Advertisement

Future directions in tardive dyskinesia research

  • Jonathan M. Meyer
    Correspondence
    UCSD Dept. of Psychiatry, 4225 Executive Square - Suite 1130, La Jolla, CA 92037, United States.
    Affiliations
    University of California, San Diego, United States

    California Department of State Hospitals (DSH), Psychopharmacology Resource Network, United States
    Search for articles by this author
Published:February 05, 2018DOI:https://doi.org/10.1016/j.jns.2018.02.004

      Highlights

      • Future research demands a consensus TD definition. The Delphi model is proposed as an ideal method to generate consensus.
      • Important research topics include development of new TD screening tools and use of technology to support clinical assessment.
      • TD pathophysiology is poorly understood. Clinical marker discovery will require human genetics, imaging and animal data.

      Abstract

      Tardive dyskinesia (TD) research is at a crossroads because of renewed interest in this syndrome following the successful development and regulatory approval of two novel vesicular monoamine transport 2 (VMAT2) inhibitors. Despite these clinical advances, significant lacunae exist in the knowledge base of TD pathophysiology, prognosis, and epidemiology. Moreover, conflicting definitions of TD as either a syndrome that encompasses a broad array of related phenomena or as a specific subset of tardive syndromes are an impediment to both clinical and basic science research, and to educational efforts targeting nonspecialist clinicians. A unique opportunity is thus presented by the enhanced focus on TD to resolve fundamental issues with regards to nomenclature and clinical criteria, thereby facilitating more sophisticated surveillance and genetic and epidemiological research into tardive movement disorders related to dopamine receptor blocking agents. The widespread use of newer antipsychotics portends that TD will remain a persistent public health issue. This article will present one view of research avenues to be explored for this neuropsychiatric condition, including those that may yield immediate therapeutic benefits by extending expert knowledge into routine clinical care situations.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Caligiuri M.R.
        • Jeste D.V.
        • Lacro J.P.
        Antipsychotic-induced movement disorders in the elderly: epidemiology and treatment recommendations.
        Drugs Aging. 2000; 17: 363-384
        • Lellouch A.
        Charcot, discoverer of diseases.
        Rev. Neurol. 1994; 150: 506-510
        • Lanska D.J.
        Classic articles of 19th-century American neurologists: a critical review.
        J. Hist. Neurosci. 2002; 11: 156-173
        • Andermann A.A.
        Hughlings Jackson's deductive science of the nervous system: a product of his thought collective and formative years.
        Neurology. 1997; 48: 471-481
        • Henry J.M.
        Neurons and Nobel Prizes: a centennial history of neuropathology.
        Neurosurgery. 1998; 42 (discussion 55-6): 143-155
        • Okun M.S.
        • Koehler P.J.
        Babinski's clinical differentiation of organic paralysis from hysterical paralysis: effect on US neurology.
        Arch. Neurol. 2004; 61: 778-783
        • Schooler N.R.
        • Kane J.M.
        Research diagnoses for tardive dyskinesia.
        Arch. Gen. Psychiatry. 1982; 39: 486-487
        • Chouinard G.
        New nomenclature for drug-induced movement disorders including tardive dyskinesia.
        J. Clin. Psychiatry. 2004; 65: 9-15
        • Walker R.H.
        Thoughts on selected movement disorder terminology and a plea for clarity.
        Tremor Other Hyperkinet. Mov. (N. Y.). 2013; : 3
        • American Psychiatric Association
