Advertisement

Genetics of tardive dyskinesia: Promising leads and ways forward

  • Clement C. Zai
    Correspondence
    Corresponding authors at: 250 College Street, Toronto, ON M5T1R8, Canada.
    Affiliations
    Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada

    Department of Psychiatry, University of Toronto, Canada

    Institute of Medical Science, University of Toronto, Canada

    Laboratory Medicine and Pathobiology, University of Toronto, Canada
    Search for articles by this author
  • Miriam S. Maes
    Affiliations
    Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada
    Search for articles by this author
  • Arun K. Tiwari
    Affiliations
    Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada

    Department of Psychiatry, University of Toronto, Canada
    Search for articles by this author
  • Gwyneth C. Zai
    Affiliations
    Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada

    Department of Psychiatry, University of Toronto, Canada
    Search for articles by this author
  • Gary Remington
    Affiliations
    Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada

    Department of Psychiatry, University of Toronto, Canada

    Institute of Medical Science, University of Toronto, Canada
    Search for articles by this author
  • James L. Kennedy
    Correspondence
    Corresponding authors at: 250 College Street, Toronto, ON M5T1R8, Canada.
    Affiliations
    Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada

    Department of Psychiatry, University of Toronto, Canada

    Institute of Medical Science, University of Toronto, Canada
    Search for articles by this author
Published:February 05, 2018DOI:https://doi.org/10.1016/j.jns.2018.02.011

      Abstract

      Tardive dyskinesia (TD) is a potentially irreversible and often debilitating movement disorder secondary to chronic use of dopamine receptor blocking medications. Genetic factors have been implicated in the etiology of TD. We therefore have reviewed the most promising genes associated with TD, including DRD2, DRD3, VMAT2, HSPG2, HTR2A, HTR2C, and SOD2. In addition, we present evidence supporting a role for these genes from preclinical models of TD. The current understanding of the etiogenesis of TD is discussed in the light of the recent approvals of valbenazine and deutetrabenazine, VMAT2 inhibitors, for treating TD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Correll C.U.
        • Schenk E.M.
        Tardive dyskinesia and new antipsychotics.
        Curr. Opin. Psychiatry. 2008; 21: 151-156
        • Tenback D.E.
        • van Harten P.N.
        Epidemiology and risk factors for (tardive) dyskinesia.
        Int. Rev. Neurobiol. 2011; 98: 211-230
        • Goldberg R.J.
        Tardive dyskinesia in elderly patients: an update.
        J. Am. Med. Dir. Assoc. 2003; 4: S32-42
        • Correll C.U.
        • Kane J.M.
        • Citrome L.L.
        Epidemiology, prevention, and assessment of tardive dyskinesia and advances in treatment.
        J. Clin. Psychiatry. 2017; 78: 1136-1147
        • Diehl A.
        • Reinhard I.
        • Schmitt A.
        • Mann K.
        • Gattaz W.F.
        Does the degree of smoking effect the severity of tardive dyskinesia? A longitudinal clinical trial.
        Eur. Psychiatry. 2009; 24: 33-40
        • Weinhold P.
        • Wegner J.T.
        • Kane J.M.
        Familial occurrence of tardive dyskinesia.
        J. Clin. Psychiatry. 1981; 42: 165-166
        • Yassa R.
        • Ananth J.
        Familial tardive dyskinesia.
        Am. J. Psychiatry. 1981; 138: 1618-1619
        • Youssef H.
        • Lyster G.
        • Youssef F.
        Familial psychosis and vulnerability to tardive dyskinesia.
        Int. Clin. Psychopharmacol. 1989; 4: 323-328
        • O'Callaghan E.
        • Larkin C.
        • Kinsella A.
        • Waddington J.L.
        Obstetric complications, the putative familial-sporadic distinction, and tardive dyskinesia in schizophrenia.
        Br. J. Psychiatry. 1990; 157: 578-584
        • Müller D.J.
        • Schulze T.
        • Knapp M.
        • Held T.
        • Krauss H.
        • Weber T.
        • et al.
        Familial occurrence of tardive dyskinesia.
        Acta Psychiatr. Scand. 2001; 104: 375-379
        • Kulkarni S.K.
        • Dhir A.
        Animal models of tardive dyskinesia.
        Int. Rev. Neurobiol. 2011; 98: 265-287
        • Soares-Weiser K.
        • Fernandez H.H.
        Tardive dyskinesia.
        Semin. Neurol. 2007; 27: 159-169
        • Waddington J.L.
        • Cross A.J.
        • Gamble S.J.
        • Bourne R.C.
        Spontaneous orofacial dyskinesia and dopaminergic function in rats after 6 months of neuroleptic treatment.
        Science. 1983; 220: 530-532
        • Andreassen O.A.
        • Ferrante R.J.
        • Aamo T.O.
        • Beal M.F.
        • Jorgensen H.A.
        Oral dyskinesias and histopathological alterations in substantia Nigra after long-term haloperidol treatment of old rats.
        Neuroscience. 2003; 122: 717-725
        • Egan M.F.
        • Hyde T.M.
        • Kleinman J.E.
        • Wyatt R.J.
        Neuroleptic-induced vacuous chewing movements in rodents: incidence and effects of long-term increases in haloperidol dose.
        Psychopharmacology. 1995; 117: 74-81
        • Bergamo M.
        • Abilio V.C.
        • Queiroz C.M.
        • Barbosa-Junior H.N.
        • Abdanur L.R.
        • Frussa-Filho R.
        Effects of age on a new animal model of tardive dyskinesia.
        Neurobiol. Aging. 1997; 18: 623-629
        • Burger M.
        • Fachinetto R.
