Advertisement

Altered expression of E-Cadherin-related transcription factors indicates partial epithelial-mesenchymal transition in aggressive meningiomas

      Highlights

      • No hints for EMT (epithelial-mesenchymal transition) is found between common WHO grade I meningioma subtypes
      • Aggressive meningiomas (WHO grade II / III) show altered gene expression indicating EMT compared to grade I meningiomas
      • E-cadherin is reduced in aggressive and recurrent meningioma
      • E-cadherin and Zo-1 expression levels are correlated with NF2 expression
      • TGFbeta treatment of meningioma cells induces morphological changes and altered expression of EMT factors

      Abstract

      E-Cadherin has been suggested to be involved in meningioma progression but is also known as a key player of epithelial to mesenchymal transition (EMT). We wondered whether the adherens junction protein E-Cadherin, the tight junction protein Zo-1, and transcription factors suppressing E-Cadherin expression (Slug, Snail, Twist, Zeb-1) are differentially expressed between histopathological subtypes of meningioma, and if the expression of these factors is related to biological features of meningiomas. Analyzing 85 meningiomas of various histopathological subtypes and grades of malignancy by immunohistochemistry and 50 of them in addition by real-Time-PCR, we observed significantly reduced expression of Zeb-1, Twist and Slug, together with slightly increased expression levels for E-Cadherin and Zo- 1 in fibroblastic WHO-grade I tumors compared to meningothelial WHO grade I tumors, contradicting the hypothesis of EMT in the fibroblastic meningiomas characterized by mesenchymal appearance. However, comparing aggressive WHO grade II or III meningiomas with WHO-grade I tumors, we observed altered expression levels (loss of E-Cadherin and Zo-1, increased expression of Zeb-1 and Slug) indicating molecular features of EMT in aggressive meningiomas. This was supported by reduced E-Cadherin and increased Slug levels in recurrent compared to non-recurrent meningiomas. The expression levels of E-cadherin and Zo-1 were positively correlated with expression of NF2 mRNA. In primary meningioma cultures and IOMM-Lee meningioma cells, EMT induction by TGF-ß resulted in altered morphology and increased expression of EMT associated transcription factors. Meningioma cells with allelic losses of NF2 showed generally higher levels of various EMT relevant proteins, but were unresponsive to TGF-ß treatment. Our data indicate that aggressive meningiomas of WHO grade II/III are characterized by molecular alterations indicating partial EMT. This might contribute to the aggressive biology of these tumors.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ostrom Q.T.
        • Gittleman H.
        • Farah P.
        • Ondracek A.
        • Chen Y.
        • Wolinsky Y.
        • et al.
        CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006–2010.
        Neuro-Oncol. 2013; 15 Suppl 2: ii1-i56
        • Mawrin C.
        • Perry A.
        Pathological classification and molecular genetics of meningiomas.
        J. Neuro-Oncol. 2010; 99: 379-391
        • Klaeboe L.
        • Lonn S.
        • Scheie D.
        • Auvinen A.
        • Christensen H.C.
        • Feychting M.
        • et al.
        Incidence of intracranial meningiomas in Denmark, Finland, Norway and Sweden, 1968–1997.
        Int. J. Cancer. 2005; 117: 996-1001
        • Black P.M.
        Meningiomas.
        Neurosurgery. 1993; 32643-57
        • Perry A.
        • Scheithauer B.W.
        • Stafford S.L.
        • Lohse C.M.
        • Wollan P.C.
        "Malignancy" in meningiomas: a clinicopathologic study of 116 patients, with grading implications.
        Cancer. 1999; 85: 2046-2056
        • Hasseleid B.F.
        • Meling T.R.
        • Ronning P.
        • Scheie D.
        • Helseth E.
        Surgery for convexity meningioma: Simpson Grade I resection as the goal: clinical article.
        J. Neurosurg. 2012; 117: 999-1006
        • Ruttledge M.H.
        • Sarrazin J.
        • Rangaratnam S.
        • Phelan C.M.
        • Twist E.
        • Merel P.
        • et al.
        Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas.
        Nat. Genet. 1994; 6: 180-184
        • Kros J.
