        Test-retest reliability of UPDRS-III dyskinesia scales, and timed motor test in patients with advanced Parkinson's disease: an argument against multiple baseline assessments.
        Mov. Disord. 2004; 19: 1079-1084https://doi.org/10.1016/j.envexpbot.2017.12.018
        • Espay A.J.
        • Bonato P.
        • Nahab F.B.
        • Maetzler W.
        • Dean J.M.
        • Klucken J.
        • Eskofier B.M.
        • Merola A.
        • Horak F.
        • Lang A.E.
        • Reilmann R.
        • Giuffrida J.
        • Nieuwboer A.
        • Horne M.
        • Little M.A.
        • Litvan I.
        • Simuni T.
        • Dorsey E.R.
        • Burack M.A.
        • Kubota K.
        • Kamondi A.
        • Godinho C.
        • Daneault J.F.
        • Mitsi G.
        • Krinke L.
        • Hausdorff J.M.
        • Bloem B.R.
        • Papapetropoulos S.
        Technology in Parkinson's disease: challenges and opportunities.
        Mov. Disord. 2016; 31https://doi.org/10.1002/mds.26642
        • Zheng X.
        • Vieira A.
        • Marcos S.L.
        • Aladro Y.
        • Ordieres-Meré J.
        Activity-aware essential tremor evaluation using deep learning method based on acceleration data.
        Parkinsonism Relat. Disord. 2018; https://doi.org/10.1016/j.parkreldis.2018.08.001
        • Serrano J.I.
        • Lambrecht S.
        • del Castillo M.D.
        • Romero J.P.
        • Benito-León J.
        • Rocon E.
        Identification of activities of daily living in tremorous patients using inertial sensors.
        Expert Syst. Appl. 2017; 83: 40-48