        • Calegari L.
        • Paixao M.W.
        • Braga A.L.
        • Rocha J.B.
        Effects of age on reserpine-induced orofacial dyskinesia and possible protection of diphenyl diselenide.
        Brain Res. Bull. 2004; 64: 339-345
        • Lee H.J.
        • Kang S.G.
        Genetics of tardive dyskinesia.
        Int. Rev. Neurobiol. 2011; 98: 231-264
        • Lanning R.K.
        • Zai C.C.
        • Muller D.J.
        Pharmacogenetics of tardive dyskinesia: an updated review of the literature.
        Pharmacogenomics. 2016; 17: 1339-1351
        • Bertilsson L.
        • Dahl M.L.
        • Ekqvist B.
        • Llerena A.
        Disposition of the neuroleptics perphenazine, zuclopenthixol, and haloperidol cosegregates with polymorphic debrisoquine hydroxylation.
        Psychopharmacol. Ser. 1993; 10: 230-237
        • Llerena A.
        • Alm C.
        • Dahl M.L.
        • Ekqvist B.
        • Bertilsson L.
        Haloperidol disposition is dependent on debrisoquine hydroxylation phenotype.
        Ther. Drug Monit. 1992; 14: 92-97
        • Jerling M.
        • Dahl M.L.
        • Aberg-Wistedt A.
        • Liljenberg B.
        • Landell N.E.
        • Bertilsson L.
        • et al.
        The CYP2D6 genotype predicts the oral clearance of the neuroleptic agents perphenazine and zuclopenthixol.
        Clin. Pharmacol. Ther. 1996; 59: 423-428
        • Ravyn D.
        • Ravyn V.
        • Lowney R.
        • Nasrallah H.A.
        CYP450 pharmacogenetic treatment strategies for antipsychotics: a review of the evidence.
        Schizophr. Res. 2013; 149: 1-14
        • van der Weide K.
        • van der Weide J.
        The influence of the CYP3A4*22 polymorphism and CYP2D6 polymorphisms on serum concentrations of aripiprazole, haloperidol, pimozide, and risperidone in psychiatric patients.
        J. Clin. Psychopharmacol. 2015; 35: 228-236
        • Miksys S.
        • Wadji F.B.
        • Tolledo E.C.
        • Remington G.
        • Nobrega J.N.
        • Tyndale R.F.
        Rat brain CYP2D enzymatic metabolism alters acute and chronic haloperidol side-effects by different mechanisms.
        Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2017; 78(: 140-148
        • Gaedigk A.
        • Sangkuhl K.
        • Whirl-Carrillo M.
        • Klein T.
        • Leeder J.S.
        Prediction of CYP2D6 phenotype from genotype across world populations.
        Genet. Med. 2017; 19: 69-76
        • Ohmori O.
        • Kojima H.
        • Shinkai T.
        • Terao T.
        • Suzuki T.
        • Abe K.
        Genetic association analysis between CYP2D6*2 allele and tardive dyskinesia in schizophrenic patients.
        Psychiatry Res. 1999; 87: 239-244
        • Lam L.C.
        • Garcia-Barcelo M.M.
        • Ungvari G.S.
        • Tang W.K.
        • Lam V.K.
        • Kwong S.L.
        • et al.
        Cytochrome P450 2D6 genotyping and association with tardive dyskinesia in Chinese schizophrenic patients.
        Pharmacopsychiatry. 2001; 34: 238-241
        • Fu Y.
        • Fan C.H.
        • Deng H.H.
        • Hu S.H.
        • Lv D.P.
        • Li L.H.
        • et al.
        Association of CYP2D6 and CYP1A2 gene polymorphism with tardive dyskinesia in Chinese schizophrenic patients.
        Acta Pharmacol. Sin. 2006; 27: 328-332
        • Liou Y.J.
        • Wang Y.C.
        • Bai Y.M.
        • Lin C.C.
        • Yu S.C.
        • Liao D.L.
        • et al.
        Cytochrome P-450 2D6*10 C188T polymorphism is associated with antipsychotic-induced persistent tardive dyskinesia in Chinese schizophrenic patients.
        Neuropsychobiology. 2004; 49: 167-173
        • Andreassen O.A.
        • MacEwan T.
        • Gulbrandsen A.K.
        • McCreadie R.G.
        • Steen V.M.
        Non-functional CYP2D6 alleles and risk for neuroleptic-induced movement disorders in schizophrenic patients.
        Psychopharmacology. 1997; 131: 174-179
        • Armstrong M.
        • Daly A.K.
        • Blennerhassett R.
        • Ferrier N.
        • Idle J.R.
        Antipsychotic drug-induced movement disorders in schizophrenics in relation to CYP2D6 genotype.
        Br. J. Psychiatry. 1997; 170: 23-26
        • Kapitany T.
        • Meszaros K.
        • Lenzinger E.
        • Schindler S.D.
        • Barnas C.
        • Fuchs K.
        • et al.
        Genetic polymorphisms for drug metabolism (CYP2D6) and tardive dyskinesia in schizophrenia.
        Schizophr. Res. 1998; 32: 101-106
        • Patsopoulos N.A.
        • Ntzani E.E.
        • Zintzaras E.
        • Ioannidis J.P.
        CYP2D6 polymorphisms and the risk of tardive dyskinesia in schizophrenia: a meta-analysis.
        Pharmacogenet. Genomics. 2005; 15: 151-158
        • Tiwari A.K.
        • Deshpande S.N.
        • Rao A.R.
        • Bhatia T.
        • Lerer B.
        • Nimgaonkar V.L.
        • et al.