        • de Greve K.
        • van Tilborg A.
        • Hop W.
        • Pieterman H.
        • Avezaat C.
        • et al.
        NF2 status of meningiomas is associated with tumour localization and histology.
        J. Pathol. 2001; 194: 367-372
        • McClatchey A.I.
        Merlin and ERM proteins: unappreciated roles in cancer development?.
        Nat. Rev. Cancer. 2003; 3: 877-883
        • Kalamarides M.
        • Niwa-Kawakita M.
        • Leblois H.
        • Abramowski V.
        • Perricaudet M.
        • Janin A.
        • et al.
        Nf2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse.
        Genes Dev. 2002; 16: 1060-1065
        • Kalamarides M.
        • Stemmer-Rachamimov A.O.
        • Niwa-Kawakita M.
        • Chareyre F.
        • Taranchon E.
        • Han Z.Y.
        • et al.
        Identification of a progenitor cell of origin capable of generating diverse meningioma histological subtypes.
        Oncogene. 2011; 30: 2333-2344
        • Brastianos P.K.
        • Horowitz P.M.
        • Santagata S.
        • Jones R.T.
        • McKenna A.
        • Getz G.
        • et al.
        Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations.
        Nat. Genet. 2013; 45: 285-289
        • Clark V.E.
        • Erson-Omay E.Z.
        • Serin A.
        • Yin J.
        • Cotney J.
        • Ozduman K.
        • et al.
        Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO.
        Science. 2013; 339: 1077-1080
        • Abedalthagafi M.
        • Bi W.L.
        • Aizer A.A.
        • Merrill P.H.
        • Brewster R.
        • Agarwalla P.K.
        • et al.
        Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma.
        Neuro-Oncology. 2016; 18: 649-655
        • Kalluri R.
        • Neilson E.G.
        Epithelial-mesenchymal transition and its implications for fibrosis.
        J. Clin. Invest. 2003; 112: 1776-1784
        • Kalluri R.
        • Weinberg R.A.
        The basics of epithelial-mesenchymal transition.
        J. Clin. Invest. 2009; 119: 1420-1428
        • Thiery J.P.
        Epithelial-mesenchymal transitions in tumour progression.
        Nat. Rev. Cancer. 2002; 2: 442-454
        • Gunasinghe N.P.
        • Wells A.
        • Thompson E.W.
        • Hugo H.J.
        Mesenchymal-epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer.
        Cancer Metastasis Rev. 2012; 31: 469-478
        • Wells A.
        • Yates C.
        • Shepard C.R.
        E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas.
        Clin. Exp. Metastasis. 2008; 25: 621-628
        • Roussos E.T.
        • Keckesova Z.
        • Haley J.D.
        • Epstein D.M.
        • Weinberg R.A.
        • Condeelis J.S.
        AACR special conference on epithelial-mesenchymal transition and cancer progression and treatment.
        Cancer Res. 2010; 70: 7360-7364
        • Serrano-Gomez S.J.
        • Maziveyi M.
        • Alahari S.K.
        Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications.
        Mol. Cancer. 2016; 15: 18
        • Brunner E.C.
        • Romeike B.F.
        • Jung M.
        • Comtesse N.
        • Meese E.
        Altered expression of beta-catenin/E-cadherin in meningiomas.
        Histopathology. 2006; 49: 178-187
        • Pecina-Slaus N.
        • Cicvara-Pecina T.
        • Kafka A.
        Epithelial-to-mesenchymal transition: possible role in meningiomas.
        Front. Biosci. (Elite Edition). 2012; 4: 889-896
        • Louis D.N.
        • Perry A.
        • Reifenberger G.
        • von Deimling A.
        • Figarella-Branger D.
        • Cavenee W.K.
        • et al.
        The 2016 World Health Organization classification of tumors of the central nervous system: a summary.
        Acta Neuropathol. 2016; : 1-18
        • Striedinger K.
        • Vandenberg S.R.
        • Baia G.S.
        • McDermott M.W.
        • Gutmann D.H.
        • Lal A.
        The neurofibromatosis 2 tumor suppressor gene product, merlin, regulates human meningioma cell growth by signaling through YAP.
