Advertisement
Research Article| Volume 378, P110-119, July 15, 2017

Download started.

Ok

The anteroposterior and primary-to-posterior limbic ratios as MRI-derived volumetric markers of Alzheimer's disease

Published:April 27, 2017DOI:https://doi.org/10.1016/j.jns.2017.04.046

      Highlights

      • gm_extractor is a script that allows the automated calculation of brain volumes.
      • Two volume ratios were designed to detect the pattern of atrophy associated with AD.
      • These ratios were useful to differentiate normal from cognitively impaired subjects.

      Abstract

      Background/aims

      Alzheimer's disease (AD) shows a characteristic pattern of brain atrophy, with predominant involvement of posterior limbic structures, and relative preservation of rostral limbic and primary cortical regions. We aimed to investigate the diagnostic utility of two gray matter volume ratios based on this pattern, and to develop a fully automated method to calculate them from unprocessed MRI files.

      Patients and methods

      Cross-sectional study of 118 subjects from the ADNI database, including normal controls and patients with mild cognitive impairment (MCI) and AD. Clinical variables and 3 T T1-weighted MRI files were analyzed. Regional gray matter and total intracranial volumes were calculated with a shell script (gm_extractor) based on FSL. Anteroposterior and primary-to-posterior limbic ratios (APL and PPL) were calculated from these values. Diagnostic utility of variables was tested in logistic regression models using Bayesian model averaging for variable selection. External validity was evaluated with bootstrap sampling and a test set of 60 subjects.

      Results

      gm_extractor showed high test-retest reliability and high concurrent validity with FSL's FIRST. Volumetric measurements agreed with the expected anatomical pattern associated with AD. APL and PPL ratios were significantly different between groups, and were selected instead of hippocampal and entorhinal volumes to differentiate normal from MCI or cognitively impaired (MCI plus AD) subjects.