        Genetic susceptibility to tardive dyskinesia in chronic schizophrenia subjects: III. Lack of association of CYP3A4 and CYP2D6 gene polymorphisms.
        Schizophr. Res. 2005; 75: 21-26
        • Koola M.M.
        • Tsapakis E.M.
        • Wright P.
        • Smith S.
        • Kerwin R.W.
        • Nugent K.L.
        • et al.
        Association of tardive dyskinesia with variation in CYP2D6: is there a role for active metabolites?.
        J. Psychopharmacol. 2014; 28: 665-670
        • Fang J.
        • Yu P.H.
        • Gorrod J.W.
        • Boulton A.A.
        Inhibition of monoamine oxidases by haloperidol and its metabolites: pharmacological implications for the chemotherapy of schizophrenia.
        Psychopharmacology. 1995; 118: 206-212
        • Fang J.
        • Yu P.H.
        Effects of a quaternary pyridinium metabolite of haloperidol (HP+) on the viability and catecholamine levels of cultured PC12 cells.
        Can. J. Physiol. Pharmacol. 1997; 75: 996-1000
        • Fang J.
        • Baker G.B.
        • Silverstone P.H.
        • Coutts R.T.
        Involvement of CYP3A4 and CYP2D6 in the metabolism of haloperidol.
        Cell. Mol. Neurobiol. 1997; 17: 227-233
        • Hall H.
        • Sedvall G.
        • Magnusson O.
        • Kopp J.
        • Halldin C.
        • Farde L.
        Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain.
        Neuropsychopharmacology. 1994; 11: 245-256
        • Turrone P.
        • Remington G.
        • Kapur S.
        • Nobrega J.N.
        The relationship between dopamine D2 receptor occupancy and the vacuous chewing movement syndrome in rats.
        Psychopharmacology. 2003; 165: 166-171
        • Yoshida K.
        • Bies R.R.
        • Suzuki T.
        • Remington G.
        • Pollock B.G.
        • Mizuno Y.
        • et al.
        Tardive dyskinesia in relation to estimated dopamine D2 receptor occupancy in patients with schizophrenia: analysis of the CATIE data.
        Schizophr. Res. 2014; 153: 184-188
        • Farrell M.S.
        • Werge T.
        • Sklar P.
        • Owen M.J.
        • Ophoff R.A.
        • O'Donovan M.C.
        • et al.
        Evaluating historical candidate genes for schizophrenia.
        Mol. Psychiatry. 2015; 20: 555-562
        • Chen C.H.
        • Wei F.C.
        • Koong F.J.
        • Hsiao K.J.
        Association of TaqI A polymorphism of dopamine D2 receptor gene and tardive dyskinesia in schizophrenia.
        Biol. Psychiatry. 1997; 41: 827-829
        • Bakker P.R.
        • van Harten P.N.
        • van Os J.
        Antipsychotic-induced tardive dyskinesia and polymorphic variations in COMT, DRD2, CYP1A2 and MnSOD genes: a meta-analysis of pharmacogenetic interactions.
        Mol. Psychiatry. 2008; 13: 544-556
        • Zai C.C.
        • De Luca V.
        • Hwang R.W.
        • Voineskos A.
        • Müller D.J.
        • Remington G.
        • et al.
        Meta-analysis of two dopamine D2 receptor gene polymorphisms with tardive dyskinesia in schizophrenia patients.
        Mol. Psychiatry. 2007; 12: 794-795
        • Koning J.P.
        • Vehof J.
        • Burger H.
        • Wilffert B.
        • Al Hadithy A.
        • Alizadeh B.
        • et al.
        Association of two DRD2 gene polymorphisms with acute and tardive antipsychotic-induced movement disorders in young Caucasian patients.
        Psychopharmacology. 2012; 219: 727-736
        • Hori H.
        • Ohmori O.
        • Shinkai T.
        • Kojima H.
        • Nakamura J.
        Association between three functional polymorphisms of dopamine D2 receptor gene and tardive dyskinesia in schizophrenia.
        Am. J. Med. Genet. 2001; 105: 774
        • Zai C.C.
        • Hwang R.W.
        • De Luca V.
        • Muller D.J.
        • King N.
        • Zai G.C.
        • et al.
        Association study of tardive dyskinesia and twelve DRD2 polymorphisms in schizophrenia patients.
        Int. J. Neuropsychopharmacol. 2007; 10: 639-651
        • Mo G.H.
        • Lai I.C.
        • Wang Y.C.
        • Chen J.Y.
        • Lin C.Y.
        • Chen T.T.
        • et al.
        Support for an association of the C939T polymorphism in the human DRD2 gene with tardive dyskinesia in schizophrenia.
        Schizophr. Res. 2007; 97: 302-304
        • Liou Y.J.
        • Lai I.C.
        • Liao D.L.
        • Chen J.Y.
        • Lin C.C.
        • Lin C.Y.
        • et al.
        The human dopamine receptor D2 (DRD2) gene is associated with tardive dyskinesia in patients with schizophrenia.
        Schizophr. Res. 2006; 86: 323-325
        • Park Y.-M.
        • Kang S.-G.
        • Choi J.-E.
        • Kim Y.-K.
        • Kim S.-H.
        • Park J.-Y.
        • et al.
        No evidence for an association between Dopamine D2 Receptor polymorphisms and tardive dyskinesia.
        Psychiatry Investig. 2011; 8: 49-54
        • Srivastava V.
        • Varma P.G.
        • Prasad S.
        • Semwal P.
        • Nimgaonkar V.L.
        • Lerer B.
        • et al.
        Genetic susceptibility to tardive dyskinesia among schizophrenia subjects: IV. Role of dopaminergic pathway gene polymorphisms.
