Advertisement
Research Article| Volume 379, P29-35, August 15, 2017

Download started.

Ok

Exogenous Acrolein intensifies sensory hypersensitivity after spinal cord injury in rat

  • Breanne Butler
    Affiliations
    Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
    Search for articles by this author
  • Glen Acosta
    Affiliations
    Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
    Search for articles by this author
  • Riyi Shi
    Correspondence
    Corresponding author at: Department of Basic Medical Sciences, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907., United States.
    Affiliations
    Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA

    Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
    Search for articles by this author

      Highlights

      • Inhalation of acrolein and cigarette smoke worsen pain after spinal cord injury
      • Cigarette smoke threatens the vulnerable injured area in the nervous system
      • Acrolein scavenging can attenuate post-SCI pain during acrolein exposure

      Abstract

      Acrolein, an α,β-unsaturated aldehyde associated with oxidative stress, is also a major toxic component of tobacco cigarette smoke, which has been reported in the clinic to coincide with the exacerbation of neuropathic pain after SCI. Previous reports have shown that acrolein involvement in spinal cord injury (SCI) is crucial to the development and persistence of neuropathic pain. Through the activation and upregulation of the transient receptor protein ankyrin-1 (TRPA1) cation channel, acrolein is capable of sensitizing the central nervous system in the acute and chronic stages of SCI. Here, we report that the acute or delayed nasal exposure of acrolein, apart from cigarette smoke but at concentrations similar to that found in cigarette smoke, resulted in increased neuropathic pain behaviors in a rat model of contusion SCI. We also found that this hyperalgesia occurred concurrently with an augmentation in systemic acrolein, detected by an acrolein-glutathione metabolite in the urine. The application of an acrolein scavenger, phenelzine, was shown to reduce the hyperalgesic effect of acrolein inhalation. The previously determined ability of acrolein to bind to and activate the TRPA1 channel and elicit algesic responses may be a mechanism of the phenomenon seen in this study. Upon the exposure to actual cigarette smoke after SCI, intensified neuropathic pain behaviors were also observed and persisted for at least 1 week after the cessation of the exposure period. Taken together, these results indicate that cigarette smoke, through mechanisms involving acrolein, poses a threat to the vulnerable CNS after SCI and can contribute to neuropathic pain. This investigation also provides further evidence for the potential utility of acrolein scavengers as a therapeutic strategy in SCI-resultant neuropathic pain.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hulsebosch C.E.
        • Hains B.C.
        • Crown E.D.
        • Carlton S.M.
        Mechanisms of chronic central neuropathic pain after spinal cord injury.
        Brain Res. Rev. 2009; 60: 202-213
        • Christensen M.D.
        • Hulsebosch C.E.
        Chronic central pain after spinal cord injury.
        J. Neurotrauma. 1997; 14: 517-537
        • Hagen E.M.
        • Rekand T.
        Management of Neuropathic Pain Associated with spinal cord injury.
        Pain Ther. 2015; 4: 51-65
        • Coull J.A.
        • Boudreau D.
        • Bachand K.
        • Prescott S.A.
        • Nault F.
        • Sik A.
        • De Koninck P.
        • De Koninck Y.
        Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain.
        Nature. 2003; 424: 938-942
        • Jin S.X.
        • Zhuang Z.Y.
        • Woolf C.J.
        • Ji R.R.
        p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain.
        J. Neurosci. 2003; 23: 4017-4022
        • Zhuang Z.Y.
        • Gerner P.
        • Woolf C.J.
        • Ji R.R.
        ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model.
        Pain. 2005; 114: 149-159
        • Hamann K.
        • Durkes A.
        • Ouyang H.
        • Uchida K.
        • Pond A.
        • Shi R.
        Critical role of acrolein in secondary injury following ex vivo spinal cord trauma.
        J. Neurochem. 2008; 107: 712-721
        • Hamann K.
        • Shi R.
        Acrolein scavenging: a potential novel mechanism of attenuating oxidative stress following spinal cord injury.
        J. Neurochem. 2009; 111: 1348-1356
        • Shi R.
        • Rickett T.
        • Sun W.
        Acrolein-mediated injury in nervous system trauma and diseases.
        Mol. Nutr. Food Res. 2011; 55: 1320-1331
        • Scholz J.
        • Woolf C.J.
        The neuropathic pain triad: neurons, immune cells and glia.
        Nat. Neurosci. 2007; 10: 1361-1368
        • Gwak Y.S.
        • Hulsebosch C.E.
        GABA and central neuropathic pain following spinal cord injury.
        Neuropharmacology. 2011; 60: 799-808
        • Coull J.A.
        • Beggs S.
        • Boudreau D.
        • Boivin D.
        • Tsuda M.
        • Inoue K.
        • Gravel C.
        • Salter M.W.
        • De Koninck Y.
        BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain.
        Nature. 2005; 438: 1017-1021
      1. B.C. Hains, J.P. Klein, C.Y. Saab, M.J. Craner, J.A. Black, S.G. Waxman, Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury, J Neurosci 23(26) (2003) 8881–92.