        Diagnostic & Statistical Manual of Mental Disorders Fifth Edition.
        American Psychiatric Press, Inc., Washington, DC2013
        • Waln O.
        • Jankovic J.
        An update on tardive dyskinesia: from phenomenology to treatment.
        Tremor Other Hyperkinet. Mov. (N. Y.). 2013; : 3
        • Dalkey N.
        • Helmer O.
        An experimental application of the DELPHI method to the use of experts.
        Manag. Sci. 1963; 9: 458-467
        • Gurrera R.J.
        • Caroff S.N.
        • Cohen A.
        • Carroll B.T.
        • DeRoos F.
        • Francis A.
        • et al.
        An international consensus study of neuroleptic malignant syndrome diagnostic criteria using the Delphi method.
        J. Clin. Psychiatry. 2011; 72: 1222-1228
        • Gurrera R.J.
        • Mortillaro G.
        • Velamoor V.
        • Caroff S.N.
        A validation study of the international consensus diagnostic criteria for neuroleptic malignant syndrome.
        J. Clin. Psychopharmacol. 2017; 37: 67-71
        • Woods S.W.
        • Morgenstern H.
        • Saksa J.R.
        • Walsh B.C.
        • Sullivan M.C.
        • Money R.
        • et al.
        Incidence of tardive dyskinesia with atypical versus conventional antipsychotic medications: a prospective cohort study.
        J. Clin. Psychiatry. 2010; 71: 463-474
        • Ryu S.
        • Yoo J.H.
        • Kim J.H.
        • Choi J.S.
        • Baek J.H.
        • Ha K.
        • et al.
        Tardive dyskinesia and tardive dystonia with second-generation antipsychotics in non-elderly schizophrenic patients unexposed to first-generation antipsychotics: a cross-sectional and retrospective study.
        J. Clin. Psychopharmacol. 2015; 35: 13-21
        • Wonodi I.
        • Adami H.M.
        • Cassady S.L.
        • Sherr J.D.
        • Avila M.T.
        • Thaker G.K.
        Ethnicity and the course of tardive dyskinesia in outpatients presenting to the motor disorders clinic at the Maryland psychiatric research center.
        J. Clin. Psychopharmacol. 2004; 24: 592-598
        • Correll C.U.
        • Kane J.M.
        • Citrome L.L.
        Epidemiology, prevention, and assessment of tardive dyskinesia and advances in treatment.
        J. Clin. Psychiatry. 2017; 78: 1136-1147
        • O'Brien C.F.
        • Jimenez R.
        • Hauser R.A.
        • Factor S.A.
        • Burke J.
        • Mandri D.
        • et al.
        NBI-98854, a selective monoamine transport inhibitor for the treatment of tardive dyskinesia: a randomized, double-blind, placebo-controlled study.
        Mov. Disord. 2015; 30: 1681-1687
        • Hauser R.A.
        • Factor S.A.
        • Marder S.R.
        • Knesevich M.A.
        • Ramirez P.M.
        • Jimenez R.
        • et al.
        KINECT 3: a phase 3 randomized, double-blind, placebo-controlled trial of valbenazine for tardive dyskinesia.
        Am. J. Psychiatry. 2017; 174: 476-484
        • Josiassen R.C.
        • Kane J.M.
        • Liang G.S.
        • Burke J.
        • O'Brien C.F.
        Long-term safety and tolerability of valbenazine (NBI-98854) in subjects with tardive dyskinesia and a diagnosis of schizophrenia or mood disorder.
        Psychopharmacol. Bull. 2017; 47: 61-68
        • Anderson K.E.
        • Stamler D.
        • Davis M.D.
        • Factor S.A.
        • Hauser R.A.
        • Isojarvi J.
        • et al.
        Deutetrabenazine for treatment of involuntary movements in patients with tardive dyskinesia (AIM-TD): a double-blind, randomised, placebo-controlled, phase 3 trial.
        Lancet Psychiatry. 2017; 4 (in press ePub 2017.07.03): 595-604https://doi.org/10.1016/s2215-0366(17)30236-5
        • Fernandez H.H.
        • Factor S.A.
        • Hauser R.A.
        • Jimenez-Shahed J.
        • Ondo W.G.
        • Jarskog L.F.
