Advertisement
Review Article| Volume 398, P39-44, March 15, 2019

Serum magnesium level and hematoma expansion in patients with intracerebral hemorrhage

Published:January 16, 2019DOI:https://doi.org/10.1016/j.jns.2019.01.027

      Highlights

      • ICH is a devastating subtype of stroke that results in significant rates of mortality and morbidities.
      • The initial hematoma volume, HE, blood pressure, and coagulopathy are considered strong predictors of clinical outcomes.
      • Low serum Mg++ levels have been shown to be associated with larger initial hematoma and HE.
      • However, randomized clinical trials administering intravenous Mg++ have shown no benefit over placebo in ICH patients.
      • Hypocalcemia and a delay in Mg++ trafficking across the BBB might explain the futile results for intravenous Mg++ therapy.

      Abstract

      Spontaneous intracerebral hemorrhage (ICH) is a devastating subtype of stroke that results in significant rates of mortality and morbidities. The initial hematoma volume, hematoma expansion (HE), blood pressure (BP), and coagulopathy are considered strong predictors of clinical outcomes and mortality. Low serum magnesium (Mg++) levels have been shown to be associated with larger initial hematoma and greater HE. Coagulopathy, platelet dysfunction, high BP, and increased inflammatory response might form the mechanistic link between low serum Mg++ levels, larger hematoma size and greater HE. However, randomized clinical trials administering intravenous Mg++ have shown no benefit over placebo in ICH patients. The confounding effect of hypocalcemia and a delay in Mg++ trafficking across the blood-brain barrier might explain the futile results for intravenous Mg++ therapy. In the current review, we will discuss the evidence regarding the possible role of low serum Mg++ level on HE in acute ICH.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Demchuk A.M.
        • Dowlatshahi D.
        • Rodriguez-Luna D.
        • et al.
        Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): a prospective observational study.
        Lancet Neurol. 2012; 11: 307-314
        • Brouwers H.B.
        • Greenberg S.M.
        Hematoma expansion following acute intracerebral hemorrhage.
        Cerebrovasc. Dis. 2013; 35: 195-201
        • Broderick J.P.
        • Brott T.G.
        • Duldner J.E.
        • Tomsick T.
        • Huster G.
        Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality.
        Stroke. 1993; 24: 987-993
        • Mayer S.A.
        • Brun N.C.
        • Begtrup K.
        • et al.
        Recombinant activated factor VII for acute intracerebral hemorrhage.
        N. Engl. J. Med. 2005; 352: 777-785
        • Baharoglu M.I.
        • Cordonnier C.
        • Al-Shahi Salman R.
        • et al.
        Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH): a randomised, open-label, phase 3 trial.
        Lancet. 2016; 387: 2605-2613
        • Sprigg N.
        • Flaherty K.
        • Appleton J.P.
        • et al.
        Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial.
        Lancet (London, England). 2018; 391: 2107-2115
        • Anderson C.S.
        • Heeley E.
        • Huang Y.
        • et al.
        Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage.
        N. Engl. J. Med. 2013; 368: 2355-2365
        • Liotta E.M.
        • Prabhakaran S.
        • Sangha R.S.
        • et al.
        Magnesium, hemostasis, and outcomes in patients with intracerebral hemorrhage.
        Neurology. 2017; 89: 813-819
        • Goyal N.
        • Tsivgoulis G.
        • Malhotra K.
        • et al.
        Serum magnesium levels and outcomes in patients with acute spontaneous intracerebral hemorrhage.
        J. Am. Heart Assoc. 2018; 7008698
        • Dowlatshahi D.
        • Demchuk A.M.
        • Flaherty M.L.
        • Ali M.
        • Lyden P.L.
        • Smith E.E.
        Defining hematoma expansion in intracerebral hemorrhage: relationship with patient outcomes.
        Neurology. 2011; 76: 1238-1244
        • Fisher C.M.
        Pathological observations in hypertensive cerebral hemorrhage.
        J. Neuropathol. Exp. Neurol. 1971; 30: 536-550
        • Mayer S.A.
        • Lignelli A.
        • Fink M.E.
        • et al.
        Perilesional blood flow and edema formation in acute intracerebral hemorrhage: a SPECT study.
