Hyperglycemia induces mechanical hyperalgesia and depolarization of the resting membrane potential of primary nociceptive neurons: Role of ATP-sensitive potassium channels

Published:March 28, 2019DOI:https://doi.org/10.1016/j.jns.2019.03.025

      Highlights

      • High glucose concentrations depolarize cultured DRG neurons.
      • K+ATP channels are possibly involved in glucose induced depolarization.
      • High glucose injected at the dorsal root ganglia induces mechanical hyperalgesia.
      • Diazoxide blocks the increase in glucose-induced mechanical hyperalgesia.

      Abstract

      Cumulating data suggests that ion channel alterations in nociceptive neurons might be involved in the development of diabetic painful neuropathy. In the present study we investigated the involvement of ATP-sensitive potassium (K+ATP) channels in the acute effect of high glucose solution in vitro and in vivo. High glucose concentrations depolarized cultured nociceptive neurons and depolarization was blocked by the K+ATP opener, diazoxide or by insulin. Glucose injection at the rat dorsal root ganglia (L5) resulted in acute mechanical hyperalgesia that was blocked by diazoxide. Mannitol injection indicates that osmolarity changes are not responsible for glucose effect. Therefore, this study suggests that K+ATP channels expressed in peripheral sensory neurons might be involved in the development of diabetic painful neuropathy. Since sulfonylureas, that act by blocking K+ATP are used for diabetes treatment, it is important to evaluate the possible side effects of such drugs at primary sensory neurons.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Alves D.P.
        • Duarte I.D.
        Involvement of ATP-sensitive K(+) channels in the peripheral antinociceptive effect induced by dipyrone.
        Eur. J. Pharmacol. 2002; 444: 47-52https://doi.org/10.1016/S0014-2999(02)01412-7
        • Alves D.P.
        • Tatsuo M.A.
        • Leite R.
        • Duarte I.D.
        Diclofenac-induced peripheral antinociception is associated with ATP-sensitive K+ channels activation.
        Life Sci. 2004; 74: 2577-2591https://doi.org/10.1016/j.lfs.2003.10.012
        • Ashcroft F.M.K.
        (ATP) channels and insulin secretion: a key role in health and disease.
        Biochem. Soc. Trans. 2006; 34: 243-246https://doi.org/10.1042/BST20060243
        • Barbosa J.H.P.
        • Oliveira S.L.
        • Seara L.T.
        Produtos da glicação avançada dietéticos e as complicações crônicas do diabetes.
        Rev. Nutr. 2009; 22: 113-124https://doi.org/10.1590/S1415-52732009000100011
        • Baron R.
        • Binder A.
        • Wasner G.
        Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment.
        Lancet Neurol. 2010; 9: 807-819https://doi.org/10.1016/S1474-4422(10)70143-5
        • Brussee V.
        • Cunningham F.A.
        • Zochodne D.W.
        Direct insulin signaling of neurons reverses diabetic neuropathy.
        Diabetes. 2004; 53 (-30, 2004): 1824
        • Callaghan B.C.
        • Little A.A.
        • Feldman E.L.
        • Hughes R.A.
        Enhanced glucose control for preventing and treating diabetic neuropathy.
        Cochrane Database Syst. Rev. 2012; 6CD007543https://doi.org/10.1002/14651858.CD007543.pub2. doi:10.1002/14651858.CD007543.pub2
        • Cunha T.M.
        • Roman-Campos D.
        • Lotufo C.M.
        • Duarte H.L.
        • Souza G.R.
        • WAJr Verri
        • Funez M.I.
        • Dias Q.M.
        • Schivo I.R.
        • Domingues A.C.
        • Sachs D.
        • Chiavegatto S.
        • Teixeira M.M.
        • Hothersall J.S.
        • Cruz J.S.
        • Cunha F.Q.
        • Ferreira S.H.
        Morphine peripheral analgesia depends on activation of the PI3Kgamma/AKT/nNOS/NO/KATP signaling pathway.
        ProcNatlAcadSci. 2010; 107: 4442-4447https://doi.org/10.1073/pnas.0914733107
        • Cunha T.M.
        • Souza G.R.
        • Domingues A.C.
        • Carreira E.U.
        • Lotufo C.M.
        • Funez M.I.
        • WAJr Verri
        • Cunha F.Q.
        • Ferreira S.H.
        Stimulation of peripheral kappa opioid receptors inhibits inflammatory hyperalgesia via activation of the PI3Kgamma/AKT/nNOS/NO signaling pathway.
        Mol. Pain. 2012; 8: 1-8https://doi.org/10.1186/1744-8069-8-10
        • Dobretsov M.
        • Hastings S.L.