        Neoplasia. 2008; 10: 1204-1212
        • Lee W.H.
        Characterization of a newly established malignant meningioma cell line of the human brain: IOMM-Lee.
        Neurosurgery. 1990; 27 (discussion 96): 389-395
        • Yang L.
        • Lin C.
        • Liu Z.-R.
        P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing axin from β-catenin.
        Cell. 2006; 127: 139-155
        • Pachow D.
        • Andrae N.
        • Kliese N.
        • Angenstein F.
        • Stork O.
        • Wilisch-Neumann A.
        • et al.
        mTORC1 inhibitors suppress meningioma growth in mouse models.
        Clin. Cancer Res. 2013; 19: 1180-1189
        • Petermann A.
        • Haase D.
        • Wetzel A.
        • Balavenkatraman K.K.
        • Tenev T.
        • Guhrs K.H.
        • et al.
        Loss of the protein-tyrosine phosphatase DEP-1/PTPRJ drives meningioma cell motility.
        Brain Pathol. (Zurich, Switzerland). 2011; 21
        • James M.F.
        • Lelke J.M.
        • Maccollin M.
        • Plotkin S.R.
        • Stemmer-Rachamimov A.O.
        • Ramesh V.
        • et al.
        Modeling NF2 with human arachnoidal and meningioma cell culture systems: NF2 silencing reflects the benign character of tumor growth.
        Neurobiol. Dis. 2008; 29: 278-292
        • Hartsock A.
        • Nelson W.J.
        Adherens and tight junctions: structure, function and connections to the actin cytoskeleton.
        Biochim. Biophys. Acta Biomembr. 2008; 1778: 660-669
        • Van Itallie C.M.
        • Tietgens A.J.
        • Anderson J.M.
        Visualizing the dynamic coupling of claudin strands to the actin cytoskeleton through ZO-1.
        Mol. Biol. Cell. 2017; 28: 524-534
        • Fevre-Montange M.
        • Champier J.
        • Durand A.
        • Wierinckx A.
        • Honnorat J.
        • Guyotat J.
        • et al.
        Microarray gene expression profiling in meningiomas: differential expression according to grade or histopathological subtype.
        Int. J. Oncol. 2009; 35: 1395-1407
        • Rooprai H.K.
        • Martin A.J.
        • King A.
        • Appadu U.D.
        • Jones H.
        • Selway R.P.
        • et al.
        Comparative gene expression profiling of ADAMs, MMPs, TIMPs, EMMPRIN, EGF-R and VEGFA in low grade meningioma.
        Int. J. Oncol. 2016; 49: 2309-2318
        • Keller A.
        • Ludwig N.
        • Backes C.
        • Romeike B.F.
        • Comtesse N.
        • Henn W.
        • et al.
        Genome wide expression profiling identifies specific deregulated pathways in meningioma.
        Int. J. Cancer. 2009; 124: 346-351
        • Aarhus M.
        • Bruland O.
        • Bredholt G.
        • Lybaek H.
        • Husebye E.S.
        • Krossnes B.K.
        • et al.
        Microarray analysis reveals down-regulation of the tumour suppressor gene WWOX and up-regulation of the oncogene TYMS in intracranial sporadic meningiomas.
        J. Neuro-Oncol. 2008; 88: 251-259
        • Figarella-Branger D.
        • Roche P.H.
        • Daniel L.
        • Dufour H.
        • Bianco N.
        • Pellissier J.F.
        Cell-adhesion molecules in human meningiomas: correlation with clinical and morphological data.
        Neuropathol. Appl. Neurobiol. 1997; 23: 113-122
        • Figarella-Branger D.
        • Pellissier J.F.
        • Bouillot P.
        • Bianco N.
        • Mayan M.
        • Grisoli F.
        • et al.
        Expression of neural cell-adhesion molecule isoforms and epithelial cadherin adhesion molecules in 47 human meningiomas: correlation with clinical and morphological data.
        Modern Pathol. 1994; 7: 752-761
        • Shimada S.
        • Ishizawa K.
        • Hirose T.
        Expression of E-cadherin and catenins in meningioma: ubiquitous expression and its irrelevance to malignancy.