        Pharmacogenet. Genomics. 2006; 16: 111-117
        • Zhang A.P.
        • Yu J.
        • Liu J.X.
        • Zhang H.Y.
        • Du Y.Y.
        • Zhu J.D.
        • et al.
        The DNA methylation profile within the 5′-regulatory region of DRD2 in discordant sib pairs with schizophrenia.
        Schizophr. Res. 2007; 90: 97-103
        • Zai C.C.
        • Romano-Silva M.A.
        • Hwang R.
        • Zai G.C.
        • Deluca V.
        • Muller D.J.
        • et al.
        Genetic study of eight AKT1 gene polymorphisms and their interaction with DRD2 gene polymorphisms in tardive dyskinesia.
        Schizophr. Res. 2008; 106: 248-252
        • Wang Q.
        • Liu L.
        • Pei L.
        • Ju W.
        • Ahmadian G.
        • Lu J.
        • et al.
        Control of synaptic strength, a novel function of Akt.
        Neuron. 2003; 38: 915-928
        • Beaulieu J.M.
        • Sotnikova T.D.
        • Marion S.
        • Lefkowitz R.J.
        • Gainetdinov R.R.
        • Caron M.G.
        An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior.
        Cell. 2005; 122: 261-273
        • Beaulieu J.M.
        • Sotnikova T.D.
        • Yao W.D.
        • Kockeritz L.
        • Woodgett J.R.
        • Gainetdinov R.R.
        • et al.
        Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade.
        Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 5099-5104
        • Beaulieu J.M.
        • Tirotta E.
        • Sotnikova T.D.
        • Masri B.
        • Salahpour A.
        • Gainetdinov R.R.
        • et al.
        Regulation of Akt signaling by D2 and D3 dopamine receptors in vivo.
        J. Neurosci. 2007; 27: 881-885
        • Liou Y.J.
        • Wang Y.C.
        • Chen J.Y.
        • Chen M.L.
        • Chen T.T.
        • Bai Y.M.
        • et al.
        The coding-synonymous polymorphism rs1045280 (Ser280Ser) in beta-arrestin 2 (ARRB2) gene is associated with tardive dyskinesia in Chinese patients with schizophrenia.
        Eur. J. Neurol. 2008; 15: 1406-1408
        • Buckland P.R.
        • O'Donovan M.C.
        • McGuffin P.
        Changes in dopamine D1, D2 and D3 receptor mRNA levels in rat brain following antipsychotic treatment.
        Psychopharmacology. 1992; 106: 479-483
        • D'Souza U.
        • McGuffin P.
        • Buckland P.R.
        Antipsychotic regulation of dopamine D1, D2 and D3 receptor mRNA.
        Neuropharmacology. 1997; 36: 1689-1696
        • Accili D.
        • Fishburn C.S.
        • Drago J.
        • Steiner H.
        • Lachowicz J.E.
        • Park B.H.
        • et al.
        A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice.
        Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 1945-1949
        • Lundstrom K.
        • Turpin M.P.
        Proposed schizophrenia-related gene polymorphism: expression of the Ser9Gly mutant human dopamine D3 receptor with the Semliki Forest virus system.
        Biochem. Biophys. Res. Commun. 1996; 225: 1068-1072
        • Hellstrand M.
        • Danielsen E.A.
        • Steen V.M.
        • Ekman A.
        • Eriksson E.
        • Nilsson C.L.
        The ser9gly SNP in the dopamine D3 receptor causes a shift from cAMP related to PGE2 related signal transduction mechanisms in transfected CHO cells.
        J. Med. Genet. 2004; 41: 867-871
        • Jeanneteau F.
        • Funalot B.
        • Jankovic J.
        • Deng H.
        • Lagarde J.P.
        • Lucotte G.
        • et al.
        A functional variant of the dopamine D3 receptor is associated with risk and age-at-onset of essential tremor.
        Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 10753-10758
        • Badri F.
        • Masellis M.
        • Petronis A.
        • Macciardi F.
        • Van Tol H.
        • Cola P.
        • et al.
        Dopamine and serotonin system genes may predict clinical response to clozapine.
        Am. J. Hum. Genet. 1996; 59: A247
        • Basile V.S.
        • Masellis M.
        • Badri F.
        • Paterson A.D.
        • Meltzer H.Y.
        • Lieberman J.A.
        • et al.
        Association of the MscI polymorphism of the dopamine D3 receptor gene with tardive dyskinesia in schizophrenia.
        Neuropsychopharmacology. 1999; 21: 17-27
        • Steen V.M.
        • Løvlie R.
        • MacEwan T.
        • McCreadie R.G.
        Dopamine D3-receptor gene variant and susceptibility to tardive dyskinesia in schizophrenia patients.
        Mol. Psychiatry. 1997; 2: 139-145
        • Mahmoudi S.
        • Levesque D.
        • Blanchet P.J.
        Upregulation of dopamine D3, not D2, receptors correlates with tardive dyskinesia in a primate model.
        Mov. Disord. 2014; 29: 1125-1133
        • Lerer B.
        • Segman R.H.
        • Fangerau H.
        • Daly A.K.
        • Basile V.S.
        • Cavallaro R.
        • et al.
        Pharmacogenetics of tardive dyskinesia: combined analysis of 780 patients supports association with dopamine D3 receptor gene Ser9Gly polymorphism.
        Neuropsychopharmacology. 2002; 27: 105-119
        • Bakker P.R.
        Antipsychotic-induced tardive dyskinesia and the Ser9Gly polymorphism in the DRD3 gene: a meta analysis.
        Schizophr. Res. 2006; 83: 185-192
        • Tsai H.-T.
        The DRD3 rs6280 polymorphism and prevalence of tardive dyskinesia: a meta-analysis.
        Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010; 153B: 57-66
        • Utsunomiya K.
        • Shinkai T.
        • Sakata S.
        • Yamada K.
        • Chen H.-I.
        • De Luca V.
        • et al.
        Genetic association between the dopamine D3 receptor gene polymorphism (Ser9Gly) and tardive dyskinesia in patients with schizophrenia: a reevalution in East Asian population.
        Neurosci. Lett. 2012; 507: 52-56
        • Tsai H.-T.
        • Caroff S.N.
        • Miller D.D.
        • McEvoy J.
        • Lieberman J.A.
        • North K.E.
        • et al.
        A candidate gene study of tardive dyskinesia in the CATIE schizophrenia trial.
        Am. J. Med. Genet. B. 2010; 153B: 336-340
        • Zai C.C.
        • Tiwari A.K.
        • De Luca V.
        • Muller D.J.
        • Bulgin N.
        • Hwang R.
        • et al.
        Genetic study of BDNF, DRD3, and their interaction in tardive dyskinesia.
        Eur. Neuropsychopharmacol. 2009; 19: 317-328
        • Guillin O.
        • Diaz J.
        • Carroll P.
        • Griffon N.
        • Schwartz J.-C.
        • Sokoloff P.
        BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization.
        Nature. 2001; 411: 86-89
        • Mooslehner K.A.
        • Chan P.M.
        • Xu W.
        • Liu L.
        • Smadja C.
        • Humby T.
        • et al.
        Mice with very low expression of the vesicular monoamine transporter 2 gene survive into adulthood: potential mouse model for parkinsonism.
        Mol. Cell. Biol. 2001; 21: 5321-5331
        • Rilstone J.J.
        • Alkhater R.A.
        • Minassian B.A.
        Brain dopamine-serotonin vesicular transport disease and its treatment.
        N. Engl. J. Med. 2013; 368: 543-550
        • Schuldiner S.
        • Liu Y.
        • Edwards R.H.
        Reserpine binding to a vesicular amine transporter expressed in Chinese hamster ovary fibroblasts.
        J. Biol. Chem. 1993; 268: 29-34
        • Neisewander J.L.
        • Castaneda E.
        • Davis D.A.
        Dose-dependent differences in the development of reserpine-induced oral dyskinesia in rats: support for a model of tardive dyskinesia.
        Psychopharmacology. 1994; 116: 79-84
        • Chen J.J.
        • Ondo W.G.
        • Dashtipour K.
        • Swope D.M.
        Tetrabenazine for the treatment of hyperkinetic movement disorders: a review of the literature.
        Clin. Ther. 2012; 34: 1487-1504
        • Zai C.C.
        • Tiwari A.K.
        • Mazzoco M.
        • De Luca V.
        • Muller D.J.
        • Shaikh S.A.
        • et al.
        Association study of the vesicular monoamine transporter gene SLC18A2 with tardive dyskinesia.
        J. Psychiatr. Res. 2013; 47: 1760-1765
        • Muller T.
        Valbenazine granted breakthrough drug status for treating tardive dyskinesia.
        Expert Opin. Investig. Drugs. 2015; 24: 737-742
        • Anderson K.E.
        • Stamler D.
        • Davis M.D.
        • Factor S.A.
        • Hauser R.A.
        • Isojarvi J.
        • et al.
        Deutetrabenazine for treatment of involuntary movements in patients with tardive dyskinesia (AIM-TD): a double-blind, randomised, placebo-controlled, phase 3 trial.
        Lancet Psychiatry. 2017; 4: 595-604
        • O'Brien C.F.
        • Jimenez R.
        • Hauser R.A.
        • Factor S.A.
        • Burke J.
        • Mandri D.
        • et al.
        NBI-98854, a selective monoamine transport inhibitor for the treatment of tardive dyskinesia: a randomized, double-blind, placebo-controlled study.
        Mov. Disord. 2015; 30: 1681-1687
        • Hauser R.A.
        • Factor S.A.
        • Marder S.R.
        • Knesevich M.A.
        • Ramirez P.M.
        • Jimenez R.
        • et al.
        KINECT 3: a phase 3 randomized, double-blind, placebo-controlled trial of Valbenazine for tardive dyskinesia.
        Am. J. Psychiatry. 2017; 174: 476-484
        • Factor S.A.
        • Remington G.
        • Comella C.L.
        • Correll C.U.
        • Burke J.
        • Jimenez R.
        • et al.
        The effects of Valbenazine in participants with tardive dyskinesia: results of the 1-year KINECT 3 extension study.
        J. Clin. Psychiatry. 2017; 78: 1344-1350
        • Davis M.C.
        • Miller B.J.
        • Kalsi J.K.
        • Birkner T.
        • Mathis M.V.
        Efficient trial design - FDA approval of valbenazine for tardive dyskinesia.
        N. Engl. J. Med. 2017; 376: 2503-2506
        • Fernandez H.H.
        • Factor S.A.
        • Hauser R.A.
        • Jimenez-Shahed J.
        • Ondo W.G.
        • Jarskog L.F.
        • et al.
        Randomized controlled trial of deutetrabenazine for tardive dyskinesia: the ARM-TD study.
        Neurology. 2017; 88: 2003-2010
        • Nedergaard S.
        • Bolam J.P.
        • Greenfield S.A.
        Facilitation of a dendritic calcium conductance by 5-hydroxytryptamine in the substantia nigra.
        Nature. 1988; 333: 174-177
        • Meltzer H.Y.
        • Bastani B.
        • Ramirez L.
        • Matsubara S.
        Clozapine: new research on efficacy and mechanism of action.