        Stroke. 1998; 29: 1791-1798
        • Li Q.
        • Liu Q.J.
        • Yang W.S.
        • et al.
        Island sign: an imaging predictor for early hematoma expansion and poor outcome in patients with intracerebral hemorrhage.
        Stroke. 2017; 48: 3019-3025
        • Yu Z.
        • Zheng J.
        • Ali H.
        • et al.
        Significance of satellite sign and spot sign in predicting hematoma expansion in spontaneous intracerebral hemorrhage.
        Clin. Neurol. Neurosurg. 2017; 162: 67-71
        • Boulouis G.
        • Morotti A.
        • Brouwers H.B.
        • et al.
        Association between hypodensities detected by computed tomography and hematoma expansion in patients with intracerebral hemorrhage.
        JAMA Neurol. 2016; 73: 961-968
        • Lim-Hing K.
        • Rincon F.
        Secondary hematoma expansion and perihemorrhagic edema after intracerebral hemorrhage: from bench work to practical aspects.
        Front. Neurol. 2017; 8: 74
        • Hussein O.
        • Sawalha K.
        • Hamed M.
        • et al.
        The intraventricular-spot sign: prevalence, significance, and relation to hematoma expansion and outcomes.
        J. Neurol. 2018 Oct; 265: 2201-2210
        • Steiner T.
        • Bosel J.
        Options to restrict hematoma expansion after spontaneous intracerebral hemorrhage.
        Stroke. 2010; 41: 402-409
        • Ayuk J.
        • Gittoes N.J.
        Contemporary view of the clinical relevance of magnesium homeostasis.
        Ann. Clin. Biochem. 2014; 51: 179-188
        • Saver J.L.
        • Starkman S.
        • Eckstein M.
        • et al.
        Prehospital use of magnesium sulfate as neuroprotection in acute stroke.
        N. Engl. J. Med. 2015; 372: 528-536
        • Konrad M.
        • Schlingmann K.P.
        • Gudermann T.
        Insights into the molecular nature of magnesium homeostasis.
        Am. J. Physiol. Ren. Physiol. 2004; 286: F599-F605
        • Swaminathan R.
        Magnesium metabolism and its disorders.
        Clin. Biochem. Rev. 2003; 24: 47-66
        • Ishimura E.
        • Okuno S.
        • Yamakawa T.
        • Inaba M.
        • Nishizawa Y.
        Serum magnesium concentration is a significant predictor of mortality in maintenance hemodialysis patients.
        Magnes. Res. 2007; 20: 237-244
        • Muir K.W.
        Magnesium for neuroprotection in ischaemic stroke: rationale for use and evidence of effectiveness.
        CNS Drugs. 2001; 15: 921-930
        • Sakamoto T.
        • Takasu A.
        • Saitoh D.
        • Kaneko N.
        • Yanagawa Y.
        • Okada Y.
        Ionized magnesium in the cerebrospinal fluid of patients with head injuries.
        J. Trauma. 2005; 58: 1103-1109
        • Rude R.K.
        • Oldham S.B.
        • Sharp Jr., C.F.
        • Singer F.R.
        Parathyroid hormone secretion in magnesium deficiency.
        J. Clin. Endocrinol. Metab. 1978; 47: 800-806
        • Vetter T.
        • Lohse M.J.
        Magnesium and the parathyroid.
        Curr. Opin. Nephrol. Hypertens. 2002; 11: 403-410
        • Reinhart R.A.
        Magnesium metabolism. A review with special reference to the relationship between intracellular content and serum levels.
        Arch. Intern. Med. 1988; 148: 2415-2420
        • Chang J.J.
        • Mack W.J.
        • Saver J.L.
        • Sanossian N.
        Magnesium: potential roles in neurovascular disease.
        Front. Neurol. 2014; 5: 52
        • Izumi Y.
        • Roussel S.
        • Pinard E.
        • Seylaz J.
        Reduction of infarct volume by magnesium after middle cerebral artery occlusion in rats.
        J. Cereb. Blood Flow Metab. 1991; 11: 1025-1030
        • Marinov M.B.
        • Harbaugh K.S.
        • Hoopes P.J.
        • Pikus H.J.
        • Harbaugh R.E.
