Advertisement

West Nile virus induces a post-infectious pro-inflammatory state that explains transformation of stable ocular myasthenia gravis to myasthenic crises

Published:September 13, 2018DOI:https://doi.org/10.1016/j.jns.2018.09.015

      Highlights

      • West Nile virus (WNV) infection has been reported to promote myasthenia gravis (MG) and other autoimmune diseases.
      • Molecular mimicry between WNV proteins and host proteins is postulated as the major mechanism for WNV-triggered autoimmunity.
      • We present a patient with stable ocular MG who progressed to myasthenic crisis after WNV neuroinvasive disease.
      • In stable ocular MG with proven autoantibodies, transformation to generalized MG cannot be attributed to molecular mimicry.
      • Evidence implicates a WNV-induced post-infectious pro-inflammatory state that may amplify and promote autoimmune disease.

      Abstract

      West Nile virus (WNV) infection has been reported to promote myasthenia gravis (MG) and various other diseases that have a presumed autoimmune pathogenesis. Molecular mimicry between WNV proteins and host proteins has been postulated as the major mechanism for WNV-triggered breaking of immunological self-tolerance. We present a patient with stable ocular MG and positive anti-acetylcholine receptor antibodies who progressed to myasthenic crisis after WNV neuroinvasive disease. In this case of stable autoimmune disease with proven auto-antibodies, transformation to generalized disease cannot be attributed to molecular mimicry, which requires that an immune response first be generated against an infectious agent. Rather, the evidence supports the concept of a post-infectious pro-inflammatory state that may contribute to the amplification and promotion of autoimmune disease in some WNV survivors.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Molko N.
        • Simon O.
        • Guyon D.
        • Biron A.
        • Dupont-Rouzeyrol M.
        • Gourinat A.-C.
        Zika virus infection and myasthenia gravis: report of 2 cases.
        Neurology United States. 2017; 88: 1097-1098
        • Leis A.A.
        • Szatmary G.
        • Ross M.A.
        • Stokic D.S.
        West nile virus infection and myasthenia gravis.
        Muscle Nerve. United States. 2014; 49: 26-29
        • Felice K.J.
        • Dimario F.J.
        • Conway S.R.
        Postinfectious myasthenia gravis: report of two children.
        J. Child Neurol. United States. 2005; 20: 441-444
        • Hassin-Baer S.
        • Kirson E.D.
        • Shulman L.
        • et al.
        Stiff-person syndrome following West Nile fever.
        Arch. Neurol. United States. 2004; 61: 938-941
      1. Sumner N, Jones L. Multifocal neuropathy associated with West Nile virus infection. Neurology. United States; 2008;71:1123.