        Eur. Arch. Psychiatry Neurol. Sci. 1989; 238: 332-339
        • Naidu P.S.
        • Kulkarni S.K.
        Possible involvement of prostaglandins in haloperidol-induced orofacial dyskinesia in rats.
        Eur. J. Pharmacol. 2001; 430: 295-298
        • Basile V.
        • Ozdemir V.
        • Masellis M.
        • Meltzer H.
        • Lieberman J.
        • Potkin S.
        • et al.
        Lack of association between serotonin-2A receptor gene (HTR2A) polymorphisms and tardive dyskinesia in schizophrenia.
        Mol. Psychiatry. 2001; 6: 230-234
        • Segman R.
        • Heresco-Levy U.
        • Finkel B.
        • Goltser T.
        • Shalem R.
        • Schlafman M.
        • et al.
        Association between the serotonin 2A receptor gene and tardive dyskinesia in chronic schizophrenia.
        Mol. Psychiatry. 2001; 6: 225-229
        • Tan E.C.
        • Chong S.A.
        • Mahendran R.
        • Dong F.
        • Tan C.H.
        Susceptibility to neuroleptic-induced tardive dyskinesia and the T102C polymorphism in the serotonin type 2A receptor.
        Biol. Psychiatry. 2001; 50: 144-147
        • Lerer B.
        • Segman R.H.
        • Tan E.-C.
        • Basile V.S.
        • Cavallaro R.
        • Aschauer H.N.
        • et al.
        Combined analysis of 635 patients confirms an age-related association of the serotonin 2A receptor gene with tardive dyskinesia and specificity for the non-orofacial subtype.
        Int. J. Neuropsychopharmacol. 2005; 8: 411-425
        • Kostrzewa R.M.
        • Huang N.Y.
        • Kostrzewa J.P.
        • Nowak P.
        • Brus R.
        Modeling tardive dyskinesia: predictive 5-HT2C receptor antagonist treatment.
        Neurotox. Res. 2007; 11 (Epub 2007/04/24): 41-50
        • Creed-Carson M.
        • Oraha A.
        • Nobrega J.N.
        Effects of 5-HT(2A) and 5-HT(2C) receptor antagonists on acute and chronic dyskinetic effects induced by haloperidol in rats.
        Behav. Brain Res. 2011; 219 (Epub 2011/01/26): 273-279
        • Segman R.H.
        • Heresco-Levy U.
        • Finkel B.
        • Inbar R.
        • Neeman T.
        • Schlafman M.
        • et al.
        Association between the serotonin 2C receptor gene and tardive dyskinesia in chronic schizophrenia: additive contribution of 5-HT2Cser and DRD3gly alleles to susceptibility.
        Psychopharmacology. 2000; 152 (Epub 2001/01/05): 408-413
        • Al Hadithy A.F.
        • Ivanova S.A.
        • Pechlivanoglou P.
        • Semke A.
        • Fedorenko O.
        • Kornetova E.
        • et al.
        Tardive dyskinesia and DRD3, HTR2A and HTR2C gene polymorphisms in Russian psychiatric inpatients from Siberia.
        Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2009; 33 (Epub 2009/05/15): 475-481
        • Wilffert B.
        • Al Hadithy A.F.
        • Sing V.J.
        • Matroos G.
        • Hoek H.W.
        • van Os J.
        • et al.
        The role of dopamine D3, 5-HT2A and 5-HT2C receptor variants as pharmacogenetic determinants in tardive dyskinesia in African-Caribbean patients under chronic antipsychotic treatment: curacao extrapyramidal syndromes study IX.
        J. Psychopharmacol. 2009; 23 (Epub 2008/06/20): 652-659
        • Bakker P.R.
        • Al Hadithy A.F.
        • Amin N.
        • van Duijn C.M.
        • van Os J.
        • van Harten P.N.
        Antipsychotic-induced movement disorders in long-stay psychiatric patients and 45 tag SNPs in 7 candidate genes: a prospective study.
        PLoS One. 2012; 7e50970
        • Bakker P.R.
        • Bakker E.
        • Amin N.
        • van Duijn C.M.
        • van Os J.
        • van Harten P.N.
        Candidate gene-based association study of antipsychotic-induced movement disorders in long-stay psychiatric patients: a prospective study.
        PLoS One. 2012; 7e36561
        • Brown K.
        • Reid A.
        • White T.
        • Henderson T.
        • Hukin S.
        • Johnstone C.
        • et al.
        Vitamin E, lipids, and lipid peroxidation products in tardive dyskinesia.
        Biol. Psychiatry. 1998; 43 (Epub 1998/06/17): 863-867
        • Lohr J.B.
        • Kuczenski R.
        • Niculescu A.B.
        Oxidative mechanisms and tardive dyskinesia.
        CNS Drugs. 2003; 17: 47-62
        • Zhang X.Y.
        • Zhou D.F.
        • Cao L.Y.
        • Zhang P.Y.
        • Wu G.Y.
        • Shen Y.C.
        The effect of risperidone treatment on superoxide dismutase in schizophrenia.
        J. Clin. Psychopharmacol. 2003; 23 (Epub 2003/03/18): 128-131
        • Cho C.H.
        • Lee H.J.
        Oxidative stress and tardive dyskinesia: pharmacogenetic evidence.
        Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2013; 46 (Epub 2012/11/06): 207-213
        • Maurer I.
        • Moller H.J.
        Inhibition of complex I by neuroleptics in normal human brain cortex parallels the extrapyramidal toxicity of neuroleptics.
        Mol. Cell. Biochem. 1997; 174 (Epub 1997/10/06): 255-259
        • Cadet J.L.
        • Perumal A.S.