        • et al.
        Randomized controlled trial of deutetrabenazine for tardive dyskinesia: the ARM-TD study.
        Neurology. 2017; 88: 2003-2010
        • Sanger T.D.
        • Chen D.
        • Fehlings D.L.
        • Hallett M.
        • Lang A.E.
        • Mink J.W.
        • et al.
        Definition and classification of hyperkinetic movements in childhood.
        Mov. Disord. 2010; 25: 1538-1549
        • Bhidayasiri R.
        • Fahn S.
        • Weiner W.J.
        • Gronseth G.S.
        • Sullivan K.L.
        • Zesiewicz T.A.
        Evidence-based guideline: treatment of tardive syndromes: report of the Guideline Development Subcommittee of the American Academy of Neurology.
        Neurology. 2013; 81: 463-469
        • Jankovic J.
        • Clarence-Smith K.
        Tetrabenazine for the treatment of chorea and other hyperkinetic movement disorders.
        Expert. Rev. Neurother. 2011; 11: 1509-1523
        • Frye M.A.
        • Hinton D.J.
        • Karpyak V.M.
        • Biernacka J.M.
        • Gunderson L.J.
        • Feeder S.E.
        • et al.
        Anterior cingulate glutamate is reduced by acamprosate treatment in patients with alcohol dependence.
        J. Clin. Psychopharmacol. 2016; 36: 669-674
        • Caroff S.N.
        • Aggarwal S.
        • Yonan C.
        Treatment of tardive dyskinesia with tetrabenazine or valbenazine: a systematic review.
        J. Comp. Eff. Res. 2017; (Epub ahead of print)https://doi.org/10.2217/cer-2017-0065
        • Lauterbach E.C.
        • Carter W.G.
        • Rathke K.M.
        • Thomas B.H.
        • Shillcutt S.D.
        • Vogel R.L.
        • et al.
        Tardive dyskinesia—diagnostic issues, subsyndromes, and concurrent movement disorders: a study of state hospital inpatients referred to a movement disorder consultation service.
        Schizophr. Bull. 2001; 27: 601-613
        • Pouclet-Courtemanche H.
        • Rouaud T.
        • Thobois S.
        • Nguyen J.M.
        • Brefel-Courbon C.
        • Chereau I.
        • et al.
        Long-term efficacy and tolerability of bilateral pallidal stimulation to treat tardive dyskinesia.
        Neurology. 2016; 86: 651-659
        • Deng Z.D.
        • Li D.Y.
        • Zhang C.C.
        • Pan Y.X.
        • Zhang J.
        • Jin H.
        • et al.
        Long-term follow-up of bilateral subthalamic deep brain stimulation for refractory tardive dystonia.
        Parkinsonism Relat. Disord. 2017; 41: 58-65
        • Zhang W.F.
        • Tan Y.L.
        • Zhang X.Y.
        • Chan R.C.
        • Wu H.R.
        • Zhou D.F.
        Extract of Ginkgo biloba treatment for tardive dyskinesia in schizophrenia: a randomized, double-blind, placebo-controlled trial.
        J. Clin. Psychiatry. 2011; 72: 615-621
        • Grover S.
        • Kumar P.
        • Singh K.
        • Vikram V.
        • Budhiraja R.D.
        Possible beneficial effect of peroxisome proliferator-activated receptor (PPAR)—alpha and gamma agonist against a rat model of oral dyskinesia.
        Pharmacol. Biochem. Behav. 2013; 111: 17-23
        • Aquino C.C.
        • Lang A.E.
        Tardive dyskinesia syndromes: current concepts.
        Parkinsonism Relat. Disord. 2014; 20: S113-7
        • Teo J.T.
        • Edwards M.J.
        • Bhatia K.
        Tardive dyskinesia is caused by maladaptive synaptic plasticity: a hypothesis.
        Mov. Disord. 2012; 27: 1205-1215
        • Casey D.E.
        Tardive dyskinesia: pathophysiology and animal models.
        J. Clin. Psychiatry. 2000; 61: 5-9
        • Mahmoudi S.
        • Levesque D.
        • Blanchet P.J.
        Upregulation of dopamine D3, not D2, receptors correlates with tardive dyskinesia in a primate model.
        Mov. Disord. 2014; 29: 1125-1133
        • Segman R.H.