        Pathol. Int. 2005; 55: 1-7
        • Utsuki S.
        • Oka H.
        • Sato Y.
        • Kawano N.
        • Tsuchiya B.
        • Kobayashi I.
        • et al.
        Invasive meningioma is associated with a low expression of E-cadherin and beta-catenin.
        Clin. Neuropathol. 2005; 24: 8-12
        • Pecina-Slaus N.
        • Nikuseva Martic T.
        • Deak A.J.
        • Zeljko M.
        • Hrascan R.
        • Tomas D.
        • et al.
        Genetic and protein changes of E-cadherin in meningiomas.
        J. Cancer Res. Clin. Oncol. 2010; 136: 695-702
        • Zhou K.
        • Wang G.
        • Wang Y.
        • Jin H.
        • Yang S.
        • Liu C.
        The potential involvement of E-cadherin and beta-catenins in meningioma.
        PLoS One. 2010; 5: e11231
        • Nagaishi M.
        • Nobusawa S.
        • Tanaka Y.
        • Ikota H.
        • Yokoo H.
        • Nakazato Y.
        Slug, Twist, and E-Cadherin as immunohistochemical biomarkers in meningeal tumors.
        PLoS One. 2012; 7: e46053
        • Soini Y.
        • Rauramaa T.
        • Alafuzoff I.
        • Sandell P.J.
        • Karja V.
        Claudins 1, 11 and twist in meningiomas.
        Histopathology. 2010; 56: 821-824
        • Champeaux C.
        • Wilson E.
        • Shieff C.
        • Khan A.A.
        • Thorne L.
        WHO grade II meningioma: a retrospective study for outcome and prognostic factor assessment.
        J. Neuro-Oncol. 2016; 129: 337-345
        • Hwang W.L.
        • Marciscano A.E.
        • Niemierko A.
        • Kim D.W.
        • Stemmer-Rachamimov A.O.
        • Curry W.T.
        • et al.
        Imaging and extent of surgical resection predict risk of meningioma recurrence better than WHO histopathological grade.
        Neuro-Oncology. 2016; 18: 863-872
        • Hsu H.P.
        • Shan Y.S.
        • Jin Y.T.
        • Lai M.D.
        • Lin P.W.
        Loss of E-cadherin and beta-catenin is correlated with poor prognosis of ampullary neoplasms.
        J. Surg. Oncol. 2010; 101: 356-362
        • Huszar M.
        • Pfeifer M.
        • Schirmer U.
        • Kiefel H.
        • Konecny G.E.
        • Ben-Arie A.
        • et al.
        Up-regulation of L1CAM is linked to loss of hormone receptors and E-cadherin in aggressive subtypes of endometrial carcinomas.
        J. Pathol. 2010; 220: 551-561
        • Iso Y.
        • Sawada T.
        • Okada T.
        • Kubota K.
        Loss of E-cadherin mRNA and gain of osteopontin mRNA are useful markers for detecting early recurrence of HCV-related hepatocellular carcinoma.
        J. Surg. Oncol. 2005; 92: 304-311
        • Pulkka O.P.
        • Nilsson B.
        • Sarlomo-Rikala M.
        • Reichardt P.
        • Eriksson M.
        • Hall K.S.
        • et al.
        SLUG transcription factor: a pro-survival and prognostic factor in gastrointestinal stromal tumour.
        Br. J. Cancer. 2017; 116: 1195-1202
        • Kihara A.
        • Wakana K.
        • Kubota T.
        • Kitagawa M.
        SLUG expression is an indicator of tumour recurrence in high-grade endometrial carcinomas.
        Histopathology. 2016; 69: 374-382
        • Cappellesso R.
        • Marioni G.
        • Crescenzi M.
        • Giacomelli L.
        • Guzzardo V.
        • Mussato A.
        • et al.
        The prognostic role of the epithelial-mesenchymal transition markers E-cadherin and Slug in laryngeal squamous cell carcinoma.
        Histopathology. 2015; 67: 491-500
        • Murray L.B.
        • Lau Y.K.
        • Yu Q.
        Merlin is a negative regulator of human melanoma growth.