        • Stimers J.R.
        • Zhang J.M.
        Mechanical hyperalgesia in rats with chronic perfusion of lumbar dorsal root ganglion with hyperglycemic solution.
        J. Neurosci. Methods. 2001; 110: 9-15https://doi.org/10.1016/S0165-0270(01)00410-1
        • Dobretsov M.
        • Romanovsky D.
        • Stimers J.R.
        Early diabetic neuropathy: triggers and mechanisms.
        World J. Gastroenterol. 2007; 13: 175-191https://doi.org/10.3748/wjg.v13.i2.175
        • Feldman E.L.
        • Bennett D.L.H.
        • Nave K.A.
        • Jensen T.S.
        New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain.
        Neuron. 2017; 93: 1296-1313https://doi.org/10.1016/j.neuron.2017.02.005
        • Ferrari L.F.
        • Cunha F.Q.
        • Parada C.A.
        • Ferreira S.H.
        A novel technique to perform direct intraganglionar injections in rats.
        J. Neurosci. Methods. 2007; 159: 236-243https://doi.org/10.1016/j.jneumeth.2006.07.025
        • Gardiner N.J.
        • Wang Z.
        • Luke C.
        • Gott A.
        • Price S.A.
        • Fernhough P.
        Expression of hexokinase isoforms in the dorsal root ganglion of the adult rat and effect of experimental diabetes.
        Brain Res. 2007; 1175: 143-154https://doi.org/10.1016/j.brainres.2007.08.015
        • Grabauskas G.
        • Song I.
        • Zhou S.Y.
        • Owyang C.
        Electrophysiological identification of glucose-sensing neurons in rat nodose ganglia.
        J. Physiol. 2010; 588: 617-631https://doi.org/10.1113/jphysiol.2009.182147
        • He X.D.
        • Guo Y.M.
        • Goyal R.K.
        Effect of Hyperglycemia on Purinergic and Nitrergic inhibitory neuromuscular transmission in the Antrum of the stomach: implications for fast gastric emptying.
        Front. Med. 2018; 5: 1-9https://doi.org/10.3389/fmed.2018.00001
        • Hibino H.
        • Inanobe A.
        • Furutani K.
        • Murakami S.
        • Findlay I.
        • Kurachi Y.
        Inwardly rectifying potassium channels: their structure, function, and physiological roles.
        Physiol. Rev. 2010; 90: 291-366https://doi.org/10.1152/physrev.00021.2009
        • International Diabetes Federation. IDF Diabetes Atlas
        International Diabetes Federation.
        8th ed. 2017 (Brussels, Belgium)
        • Katulanda P.
        • Ranasinghe P.
        • Jayawardena R.
        • Constantine G.R.
        • Sheriff M.H.
        • Matthews D.R.
        The prevalence, patterns and predictors of diabetic peripheral neuropathy in a developing country.
        Diabetol. Metab. Syndr. 2012; 4: 21https://doi.org/10.1186/1758-5996-4-21
        • Kim B.
        • McLean L.L.
        • Philip S.S.
        • Feldman E.L.
        Hyperinsulinemia induces insulin resistance in dorsal root ganglion neurons.
        Endocrinology. 2011; 152: 3638-3647https://doi.org/10.1210/en.2011-0029
        • Lee J.H.
        • Cox D.J.
        • Mook D.G.
        • McCarty R.C.
        Effect of hyperglycemia on pain threshold in alloxan-diabetic rats.
        Pain. 1990; 40: 105-107https://doi.org/10.1016/0304-3959(90)91057-P
        • Lee J.H.
        • McCarty R.C.
        Glycemic control of pain threshold in diabetic and control rats.
        Physiol. Behav. 1990; 47: 225-230https://doi.org/10.1016/0031-9384(90)90135-Q
        • Lee J.H.
        • McCarty R.C.
        Pain threshold in diabetic rats: effects of good versus poor diabetic control.
        Pain. 1992; 50: 231-236https://doi.org/10.1016/0304-3959(92)90167-A
        • Liu M.
        • Wood J.N.
        The roles of sodium channels in nociception: implications for mechanisms of neuropathic pain.
        Pain Med. 2011; 2: S93-S99https://doi.org/10.1111/j.1526-4637.2011.01158.x
        • Matsuka Y.
        • Spigelman I.
        Hyperosmolar solutions selectively block action potentials in rat Myelinated sensory Fibers: implications for diabetic neuropathy.
        J. Neurophysiol. 2004; 91: 48-56https://doi.org/10.1152/jn.00689.2003
        • Pickup J.C.
        • Williams G.M.D.
        Textbook of Diabetes.
        Blackwell Scientific, 1991
        • Pop-Busui R.
        • Lu J.
        • Lopes N.
        • Jones T.L.
        • 2D Investigators B.A.R.I.
        Prevalence of diabetic peripheral neuropathy and relation to glycemic control therapies at baseline in the BARI 2D cohort.