        • Goltser T.
        • Heresco-Levy U.
        • Finkel B.
        • Shalem R.
        • Schlafman M.
        • et al.
        Association of dopaminergic and serotonergic genes with tardive dyskinesia in patients with chronic schizophrenia.
        Pharmacogenomics J. 2003; 3: 277-283
        • Le Foll B.
        • Wilson A.A.
        • Graff A.
        • Boileau I.
        • Di Ciano P.
        Recent methods for measuring dopamine D3 receptor occupancy in vivo: importance for drug development.
        Front. Pharmacol. 2014; 5: 161
        • Son W.Y.
        • Lee H.J.
        • Yoon H.K.
        • Kang S.G.
        • Park Y.M.
        • Yang H.J.
        • et al.
        Gaba transporter SLC6A11 gene polymorphism associated with tardive dyskinesia.
        Nord. J. Psychiatry. 2014; 68: 123-128
        • Inada T.
        • Koga M.
        • Ishiguro H.
        • Horiuchi Y.
        • Syu A.
        • Yoshio T.
        • et al.
        Pathway-based association analysis of genome-wide screening data suggest that genes associated with the gamma-aminobutyric acid receptor signaling pathway are involved in neuroleptic-induced, treatment-resistant tardive dyskinesia.
        Pharmacogenet. Genomics. 2008; 18: 317-323
        • Lanning R.K.
        • Zai C.C.
        • Muller D.J.
        Pharmacogenetics of tardive dyskinesia: an updated review of the literature.
        Pharmacogenomics. 2016; 17: 1339-1351
        • Zai C.C.
        • Tiwari A.K.
        • Chowdhury N.I.
        • Yilmaz Z.
        • de Luca V.
        • Muller D.J.
        • et al.
        Genetic study of neuregulin 1 and receptor tyrosine-protein kinase erbB-4 in tardive dyskinesia.
        World J. Biol. Psychiatry. 2017; : 1-5
        • Lohr J.B.
        • Kuczenski R.
        • Niculescu A.B.
        Oxidative mechanisms and tardive dyskinesia.
        CNS Drugs. 2003; 17: 47-62
        • Cho C.H.
        • Lee H.J.
        Oxidative stress and tardive dyskinesia: pharmacogenetic evidence.
        Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2013; 46: 207-213
        • An H.M.
        • Tan Y.L.
        • Shi J.
        • Wang Z.R.
        • Soars J.C.
        • Wu J.Q.
        • et al.
        Altered IL-2, IL-6 and IL-8 serum levels in schizophrenia patients with tardive dyskinesia.
        Schizophr. Res. 2015; 162: 261-268
        • Levesque C.
        • Hernandez G.
        • Mahmoudi S.
        • Calon F.
        • Gasparini F.
        • Gomez-Mancilla B.
        • et al.
        Deficient striatal adaptation in aminergic and glutamatergic neurotransmission is associated with tardive dyskinesia in non-human primates exposed to antipsychotic drugs.
        Neuroscience. 2017; 361: 43-57
        • Kuznetsov Y.
        • Khiat A.
        • Blanchet P.J.
        • Boulanger Y.
        Proton magnetic resonance spectroscopy study of dyskinesia patients.
        Mov. Disord. 2007; 22: 957-962
        • Schork A.J.
        • Wang Y.
        • Thompson W.K.
        • Dale A.M.
        • Andreassen O.A.
        New statistical approaches exploit the polygenic architecture of schizophrenia—implications for the underlying neurobiology.
        Curr. Opin. Neurobiol. 2016; 36: 89-98
        • Sarro S.
        • Pomarol-Clotet E.
        • Canales-Rodriguez E.J.
        • Salvador R.
        • Gomar J.J.
        • Ortiz-Gil J.
        • et al.
        Structural brain changes associated with tardive dyskinesia in schizophrenia.
        Br. J. Psychiatry. 2013; 203: 51-57
        • Zhang X.Y.
        • Xiu M.H.
        • Chen da C.
        • Zhu F.Y.
        • Wu G.Y.
        • Haile C.N.
        • et al.
        Increased S100B serum levels in schizophrenic patients with tardive dyskinesia: association with dyskinetic movements.
        J. Psychiatr. Res. 2010; 44: 429-433