        Chronic treatment with prolixin causes oxidative stress in rat brain.
        Biol. Psychiatry. 1990; 28 (Epub 1990/10/15): 738-740
        • Lister J.
        • Nobrega J.N.
        • Fletcher P.J.
        • Remington G.
        Oxidative stress and the antipsychotic-induced vacuous chewing movement model of tardive dyskinesia: evidence for antioxidant-based prevention strategies.
        Psychopharmacology. 2014; 231 (Epub 2014/04/23): 2237-2249
        • Mahadik S.P.
        • Mukherjee S.
        Free radical pathology and antioxidant defense in schizophrenia: a review.
        Schizophr. Res. 1996; 19 (Epub 1996/03/01): 1-17
        • Weisiger R.A.
        • Fridovich I.
        Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization.
        J. Biol. Chem. 1973; 248 (Epub 1973/07/10): 4793-4796
        • Fridovich I.
        Editorial: superoxide radical and the bactericidal action of phagocytes.
        N. Engl. J. Med. 1974; 290 (Epub 1974/03/14): 624-625
        • Shimoda-Matsubayashi S.
        • Matsumine H.
        • Kobayashi T.
        • Nakagawa-Hattori Y.
        • Shimizu Y.
        • Mizuno Y.
        Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson's disease.
        Biochem. Biophys. Res. Commun. 1996; 226 (Epub 1996/09/13): 561-565
        • Rosenblum J.S.
        • Gilula N.B.
        • Lerner R.A.
        On signal sequence polymorphisms and diseases of distribution.
        Proc. Natl. Acad. Sci. U. S. A. 1996; 93 (Epub 1996/04/30): 4471-4473
        • Sutton A.
        • Khoury H.
        • Prip-Buus C.
        • Cepanec C.
        • Pessayre D.
        • Degoul F.
        The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria.
        Pharmacogenetics. 2003; 13 (Epub 2003/03/06): 145-157
        • Sutton A.
        • Imbert A.
        • Igoudjil A.
        • Descatoire V.
        • Cazanave S.
        • Pessayre D.
        • et al.
        The manganese superoxide dismutase Ala16Val dimorphism modulates both mitochondrial import and mRNA stability.
        Pharmacogenet. Genomics. 2005; 15 (Epub 2005/05/03): 311-319
        • Hori H.
        • Ohmori O.
        • Shinkai T.
        • Kojima H.
        • Okano C.
        • Suzuki T.
        • et al.
        Manganese superoxide dismutase gene polymorphism and schizophrenia: relation to tardive dyskinesia.
        Neuropsychopharmacology. 2000; 23 (Epub 2000/07/07): 170-177
        • Zai C.C.
        • Tiwari A.K.
        • Basile V.
        • de Luca V.
        • Müller D.J.
        • Voineskos A.N.
        • et al.
        Oxidative stress in tardive dyskinesia: genetic association study and meta-analysis of NADPH quinine oxidoreductase 1 (NQO1) and Superoxide dismutase 2 (SOD2, MnSOD) genes.
        Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2010; 34: 50-56
        • Wu J.Q.
        • Chen D.C.
        • Tan Y.L.
        • Soares J.C.
        • Zhang X.Y.
        Mn-superoxide dismutase activity is associated with orofacial involuntary movements in schizophrenia patients with tardive dyskinesia.
        Hum. Psychopharmacol. 2015; 30 (Epub 2015/01/13): 57-63
        • Syu A.
        • Ishiguro H.
        • Inada T.
        • Horiuchi Y.
        • Tanaka S.
        • Ishikawa M.
        • et al.
        Association of the HSPG2 gene with neuroleptic-induced tardive dyskinesia.
        Neuropsychopharmacology. 2010; 35: 1155-1164
        • Greenbaum L.
        • Alkelai A.
        • Zozulinsky P.
        • Kohn Y.
        • Lerer B.
        Support for association of HSPG2 with tardive dyskinesia in Caucasian populations.
        Pharm. J. 2012; 12: 513-520
        • Ben-Shachar D.
        • Livne E.
        • Spanier I.
        • Leenders K.L.
        • Youdim M.B.
        Typical and atypical neuroleptics induce alteration in blood-brain barrier and brain 59FeCl3 uptake.
        J. Neurochem. 1994; 62 (Epub 1994/03/01): 1112-1118
        • Tritsch N.X.
        • Ding J.B.
        • Sabatini B.L.
        Dopaminergic neurons inhibit striatal output through non-canonical release of GABA.
        Nature. 2012; 490 (Epub 2012/10/05): 262-266
        • Ivanova S.
        • Loonen A.
        • Pechlivanoglou P.
        • Freidin M.
        • Al Hadithy A.
        • Rudikov E.
        • et al.
        NMDA receptor genotypes associated with the vulnerability to develop dyskinesia.
        Transl. Psychiatry. 2012; 2e67
        • Inada T.
        • Koga M.
        • Ishiguro H.
        • Horiuchi Y.
        • Syu A.
        • Yoshio T.
        • et al.
        Pathway-based association analysis of genome-wide screening data suggest that genes associated with the gamma-aminobutyric acid receptor signaling pathway are involved in neuroleptic-induced, treatment-resistant tardive dyskinesia.
        Pharmacogenet. Genomics. 2008; 18: 317-323
        • Son W.-Y.
        • Lee H.-J.
        • Yoon H.-K.
        • Kang S.-G.
        • Park Y.-M.
        • Yang H.J.
        • et al.
        GABA transporter SLC6A11 gene polymorphism associated with tardive dyskinesia.
        Nord. J. Psychiatry. 2014; 68: 123-128
        • Aberg K.
        • Adkins D.E.
        • Bukszar J.