        • Park J.
        • Zheng L.
        • Acosta G.
        • Vega-Alvarez S.
        • Chen Z.
        • Muratori B.
        • Cao P.
        • Shi R.
        Acrolein contributes to TRPA1 up-regulation in peripheral and central sensory hypersensitivity following spinal cord injury.
        J. Neurochem. 2015; 135: 987-997
        • Chen Z.
        • Park J.
        • Butler B.
        • Acosta G.
        • Vega-Alvarez S.
        • Zheng L.
        • Tang J.
        • McCain R.
        • Zhang W.
        • Ouyang Z.
        • Cao P.
        • Shi R.
        Mitigation of sensory and motor deficits by acrolein scavenger phenelzine in a rat model of spinal cord contusive injury.
        J. Neurochem. 2016; 138: 328-338
        • Park J.
        • Zheng L.
        • Marquis A.
        • Walls M.
        • Duerstock B.
        • Pond A.
        • Vega-Alvarez S.
        • Wang H.
        • Ouyang Z.
        • Shi R.
        Neuroprotective role of hydralazine in rat spinal cord injury-attenuation of acrolein-mediated damage.
        J. Neurochem. 2014; 129: 339-349
        • Yu D.
        • Thakor D.K.
        • Han I.
        • Ropper A.E.
        • Haragopal H.
        • Sidman R.L.
        • Zafonte R.
        • Schachter S.C.
        • Teng Y.D.
        Alleviation of chronic pain following rat spinal cord compression injury with multimodal actions of huperzine a.
        Proc. Natl. Acad. Sci. U. S. A. 2013; 110: E746-E755
        • Siddall P.J.
        Management of neuropathic pain following spinal cord injury: now and in the future.
        Spinal Cord. 2009; 47: 352-359
        • Hama A.
        • Sagen J.
        Antinociceptive effects of the marine snail peptides conantokin-G and conotoxin MVIIA alone and in combination in rat models of pain.
        Neuropharmacology. 2009; 56: 556-563
        • Kim Y.H.
        • Back S.K.
        • Davies A.J.
        • Jeong H.
        • Jo H.J.
        • Chung G.
        • Na H.S.
        • Bae Y.C.
        • Kim S.J.
        • Kim J.S.
        • Jung S.J.
        • Oh S.B.
        TRPV1 in GABAergic interneurons mediates neuropathic mechanical allodynia and disinhibition of the nociceptive circuitry in the spinal cord.
        Neuron. 2012; 74: 640-647
        • Due M.R.
        • Park J.
        • Zheng L.
        • Walls M.
        • Allette Y.M.
        • White F.A.
        • Shi R.
        Acrolein involvement in sensory and behavioral hypersensitivity following spinal cord injury in the rat.
        J. Neurochem. 2014; 128: 776-786
        • Siddall P.J.
        • Cousins M.J.
        • Otte A.
        • Griesing T.
        • Chambers R.
        • Murphy T.K.
        Pregabalin in central neuropathic pain associated with spinal cord injury: a placebo-controlled trial.
        Neurology. 2006; 67: 1792-1800
        • Vranken J.H.
        • Dijkgraaf M.G.
        • Kruis M.R.
        • van der Vegt M.H.
        • Hollmann M.W.
        • Heesen M.
        Pregabalin in patients with central neuropathic pain: a randomized, double-blind, placebo-controlled trial of a flexible-dose regimen.
        Pain. 2008; 136: 150-157
        • Levendoglu F.
        • Ogun C.O.
        • Ozerbil O.
        • Ogun T.C.
        • Ugurlu H.
        Gabapentin is a first line drug for the treatment of neuropathic pain in spinal cord injury.
        Spine (Phila Pa 1976). 2004; 29: 743-751
        • Tai Q.
        • Kirshblum S.
        • Chen B.
        • Millis S.
        • Johnston M.
        • DeLisa J.A.
        Gabapentin in the treatment of neuropathic pain after spinal cord injury: a prospective, randomized, double-blind, crossover trial.
        J Spinal Cord Med. 2002; 25: 100-105
        • Rintala D.H.
        • Holmes S.A.
        • Courtade D.
        • Fiess R.N.
        • Tastard L.V.
        • Loubser P.G.
        Comparison of the effectiveness of amitriptyline and gabapentin on chronic neuropathic pain in persons with spinal cord injury.
        Arch. Phys. Med. Rehabil. 2007; 88: 1547-1560
        • Cardenas D.D.
        • Nieshoff E.C.
        • Suda K.
        • Goto S.
        • Sanin L.
        • Kaneko T.
        • Sporn J.
        • Parsons B.
        • Soulsby M.
        • Yang R.
        • Whalen E.
        • Scavone J.M.
        • Suzuki M.M.
        • Knapp L.E.
        A randomized trial of pregabalin in patients with neuropathic pain due to spinal cord injury.
        Neurology. 2013; 80: 533-539
        • Cardenas D.D.
        • Warms C.A.
        • Turner J.A.
        • Marshall H.
        • Brooke M.M.
        • Loeser J.D.
        Efficacy of amitriptyline for relief of pain in spinal cord injury: results of a randomized controlled trial.
        Pain. 2002; 96: 365-373
        • Chouinard G.
        A double-blind controlled clinical trial of fluoxetine and amitriptyline in the treatment of outpatients with major depressive disorder.
        J Clin Psychiatry. 1985; 46: 32-37
        • Yaksh T.L.
        • Rudy T.A.
        Analgesia mediated by a direct spinal action of narcotics.
        Science. 1976; 192: 1357-1358
        • Siddall P.J.
        • Molloy A.R.
        • Walker S.
        • Mather L.E.
        • Rutkowski S.B.
        • Cousins M.J.
        The efficacy of intrathecal morphine and clonidine in the treatment of pain after spinal cord injury.
        Anesth. Analg. 2000; 91: 1493-1498
        • Norrbrink C.
        Transcutaneous electrical nerve stimulation for treatment of spinal cord injury neuropathic pain.
        J. Rehabil. Res. Dev. 2009; 46: 85-93
        • Celik E.C.
        • Erhan B.
        • Gunduz B.
        • Lakse E.
        The effect of low-frequency TENS in the treatment of neuropathic pain in patients with spinal cord injury.
        Spinal Cord. 2013; 51: 334-337
      2. P.J. Siddall, M.J. Cousins, Persistent pain as a disease entity: implications for clinical management, Anesthesia and analgesia 99(2) (2004) 510–20, table of contents.