        Neuroprotective effects of preischemia intraarterial magnesium sulfate in reversible focal cerebral ischemia.
        J. Neurosurg. 1996; 85: 117-124
        • Yang Y.
        • Li Q.
        • Ahmad F.
        • Shuaib A.
        Survival and histological evaluation of therapeutic window of post-ischemia treatment with magnesium sulfate in embolic stroke model of rat.
        Neurosci. Lett. 2000; 285: 119-122
        • Behrouz R.
        • Hafeez S.
        • Mutgi S.A.
        • Zakaria A.
        • Miller C.M.
        Hypomagnesemia in intracerebral hemorrhage.
        World Neurosurg. 2015; 84: 1929-1932
        • Jafari M.
        • Di Napoli M.
        • Datta Y.H.
        • Bershad E.M.
        • Divani A.A.
        The role of serum calcium level in intracerebral hemorrhage hematoma expansion: is there any?.
        Neurocrit. Care. 2018; (Epub ahead of print)
        • Keep R.F.
        • Andjelkovic A.V.
        • Xiang J.
        • et al.
        Brain endothelial cell junctions after cerebral hemorrhage: changes, mechanisms and therapeutic targets.
        J. Cereb. Blood Flow Metab. 2018; 38: 1255-1275
        • Sasaki S.
        • Oshima T.
        • Matsuura H.
        • et al.
        Abnormal magnesium status in patients with cardiovascular diseases.
        Clin. Sci. 2000; 98 (London, England: 1979): 175-181
        • Gajsiewicz J.M.
        • Nuzzio K.M.
        • Rienstra C.M.
        • Morrissey J.H.
        Tissue factor residues that modulate magnesium-dependent rate enhancements of the tissue factor/factor VIIa complex.
        Biochemistry. 2015; 54: 4665-4671
        • Sekiya F.
        • Yoshida M.
        • Yamashita T.
        • Morita T.
        Magnesium(II) is a crucial constituent of the blood coagulation cascade. Potentiation of coagulant activities of factor IX by Mg2+ ions.
        J. Biol. Chem. 1996; 271: 8541-8544
        • Palta S.
        • Saroa R.
        • Palta A.
        Overview of the coagulation system.
        Indian J. Anaesth. 2014; 58: 515-523
        • Ames W.A.
        • McDonnell N.
        • Potter D.
        The effect of ionised magnesium on coagulation using thromboelastography.
        Anaesthesia. 1999; 54: 999-1001
        • Kang W.S.
        • Yun H.J.
        • Han S.J.
        • et al.
        The effects of magnesium on the course of atrial fibrillation and coagulation in patients with atrial fibrillation undergoing mitral valve annuloplasty.
        Korean J. Anesthesiol. 2011; 61: 210-215
        • Ziai W.C.
        • Torbey M.T.
        • Kickler T.S.
        • Oh S.
        • Bhardwaj A.
        • Wityk R.J.
        Platelet count and function in spontaneous intracerebral hemorrhage.
        J. Stroke Cerebrovasc. Dis. 2003; 12: 201-206
        • Hwang D.L.
        • Yen C.F.
        • Nadler J.L.
        Effect of extracellular magnesium on platelet activation and intracellular calcium mobilization.
        Am. J. Hypertens. 1992; 5: 700-706
        • Ravn H.B.
        • Kristensen S.D.
        • Vissinger H.
        • Husted S.E.
        Magnesium inhibits human platelets.
        Blood Coagul. Fibrinolysis. 1996; 7: 241-244
        • Gries A.
        • Bode C.
        • Gross S.
        • Peter K.
        • Bohrer H.
        • Martin E.
        The effect of intravenously administered magnesium on platelet function in patients after cardiac surgery.
        Anesth. Analg. 1999; 88: 1213-1219
        • Hughes A.
        • Tonks R.S.
        Magnesium, adenosine diphosphate and blood platelets.
        Nature. 1966; 210: 106-107
        • Gawaz M.
        • Ott I.
        • Reininger A.J.
        • Neumann F.J.
        Effects of magnesium on platelet aggregation and adhesion. Magnesium modulates surface expression of glycoproteins on platelets in vitro and ex vivo.
        Thromb. Haemost. 1994; 72: 912-918
        • Youssefian T.