        • Webb B.T.
        • Caroff S.N.
        • Miller D.D.
        • et al.
        Genomewide association study of movement-related adverse antipsychotic effects.
        Biol. Psychiatry. 2010; 67 (Epub 2009/10/31): 279-282
        • Tanaka S.
        • Syu A.
        • Ishiguro H.
        • Inada T.
        • Horiuchi Y.
        • Ishikawa M.
        • et al.
        DPP6 as a candidate gene for neuroleptic-induced tardive dyskinesia.
        Pharm. J. 2013; 13: 27-34
        • Bordia T.
        • Zhang D.
        • Perez X.A.
        • Quik M.
        Striatal cholinergic interneurons and D2 receptor-expressing GABAergic medium spiny neurons regulate tardive dyskinesia.
        Exp. Neurol. 2016; 286 (Epub 2016/10/23): 32-39
        • Naidu P.S.
        • Kulkarni S.K.
        Excitatory mechanisms in neuroleptic-induced vacuous chewing movements (VCMs): possible involvement of calcium and nitric oxide.
        Behav. Pharmacol. 2001; 12 (Epub 2001/08/04): 209-216
        • Crowley J.J.
        • Adkins D.E.
        • Pratt A.L.
        • Quackenbush C.R.
        • van den Oord E.J.
        • Moy S.S.
        • et al.
        Antipsychotic-induced vacuous chewing movements and extrapyramidal side effects are highly heritable in mice.
        Pharm. J. 2012; 12 (Epub 2010/11/17): 147-155
        • Crowley J.J.
        • Kim Y.
        • Szatkiewicz J.P.
        • Pratt A.L.
        • Quackenbush C.R.
        • Adkins D.E.
        • et al.
        Genome-wide association mapping of loci for antipsychotic-induced extrapyramidal symptoms in mice.
        Mamm. Genome. 2012; 23 (Epub 2011/12/31): 322-335
        • Calabresi P.
        • Picconi B.
        • Tozzi A.
        • Ghiglieri V.
        • Di Filippo M.
        Direct and indirect pathways of basal ganglia: a critical reappraisal.
        Nat. Neurosci. 2014; 17 (Epub 2014/07/30): 1022-1030
        • Silvestri S.
        • Seeman M.V.
        • Negrete J.C.
        • Houle S.
        • Shammi C.M.
        • Remington G.J.
        • et al.
        Increased dopamine D2 receptor binding after long-term treatment with antipsychotics in humans: a clinical PET study.
        Psychopharmacology. 2000; 152 (Epub 2000/11/01): 174-180
        • Gluskin B.S.
        • Mickey B.J.
        Genetic variation and dopamine D2 receptor availability: a systematic review and meta-analysis of human in vivo molecular imaging studies.
        Transl. Psychiatry. 2016; 6 (Epub 2016/03/02)e747
        • Levesque M.
        • Parent A.
        The striatofugal fiber system in primates: a reevaluation of its organization based on single-axon tracing studies.
        Proc. Natl. Acad. Sci. U. S. A. 2005; 102 (Epub 2005/08/10): 11888-11893
        • Gerdeman G.L.
        • Ronesi J.
        • Lovinger D.M.
        Postsynaptic endocannabinoid release is critical to long-term depression in the striatum.
        Nat. Neurosci. 2002; 5 (Epub 2002/04/27): 446-451
        • Fernandez-Ruiz J.
        The endocannabinoid system as a target for the treatment of motor dysfunction.
        Br. J. Pharmacol. 2009; 156 (Epub 2009/02/18): 1029-1040
        • Tiwari A.
        • Zai C.
        • Likhodi O.
        • Voineskos A.
        • Meltzer H.
        • Liberman J.
        • et al.
        Association study of Cannabinoid receptor 1 (CNR1) gene in tardive dyskinesia.
        Pharm. J. 2012; 12: 260-266
        • Mathur B.N.
        • Lovinger D.M.
        Endocannabinoid-dopamine interactions in striatal synaptic plasticity.
        Front. Pharmacol. 2012; 3 (Epub 2012/04/25): 66
        • Wang Z.
        • Kai L.
        • Day M.
        • Ronesi J.
        • Yin H.H.
        • Ding J.
        • et al.
        Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons.
        Neuron. 2006; 50 (Epub 2006/05/06): 443-452
        • Bordia T.
        • McIntosh J.M.
        • Quik M.
        Nicotine reduces antipsychotic-induced orofacial dyskinesia in rats.
        J. Pharmacol. Exp. Ther. 2012; 340 (Epub 2011/12/07): 612-619
        • Centonze D.
        • Gubellini P.
        • Bernardi G.
        • Calabresi P.
        Permissive role of interneurons in corticostriatal synaptic plasticity.
        Brain Res. Brain Res. Rev. 1999; 31 (Epub 1999/12/28): 1-5
        • Calabresi P.
        • Centonze D.
        • Gubellini P.
        • Marfia G.A.
        • Bernardi G.
        Glutamate-triggered events inducing corticostriatal long-term depression.
        J. Neurosci. 1999; 19 (Epub 1999/07/17): 6102-6110
        • Calabresi P.
        • Gubellini P.
        • Centonze D.
        • Sancesario G.
        • Morello M.
        • Giorgi M.
        • et al.
        A critical role of the nitric oxide/cGMP pathway in corticostriatal long-term depression.
        J. Neurosci. 1999; 19 (Epub 1999/03/23): 2489-2499
        • Holger A.
        • Marja-Liisa D.
        • Bo S.
        • Folke S.
        Polymorphic drug metabolism in schizophrenic patients with tardive dyskinesia.
        J. Clin. Psychopharmacol. 1995; 15: 211-216