        • Yoshida M.
        • Tomitori H.
        • Machi Y.
        • Hagihara M.
        • Higashi K.
        • Goda H.
        • Ohya T.
        • Niitsu M.
        • Kashiwagi K.
        • Igarashi K.
        Acrolein toxicity: comparison with reactive oxygen species.
        Biochem. Biophys. Res. Commun. 2009; 378: 313-318
        • Uchida K.
        Current status of acrolein as a lipid peroxidation product.
        Trends in Cardiovascular Medicine. 1999; 9: 109-113
        • Calingasan N.Y.
        • Uchida K.
        • Gibson G.E.
        Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer's disease.
        J. Neurochem. 1999; 72: 751-756
        • Shi R.
        • Luo L.
        The role of acrolein in spinal cord injury.
        Applied Neurology. 2006; 2: 22-27
        • Shi R.
        • Page J.C.
        • Tully M.
        Molecular mechanisms of acrolein-mediated myelin destruction in CNS trauma and disease.
        Free Radic. Res. 2015; 49: 888-895
        • Bautista D.M.
        • Jordt S.E.
        • Nikai T.
        • Tsuruda P.R.
        • Read A.J.
        • Poblete J.
        • Yamoah E.N.
        • Basbaum A.I.
        • Julius D.
        TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents.
        Cell. 2006; 124: 1269-1282
        • Bautista D.M.
        • Pellegrino M.
        • Tsunozaki M.
        TRPA1: a gatekeeper for inflammation.
        Annu. Rev. Physiol. 2013; 75: 181-200
        • Ushio N.
        • Dai Y.
        • Wang S.
        • Fukuoka T.
        • Noguchi K.
        Transient receptor potential channel A1 involved in calcitonin gene-related peptide release in neurons.
        Neural Regen. Res. 2013; 8: 3013-3019
        • Borchers M.T.
        • Wesselkamper S.C.
        • Eppert B.L.
        • Motz G.T.
        • Sartor M.A.
        • Tomlinson C.R.
        • Medvedovic M.
        • Tichelaar J.W.
        Nonredundant functions of alphabeta and gammadelta T cells in acrolein-induced pulmonary pathology.
        Toxicol. Sci. 2008; 105: 188-199
        • Esterbauer H.
        • Schaur R.J.
        • Zollner H.
        Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes.
        Free Radic. Biol. Med. 1991; 11: 81-128
      3. F. Facchinetti, F. Amadei, P. Geppetti, F. Tarantini, C. Di Serio, A. Dragotto, P.M. Gigli, S. Catinella, M. Civelli, R. Patacchini, Alpha,beta-unsaturated aldehydes in cigarette smoke release inflammatory mediators from human macrophages, Am. J. Respir. Cell Mol. Biol. 37(5) (2007) 617–23.