        J. Peripher. Nerv. Syst. 2009; 14: 1-13https://doi.org/10.1111/j.1529-8027.2009.00200.x
        • Pop-Busui R.
        • Boulton A.J.M.
        • Feldman E.L.
        • Bril V.
        • Freeman R.
        • Malik R.A.
        • Sosenko J.M.
        • Ziegler D.
        Diabetic neuropathy: a position statement by the American Diabetes Association.
        Diabetes Care. 2017; 40: 136-154https://doi.org/10.2337/dc16-2042
        • Rang H.P.
        • Ritter J.M.
        • Flower R.J.
        Henderson, G. Rang & Dale: pharmacology.
        8ª ed, cap. 2016; 3: 4
        • Ristoiu V.
        • Pluteanu F.
        • Flonta M.L.
        • Reid G.
        Few cultured rat primary sensory neurons express a tolbutamide-sensitive K+ current.
        J. Cell. Mol. Med. 2002; 6: 271-274https://doi.org/10.1111/j.1582-4934.2002.tb00194.x
        • Romanovsky D.
        • Hastings S.L.
        • Stimers J.R.
        • Dobretsov M.
        Relevance of hyperglycemia to early mechanical hyperalgesia in streptozotocin-induced diabetes.
        J. Peripher. Nerv. Syst. 2004; 9: 62-69https://doi.org/10.1111/j.1085-9489.2004.009204.x
        • Romanovsky D.
        • Cruz N.F.
        • Dienel G.A.
        • Dobretsov M.
        Mechanical hyperalgesia correlates with insulin deficiency in normoglycemicstreptozotocin-treated rats.
        Neurobiol. Dis. 2006; 24: 384-394https://doi.org/10.1016/j.nbd.2006.07.009
        • Rubaiy H.N.
        The therapeutic agents that target ATP-sensitive potassium channels.
        Acta Pharma. 2016; 66: 23-34https://doi.org/10.1515/acph-2016-0006
        • Santos G.G.
        • Dias E.V.
        • Teixeira J.M.
        • Athie M.C.
        • Bonet I.J.
        • Tambeli C.H.
        • Parada C.A.
        The analgesic effect of dipyrone in peripheral tissue involves two different mechanisms: neuronal K(ATP) channel opening and CB(1) receptor activation.
        Eur. J. Pharmacol. 2014; 741: 124-131https://doi.org/10.1016/j.ejphar.2014.07.019
        • Shi Q.
        • Zeng J.
        • Dong Y.
        • Xu K.Y.
        Concurrent impairment of (Na++K+)-ATPase activity in multi-organ of type-1 diabetic NOD mice.
        J. Diabetes Complicat. 2013; 27: 29-33https://doi.org/10.1016/j.jdiacomp.2012.07.004
        • Smith A.J.
        • Taneja T.K.
        • Mankouri J.
        • Silvaprasadarao A.
        Molecular cell biology of KATP channels: implications for neonatal diabetes.
        Expert Rev. Mol. Med. 2007; 9: 1-17https://doi.org/10.1017/S1462399407000403
        • Stacey B.R.
        Management of peripheral neuropathic pain.
        Am J Phys Med Rehabil. 2005; 84: S4-S16https://doi.org/10.1097/01.PHM.0000154905.18445.0F
        • Szeto V.
        • Chen N.H.
        • Sun H.S.
        • Feng Z.P.
        The role of KATP channels in cerebral ischemic stroke and diabetes.
        Acta Pharmacol. Sin. 2018; 39: 683-694https://doi.org/10.1038/aps.2018.10
        • Vincent A.M.
        • McLean L.L.
        • Backus C.
        • Feldman E.L.
        Short-term hyperglycemia produces oxidative damage and apoptosis in neurons.
        FASEB J. 2005; 19: 638-640https://doi.org/10.1096/fj.04-2513fje
        • Vincent A.M.
        • Stevens M.J.
        • Backus C.
        • McLean L.L.
        • Feldman E.L.
        Cell culture modeling to test therapies against hyperglycemia-mediated oxidative stress and injury.
        Antioxid. Redox Signal. 2005; 7: 1494-1506https://doi.org/10.1089/ars.2005.7.1494
        • Vivancos G.G.
        • Verri Jr., W.A.
        • Cunha T.M.
        • Schivo I.R.
        • Parada C.A.
        • Cunha F.Q.
        • Ferreira S.H.
        An electronic pressure-meter nociception paw test for rats.
        Braz. J. Med. Biol. Res. 2004; 37: 391-399https://doi.org/10.1590/S0100-879X2004000300017
        • Zhou S.Y.
        • Lu Y.
        • Song I.
        • Owyang C.
        Inhibition of gastric motility by hyperglycemia is mediated by nodose ganglia KATP channels.
        Am. J. Physiol. Gastrointest. Liver Physiol. 2011; 300: G394-G400https://doi.org/10.1152/ajpgi.00493.2010
        • Zuliani V.
        • Rivara M.
        • Fantini M.
        • Costantino G.
        Sodium channel blockers for neuropathic pain.
        Expert Opin Ther Pat. 2010; 20: 755-779https://doi.org/10.2174/1381612054865028