        • Masse J.M.
        • Rendu F.
        • Guichard J.
        • Cramer E.M.
        Platelet and megakaryocyte dense granules contain glycoproteins Ib and IIb-IIIa.
        Blood. 1997; 89: 4047-4057
        • Bohne A.
        • Fukami M.H.
        • Holmsen H.
        EDTA inhibits collagen-induced ATP+ADP secretion and tyrosine phosphorylation in platelets independently of Mg2+ chelation and decrease in pH.
        Platelets. 2002; 13: 437-442
        • Shechter M.
        • Merz C.N.
        • Paul-Labrador M.
        • et al.
        Oral magnesium supplementation inhibits platelet-dependent thrombosis in patients with coronary artery disease.
        Am. J. Cardiol. 1999; 84: 152-156
        • Shi L.
        • Xu S.
        • Zheng J.
        • Xu J.
        • Zhang J.
        Blood pressure management for acute intracerebral hemorrhage: a meta-analysis.
        Sci. Rep. 2017; 7: 14345
        • Lattanzi S.
        • Silvestrini M.
        Blood pressure in acute intra-cerebral hemorrhage.
        Ann. Transl. Med. 2016; 4: 320
        • Cunha A.R.
        • Umbelino B.
        • Correia M.L.
        • Neves M.F.
        Magnesium and vascular changes in hypertension.
        Int. J. Hypertens. 2012; 2012: 754250
        • Touyz R.M.
        • Pu Q.
        • He G.
        • et al.
        Effects of low dietary magnesium intake on development of hypertension in stroke-prone spontaneously hypertensive rats: role of reactive oxygen species.
        J. Hypertens. 2002; 20: 2221-2232
        • Houston M.
        The role of magnesium in hypertension and cardiovascular disease.
        J. Clin. Hypertens. 2011; 13 (Greenwich, Conn): 843-847
        • Resnick L.M.
        • Laragh J.H.
        • Sealey J.E.
        • Alderman M.H.
        Divalent cations in essential hypertension. Relations between serum ionized calcium, magnesium, and plasma renin activity.
        N. Engl. J. Med. 1983; 309: 888-891
        • Muir K.W.
        • Lees K.R.
        • Ford I.
        • Davis S.
        Magnesium for acute stroke (Intravenous Magnesium Efficacy in Stroke trial): randomised controlled trial.
        Lancet. 2004; 363: 439-445
        • Lattanzi S.
        • Brigo F.
        • Trinka E.
        • Cagnetti C.
        • Di Napoli M.
        • Silvestrini M.
        Neutrophil-to-lymphocyte ratio in acute cerebral hemorrhage: a system review.
        Transl. Stroke Res. 2018; 8: 018-0649
        • Lattanzi S.
        • Cagnetti C.
        • Provinciali L.
        • Silvestrini M.
        Neutrophil-to-lymphocyte ratio and neurological deterioration following acute cerebral hemorrhage.
        Oncotarget. 2017; 8: 57489-57494
        • Di Napoli M.
        • Slevin M.
        • Popa-Wagner A.
        • Singh P.
        • Lattanzi S.
        • Divani A.A.
        Monomeric C-reactive protein and cerebral hemorrhage: from bench to bedside.
        Front. Immunol. 2018; 9: 1921
        • Boehme A.K.
        • Hays A.N.
        • Kicielinski K.P.
        • et al.
        Systemic inflammatory response syndrome and outcomes in intracerebral hemorrhage.
        Neurocrit. Care. 2016; 25: 133-140
        • Dziedzic T.
        • Bartus S.
        • Klimkowicz A.
        • Motyl M.
        • Slowik A.
        • Szczudlik A.
        Intracerebral hemorrhage triggers interleukin-6 and interleukin-10 release in blood.
        Stroke. 2002; 33: 2334-2335
        • Audebert H.J.
        • Rott M.M.
        • Eck T.
        • Haberl R.L.
        Systemic inflammatory response depends on initial stroke severity but is attenuated by successful thrombolysis.
        Stroke. 2004; 35: 2128-2133
        • Thongprayoon C.
        • Cheungpasitporn W.
        • Erickson S.B.