        • Sato E.
        • Koyama S.
        • Takamizawa A.
        • Masubuchi T.
        • Kubo K.
        • Robbins R.A.
        • Nagai S.
        • Izumi T.
        Smoke extract stimulates lung fibroblasts to release neutrophil and monocyte chemotactic activities.
        Am. J. Phys. 1999; 277: L1149-L1157
        • Stevens J.F.
        • Maier C.S.
        Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease.
        Mol. Nutr. Food Res. 2008; 52: 7-25
        • Park J.
        • Muratori B.
        • Shi R.
        Acrolein as a novel therapeutic target for motor and sensory deficits in spinal cord injury.
        Neural Regen. Res. 2014; 9: 677-683
        • Luo J.
        • Uchida K.
        • Shi R.
        Accumulation of acrolein-protein adducts after traumatic spinal cord injury.
        Neurochem. Res. 2005; 30: 291-295
        • Richards J.S.
        • Kogos Jr., S.C.
        • Ness T.J.
        • Oleson C.V.
        Effects of smoking on neuropathic pain in two people with spinal cord injury.
        J Spinal Cord Med. 2005; 28: 330-332
        • Carmella S.G.
        • Chen M.
        • Zhang Y.
        • Zhang S.
        • Hatsukami D.K.
        • Hecht S.S.
        Quantitation of acrolein-derived (3-hydroxypropyl)mercapturic acid in human urine by liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry: effects of cigarette smoking.
        Chem. Res. Toxicol. 2007; 20: 986-990
        • Jia L.
        • Liu Z.
        • Sun L.
        • Miller S.S.
        • Ames B.N.
        • Cotman C.W.
        • Liu J.
        Acrolein, a toxicant in cigarette smoke, causes oxidative damage and mitochondrial dysfunction in RPE cells: protection by (R)-alpha-lipoic acid.
        Invest. Ophthalmol. Vis. Sci. 2007; 48: 339-348
      4. T. Schettgen, A. Musiol, T. Kraus, Simultaneous determination of mercapturic acids derived from ethylene oxide (HEMA), propylene oxide (2-HPMA), acrolein (3-HPMA), acrylamide (AAMA) and N,N-dimethylformamide (AMCC) in human urine using liquid chromatography/tandem mass spectrometry, Rapid Commun. Mass Spectrom. 22(17) (2008) 2629–38.