        • Pepperell C.
        • Rau N.
        • Krajden S.
        • et al.
        West Nile virus infection in 2002: morbidity and mortality among patients admitted to hospital in southcentral Ontario.
        CMAJ. Canada. 2003; 168: 1399-1405
        • Ahmed S.
        • Libman R.
        • Wesson K.
        • Ahmed F.
        • Einberg K.
        Guillain-Barre syndrome: an unusual presentation of West Nile virus infection.
        Neurology. United States. 2000; 55: 144-146
        • Berrih-Aknin S.
        • Le Panse R.
        Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms.
        J. Autoimmun. England. 2014; 52: 90-100
        • Schwimmbeck P.L.
        • Dyrberg T.
        • Drachman D.B.
        • Oldstone M.B.
        Molecular mimicry and myasthenia gravis. An autoantigenic site of the acetylcholine receptor alpha-subunit that has biologic activity and reacts immunochemically with herpes simplex virus.
        J. Clin. Invest. United States. 1989; 84: 1174-1180
        • Nagia L.
        • Lemos J.
        • Abusamra K.
        • Cornblath W.T.
        • Eggenberger E.R.
        Prognosis of ocular myasthenia gravis: retrospective multicenter analysis.
        Ophthalmology. 2015 Jul; 122: 1517-1521https://doi.org/10.1016/j.ophtha.2015.03.010
        • Hong Y.H.
        • Kwon S.B.
        • Kim B.J.
        • et al.
        Prognosis of ocular myasthenia in Korea: a retrospective multicenter analysis of 202 patients.
        J. Neurol. Sci. 2008 Oct 15; 273: 10-14https://doi.org/10.1016/j.jns.2008.05.023
        • Ocular Myasthenia Gravis
        Neuromuscular Home Page.
        (updated 4/21/2018)
        • Kupersmith M.J.
        • Latkany R.
        • Homel P.
        Development of Generalized Disease at 2 years in patients with Ocular Myasthenia Gravis.
        Arch. Neurol. 2003; 60: 243-248https://doi.org/10.1001/archneur.60.2.243
        • Greco M.
        • Cofano P.
        • Lobreglio G.
        Seropositivity for West Nile virus antibodies in patients affected by myasthenia gravis.
        J. Clin. Med. Res. Canada. 2016; 8: 196-201
        • Root-Bernstein R.
        • Fairweather D.
        Unresolved issues in theories of autoimmune disease using myocarditis as a framework.
        J. Theor. Biol. 2015 June 21; 375: 101-123https://doi.org/10.1016/j.jtbi.2014.11.022
        • Almhanna K.
        • Palanichamy N.
        • Sharma M.
        • Hobbs R.
        • Sil A.
        Unilateral brachial plexopathy associated with West Nile virus meningoencephalitis.
        Clin. Infect. Dis. 2003 Jun 15; 36: 1629-1630
        • Pergam S.A.
        • Delong C.E.
        • Echevarria L.
        • Scully G.
        • Goade D.E.
        Myocarditis in West Nile Virus infection.
        Am. J. Trop. Med. Hyg. 2006; 75: 1232-1233
        • Petzold A.
        • Groves M.
        • Leis A.A.
        • Scaravilli F.
        • Stokic D.S.
        Neuronal and glial cerebrospinal fluid protein biomarkers are elevated after West Nile virus infection.
        Muscle Nerve. United States. 2010; 41: 42-49
        • Leis A.A.
        • Stokic D.S.
        • Petzold A.
        Glial S100B is elevated in serum across the spectrum of West Nile virus infection.
        Muscle Nerve. United States. 2012; 45: 826-830
        • Kuwar R.B.
        • Stokic D.S.
        • Leis A.A.
        • et al.
        Does astroglial protein S100B contribute to West Nile neuro-invasive syndrome?.
        J. Neurol. Sci. Netherlands. 2015; 358: 243-252
        • Fraisier C.
        • Papa A.
        • Almeras L.
        High-mobility group box-1, promising serological biomarker for the distinction of human WNV disease severity.
        Virus Res. Netherlands. 2015; 195: 9-12
        • Juranek J.
        • Ray R.
        • Banach M.
        • Vivek Rai V.
        Receptor for advanced glycation end-products in neurodegenerative.
        Dis. Rev. Neurosci. 2015; https://doi.org/10.1515/revneuro-2015-0003
        • Mu L.
        • Zhang Y.
        • Sun B.
        • et al.
        Activation of the receptor for advanced glycation end products (RAGE) exacerbates experimental autoimmune myasthenia gravis symptoms.
        Clin. Immunol. United States. 2011; 141: 36-48
        • Moser B.
        • Bekos C.
        • Zimprich F.
        • Nickl S.
        • Klepetko W.
        • Ankersmit J.
        The receptor for advanced glycation endproducts and its ligands in patients with myasthenia gravis.
        Biochem. Biophys Res. Commun. United States. 2012; 420: 96-101
        • Acharya D.
        • Wang P.
        • Paul A.M.
        • et al.
        Interleukin-17A Promotes CD8+ T Cell Cytotoxicity to Facilitate West Nile Virus Clearance.
        J. Virol. United States. 2017; 91https://doi.org/10.1128/JVI.01529-16
        • Xie Y.
        • Li H.
        • Jiang B.
        • Li Y.
        • Kaminski H.J.
        • Kusner L.L.
        Elevated plasma interleukin-17A in a subgroup of Myasthenia Gravis patients.
        Cytokine. England. 2016; 78: 44-46
        • Schaffert H.
        • Pelz A.
        • Saxena A.
        • et al.
        IL-17-producing CD4(+) T cells contribute to the loss of B-cell tolerance in experimental autoimmune myasthenia gravis.
        Eur J Immunol. Germany. 2015; 45: 1339-1347
        • Garcia M.N.
        • Hause A.M.
        • Walker C.M.
        • Orange J.S.
        • Hasbun R.
        • Murray K.O.
        Evaluation of prolonged fatigue post-West Nile virus infection and association of fatigue with elevated antiviral and proinflammatory cytokines.
        Viral Immunol. United States. 2014; 27: 327-333
        • Leis A.A.
        • Stokic D.S.
        • Acharya D.
        • et al.
        West Nile virus induces a prolonged pro-inflammatory state that may promote myasthenia gravis.
        in: Poster Abstracts. 13th International Conference on Myasthenia Gravis and Related Disorders. NYAS. May 15–17. 2017
        • Ronca S.E.
        • Garcia M.N.
        • Datta S.
        • Govindarajan K.
        • et al.
        A Cross-Sectional Study of Neurocognitive Outcomes in Post-West Nile Virus Infection.
        Am Soc Trop Med Hyg. ASTMH. November 7 2017; (Abstract 1310)