        Admission hypomagnesemia linked to septic shock in patients with systemic inflammatory response syndrome.
        Ren. Fail. 2015; 37: 1518-1521
        • Tam M.
        • Gomez S.
        • Gonzalez-Gross M.
        • Marcos A.
        Possible roles of magnesium on the immune system.
        Eur. J. Clin. Nutr. 2003; 57: 1193-1197
        • Mazur A.
        • Maier J.A.
        • Rock E.
        • Gueux E.
        • Nowacki W.
        • Rayssiguier Y.
        Magnesium and the inflammatory response: potential physiopathological implications.
        Arch. Biochem. Biophys. 2007; 458: 48-56
        • Weglicki W.B.
        • Dickens B.F.
        • Wagner T.L.
        • Chmielinska J.J.
        • Phillips T.M.
        Immunoregulation by neuropeptides in magnesium deficiency: ex vivo effect of enhanced substance P production on circulating T lymphocytes from magnesium-deficient mice.
        Magnes. Res. 1996; 9: 3-11
        • Varatharaj A.
        • Galea I.
        The blood-brain barrier in systemic inflammation.
        Brain Behav. Immun. 2017; 60: 1-12
        • Mracsko E.
        • Veltkamp R.
        Neuroinflammation after intracerebral hemorrhage.
        Front. Cell. Neurosci. 2014; 8: 388
        • Malpuech-Brugere C.
        • Nowacki W.
        • Daveau M.
        • et al.
        Inflammatory response following acute magnesium deficiency in the rat.
        Biochim. Biophys. Acta. 2000; 1501: 91-98
        • Kramer J.H.
        • Spurney C.
        • Iantorno M.
        • et al.
        Neurogenic inflammation and cardiac dysfunction due to hypomagnesemia.
        Am J Med Sci. 2009; 338: 22-27
        • Feibel J.H.
        • Baldwin C.A.
        • Joynt R.J.
        Catecholamine-associated refractory hypertension following acute intracranial hemorrhage: control with propranolol.
        Ann. Neurol. 1981; 9: 340-343
        • Schulze J.
        • Vogelgesang A.
        • Dressel A.
        Catecholamines, steroids and immune alterations in ischemic stroke and other acute diseases.
        Aging Dis. 2014; 5: 327-339
        • Innerarity S.
        Hypomagnesemia in acute and chronic illness.
        Crit. Care Nurs. Q. 2000; 23 (quiz 87): 1-19
        • Li L.
        • Messina J.L.
        Acute insulin resistance following injury.
        Trends Endocrinol. Metab. 2009; 20: 429-435
        • Westermaier T.
        • Stetter C.
        • Kunze E.
        • et al.
        Magnesium treatment for neuroprotection in ischemic diseases of the brain.
        Exp. Transl. Stroke Med. 2013; 5: 6
        • van den Bergh W.M.
        Magnesium in subarachnoid haemorrhage: proven beneficial?.
        Magnes. Res. 2009; 22: 121-126
        • Letson H.L.
        • Dobson G.P.
        Correction of acute traumatic coagulopathy with small-volume 7.5% NaCl adenosine, lidocaine, and Mg2+ occurs within 5 minutes: a ROTEM analysis.
        J. Trauma Acute Care Surg. 2015; 78: 773-783
        • Letson H.L.
        • Pecheniuk N.M.
        • Mhango L.P.
        • Dobson G.P.
        Reversal of acute coagulopathy during hypotensive resuscitation using small-volume 7.5% NaCl adenocaine and Mg2+ in the rat model of severe hemorrhagic shock.
        Crit. Care Med. 2012; 40: 2417-2422
        • Muir K.W.
        Magnesium in stroke treatment.
        Postgrad. Med. J. 2002; 78: 641-645
        • Chung J.W.
        • Ryu W.S.
        • Kim B.J.
        • Yoon B.W.
        Elevated calcium after acute ischemic stroke: association with a poor short-term outcome and long-term mortality.
        J. Stroke. 2015; 17: 54-59
        • Walker G.L.
        • Williamson P.M.
        • Ravich R.B.
        • Roche J.
        Hypercalcaemia associated with cerebral vasospasm causing infarction.
        J. Neurol. Neurosurg. Psychiatry. 1980; 43: 464-467