        • Tully M.
        • Zheng L.
        • Acosta G.
        • Tian R.
        • Shi R.
        Acute systemic accumulation of acrolein in mice by inhalation at a concentration similar to that in cigarette smoke.
        Neurosci. Bull. 2014; 30: 1017-1024
        • Chaplan S.R.
        • Bach F.W.
        • Pogrel J.W.
        • Chung J.M.
        • Yaksh T.L.
        Quantitative assessment of tactile allodynia in the rat paw.
        J. Neurosci. Methods. 1994; 53: 55-63
        • Zheng L.
        • Park J.
        • Walls M.
        • Tully M.
        • Jannasch A.
        • Cooper B.
        • Shi R.
        Determination of urine 3-HPMA, a stable Acrolein metabolite in a rat model of spinal cord injury.
        J. Neurotrauma. 2013; 30: 1334-1341
      5. P.X. Chen, S.C. Moldoveanu, Mainstream Smoke Chemical Analyses for 2R4F Kentucky Reference Cigarette, Contrib. to Tob. Res 20 (2003).

        • Livak K.J.
        • Schmittgen T.D.
        Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method.
        Methods. 2001; 25: 402-408
        • Botterell E.H.
        • Callaghan J.C.
        • Jousse A.T.
        Pain in paraplegia; clinical management and surgical treatment.
        Proc R Soc Med. 1954; 47: 281-288
        • Dorman D.C.
        • Struve M.F.
        • Wong B.A.
        • Marshall M.W.
        • Gross E.A.
        • Willson G.A.
        Respiratory tract responses in male rats following subchronic acrolein inhalation.
        Inhal. Toxicol. 2008; 20: 205-216
        • Brunnemann K.D.
        • Kagan M.R.
        • Cox J.E.
        • Hoffmann D.
        Analysis of 1,3-butadiene and other selected gas-phase components in cigarette mainstream and sidestream smoke by gas chromatography-mass selective detection.
        Carcinogenesis. 1990; 11: 1863-1868
        • Cole R.A.
        • Weiner M.F.
        Clinical and theoretical observations on phenelzine (nardil), an antidepressant agent.
        Am. J. Psychiatry. 1960; 117: 361-362
        • Yu P.H.
        Pharmacological and clinical implications of MAO-B inhibitors.
        Gen. Pharmacol. 1994; 25: 1527-1539
        • Merrill L.
        • Girard B.M.
        • May V.
        • Vizzard M.A.
        Transcriptional and translational plasticity in rodent urinary bladder TRP channels with urinary bladder inflammation, bladder dysfunction, or postnatal maturation.
        J. Mol. Neurosci. 2012; 48: 744-756
        • Schwartz E.S.
        • La J.H.
        • Scheff N.N.
        • Davis B.M.
        • Albers K.M.
        • Gebhart G.F.
        TRPV1 and TRPA1 antagonists prevent the transition of acute to chronic inflammation and pain in chronic pancreatitis.
        J. Neurosci. 2013; 33: 5603-5611
        • Boucher M.
        • Meen M.
        • Codron J.P.
        • Coudore F.
        • Kemeny J.L.
        • Eschalier A.
        Cyclophosphamide-induced cystitis in freely-moving conscious rats: behavioral approach to a new model of visceral pain.
        J. Urol. 2000; 164: 203-208
        • Hilgard P.
        • Pohl J.
        Cause and prevention of mafosfamide-induced venous pain.
        Investig. New Drugs. 1986; 4: 373-376
        • Kunkler P.E.
        • Ballard C.J.
        • Oxford G.S.
        • Hurley J.H.
        TRPA1 receptors mediate environmental irritant-induced meningeal vasodilatation.
        Pain. 2011; 152: 38-44
        • O'Connor A.B.
        • Schwid S.R.
        • Herrmann D.N.
        • Markman J.D.
        • Dworkin R.H.
        Pain associated with multiple sclerosis: systematic review and proposed classification.
        Pain. 2008; 137: 96-111
        • Osterberg A.
        • Boivie J.
        • Thuomas K.A.
        Central pain in multiple sclerosis--prevalence and clinical characteristics.
        Eur. J. Pain. 2005; 9: 531-542
        • Svendsen K.B.
        • Jensen T.S.
        • Hansen H.J.
        • Bach F.W.
        Sensory function and quality of life in patients with multiple sclerosis and pain.
        Pain. 2005; 114: 473-481
      6. T.Z. Fischer, S.G. Waxman, Neuropathic pain in diabetes--evidence for a central mechanism, Nat Rev Neurol 6(8) 462–6.

        • Feroe A.G.
        • Attanasio R.
        • Scinicariello F.
        Acrolein metabolites, diabetes and insulin resistance.
        Environ. Res. 2016; 148: 1-6