        PLoS One. 2012; 7: e43295
        • Morrow K.A.
        • Das S.
        • Metge B.J.
        • Ye K.
        • Mulekar M.S.
        • Tucker J.A.
        • et al.
        Loss of tumor suppressor Merlin in advanced breast cancer is due to post-translational regulation.
        J. Biol. Chem. 2011; 286: 40376-40385
        • Nakayama A.
        • Ninomiya I.
        • Harada S.
        • Tsukada T.
        • Okamoto K.
        • Nakanuma S.
        • et al.
        Metformin inhibits the radiation-induced invasive phenotype of esophageal squamous cell carcinoma.
        Int. J. Oncol. 2016; 49: 1890-1898
        • Vand-Rajabpour F.
        • Sadeghipour N.
        • Saee-Rad S.
        • Fathi H.
        • Noormohammadpour P.
        • Yaseri M.
        • et al.
        Differential BMI1, TWIST1, SNAI2 mRNA expression pattern correlation with malignancy type in a spectrum of common cutaneous malignancies: basal cell carcinoma, squamous cell carcinoma, and melanoma.
        Clin. Trans. Oncol. 2017; 19: 489-497
        • Kucuksayan H.
        • Ozes O.N.
        • Akca H.
        Downregulation of SATB2 is critical for induction of epithelial-to-mesenchymal transition and invasion of NSCLC cells.
        Lung Cancer (Amsterdam, Netherlands). 2016; 98: 122-129
        • Wang Y.
        • Liu J.
        • Ying X.
        • Lin P.C.
        • Zhou B.P.
        Twist-mediated epithelial-mesenchymal transition promotes breast tumor cell invasion via inhibition of hippo pathway.
        Sci Rep. 2016; 6: 24606
        • Ruttledge M.H.
        • Xie Y.G.
        • Han F.Y.
        • Peyrard M.
        • Collins V.P.
        • Nordenskjold M.
        • et al.
        Deletions on chromosome 22 in sporadic meningioma.
        Genes Chromosom. Cancer. 1994; 10: 122-130
        • Petrilli A.M.
        • Fernandez-Valle C.
        Role of Merlin/NF2 inactivation in tumor biology.
        Oncogene. 2016; 35: 537-548
        • Rangwala R.
        • Banine F.
        • Borg J.P.
        • Sherman L.S.
        Erbin regulates mitogen-activated protein (MAP) kinase activation and MAP kinase-dependent interactions between Merlin and adherens junction protein complexes in Schwann cells.
        J. Biol. Chem. 2005; 280: 11790-11797
        • Linsler S.
        • Kraemer D.
        • Driess C.
        • Oertel J.
        • Kammers K.
        • Rahnenfuhrer J.
        • et al.
        Molecular biological determinations of meningioma progression and recurrence.
        PLoS One. 2014; 9: e94987
        • Lee J.Y.
        • Finkelstein S.
        • Hamilton R.L.
        • Rekha R.
        • King Jr., J.T.
        • Omalu B.
        Loss of heterozygosity analysis of benign, atypical, and anaplastic meningiomas.
        Neurosurgery. 2004; 55: 1163-1173
        • Kim J.H.
        • Kim I.S.
        • Kwon S.Y.
        • Jang B.C.
        • Suh S.I.
        • Shin D.H.
        • et al.
        Mutational analysis of the NF2 gene in sporadic meningiomas by denaturing high-performance liquid chromatography.
        Int. J. Mol. Med. 2006; 18: 27-32
        • Hansson C.M.
        • Buckley P.G.
        • Grigelioniene G.
        • Piotrowski A.
        • Hellstrom A.R.
        • Mantripragada K.
        • et al.
        Comprehensive genetic and epigenetic analysis of sporadic meningioma for macro-mutations on 22q and micro-mutations within the NF2 locus.
        BMC Genomics. 2007; 8: 16
        • Cho J.H.
        • Lee S.J.
        • AY Oh.
        • Yoon M.H.
        • Woo T.G.
        • Park B.J.
        NF2 blocks Snail-mediated p53 suppression in mesothelioma.
        Oncotarget. 2015; 6: 10073-10085