      Conclusion

      APL and PPL ratios may be useful components of models aimed to differentiate normal subjects from patients with MCI or AD. These values, and other gray matter volumes, may be reliably calculated with gm_extractor.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Scheltens P.
        • Blennow K.
        • Breteler M.M.
        • de Strooper B.
        • Frisoni G.B.
        • Salloway S.
        • Van der Flier W.M.
        Alzheimer's disease.
        Lancet. 2016; 388: 505-517
        • Winblad B.
        • Amouyel P.
        • Andrieu S.
        • Ballard C.
        • Brayne C.
        • Brodaty H.
        • Cedazo-Minguez A.
        • Dubois B.
        • Edvardsson D.
        • Feldman H.
        • Fratiglioni L.
        • Frisoni G.B.
        • Gauthier S.
        • Georges J.
        • Graff C.
        • Iqbal K.
        • Jessen F.
        • Johansson G.
        • Jönsson L.
        • Kivipelto M.
        • Knapp M.
        • Mangialasche F.
        • Melis R.
        • Nordberg A.
        • Rikkert M.O.
        • Qiu C.
        • Sakmar T.P.
        • Scheltens P.
        • Schneider L.S.
        • Sperling R.
        • Tjernberg L.O.
        • Waldemar G.
        • Wimo A.
        • Zetterberg H.
        Defeating Alzheimer's disease and other dementias: a priority for European science and society.
        Lancet Neurol. 2016; 15: 455-532
        • Perl D.P.
        Neuropathology of Alzheimer's disease.
        Mt Sinai J. Med. 2010; 77: 32-42
        • Vogt B.A.
        • Finch D.M.
        • Olson C.R.
        Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions.
        Cereb. Cortex. 1992; 2: 435-443
        • Mosconi L.
        • Pupi A.
        • De Cristofaro M.T.
        • Fayyaz M.
        • Sorbi S.
        • Herholz K.
        Functional interactions of the entorhinal cortex: an 18F-FDG PET study on normal aging and Alzheimer's disease.
        J. Nucl. Med. 2004; 45: 382-392
        • Hirao K.
        • Ohnishi T.
        • Matsuda H.
        • Nemoto K.
        • Hirata Y.
        • Yamashita F.
        • Asada T.
        • Iwamoto T.
        Functional interactions between entorhinal cortex and posterior cingulate cortex at the very early stage of Alzheimer's disease using brain perfusion single-photon emission computed tomography.
        Nucl. Med. Commun. 2006; 27: 151-156
        • Frisoni G.B.
        • Pievani M.
        • Testa C.
        • Sabattoli F.
        • Bresciani L.
        • Bonetti M.
        • Beltramello A.
        • Hayashi K.M.
        • Toga A.W.
        • Thompson P.M.
        The topography of grey matter involvement in early and late onset Alzheimer's disease.
        Brain. 2007; 130: 720-730
        • Devinsky O.
        • Morrell M.J.
        • Vogt B.A.
        Contributions of anterior cingulate cortex to behaviour.
        Brain. 1995; 118: 279-306
        • Rathakrishnan B.G.
        • Doraiswamy P.M.
        • Petrella J.R.
        Science to practice: translating automated brain MRI volumetry in Alzheimer's disease from research to routine diagnostic use in the work-up of dementia.
        Front. Neurol. 2014; 4: 216
        • Jack Jr., C.R.
        • Slomkowski M.
        • Gracon S.
        • Hoover T.M.
        • Felmlee J.P.
        • Stewart K.
        • Xu Y.
        • Shiung M.
        • O'Brien P.C.
        • Cha R.
        • Knopman D.
        • Petersen R.C.
        MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD.
        Neurology. 2003; 60: 253-260
        • Du A.T.
        • Schuff N.
        • Zhu X.P.
        • Jagust W.J.
        • Miller B.L.
        • Reed B.R.
        • Kramer J.H.
        • Mungas D.
        • Yaffe K.
        • Chui H.C.
        • Weiner M.W.
        Atrophy rates of entorhinal cortex in AD and normal aging.
        Neurology. 2003; 60: 481-486
        • Cardenas V.A.
        • Du A.T.
        • Hardin D.
        • Ezekiel F.
        • Weber P.
        • Jagust W.J.
        • Chui H.C.
        • Schuff N.
        • Weiner M.W.
        Comparison of methods for measuring longitudinal brain change in cognitive impairment and dementia.
        Neurobiol. Aging. 2003; 24: 537-544
        • Jenkinson M.
        • Beckmann C.F.
        • Behrens T.E.
        • Woolrich M.W.
        • Smith S.M.
        FSL.
        NeuroImage. 2012; 62: 782-790
        • Petersen R.C.
        Mild cognitive impairment.
        Continuum (Minneap Minn). 2016; 22: 404-418
        • Lutkenhoff E.S.
        • Rosenberg M.
        • Chiang J.
        • Zhang K.
        • Pickard J.D.
        • Owen A.M.
        • Monti M.M.
        Optimized brain extraction for pathological brains (optiBET).
        PLoS One. 2014; 9: e115551
        • R Core Team
        R: A Language and Environment for Statistical Computing.
        R Foundation for Statistical Computing, Vienna, Austria2016
        • Patenaude B.
        • Smith S.M.
        • Kennedy D.
        • Jenkinson M.
        A Bayesian model of shape and appearance for subcortical brain.
        NeuroImage. 2011; 56: 907-922
        • Hsu Y.Y.
        • Schuff N.
        • Du A.T.
        • Mark K.
        • Zhu X.
        • Hardin D.
        • Weiner M.W.
        Comparison of automated and manual MRI volumetry of hippocampus in normal aging and dementia.
        J. Magn. Reson. Imaging. 2002; 16: 305-310
        • Seixas F.L.
        • Muchaluat Saade D.C.
        • Conci A.
        • Silveira de Souza A.
        • Tovar-Moll F.
        • Bramatti I.
        Anatomical brain MRI segmentation methods: volumetric assessment of the hippocampus.
        in: IWSSIP 2010-17th International Conference on Systems, Signals and Image Processing. 2010: 247-251
        • Rafteryh A.
        • Hoeting J.
        • Volinsky C.
        • Painter I.
        • Yeung K.Y.
        BMA: Bayesian Model Averaging. R Package Version 3.18.6.2015.
        • Lopez-Raton M.
        • Rodriguez-Alvarez M.X.
        • Cadarso C.
        • Gude F.
        Optimal cutpoints: an R package for selecting optimal cutpoints in diagnostic tests.
        J. Stat. Softw. 2014; 61: 1-36
        • Canty A.
        • Ripley B.
        boot: Bootstrap R (S-Plus) Functions. R Package Version 1.3-18.
        2016
        • Suppa P.
        • Hampel H.
        • Kepp T.
        • Lange C.
        • Spies L.
        • Fiebach J.B.
        • Dubois B.
        • Buchert R.
        Alzheimer's disease neuroimaging initiative: performance of hippocampus volumetry with FSL-FIRST for prediction of Alzheimer's disease dementia in at risk subjects with amnestic mild cognitive impairment.
        J. Alzheimers Dis. 2016; 51: 867-873
        • Fellhauer I.
        • Zöllner F.G.
        • Schröder J.
        • Degen C.
        • Kong L.
        • Essig M.
        • Thomann P.A.
        • Schad L.R.
        Comparison of automated brain segmentation using a brain phantom and patients with early Alzheimer's dementia or mild cognitive impairment.
        Psychiatry Res. 2015; 233: 299-305
        • Sánchez-Benavides G.
        • Gómez-Ansón B.
        • Sainz A.
        • Vives Y.
        • Delfino M.
        • Peña-Casanova J.
        Manual validation of FreeSurfer's automated hippocampal segmentation in normal aging, mild cognitive impairment, and Alzheimer disease subjects.
        Psychiatry Res. 2010; 181: 219-225
        • Jack Jr., C.R.
        • Barkhof F.
        • Bernstein M.A.
        • Cantillon M.
        • Cole P.E.
        • Decarli C.
        • Dubois B.
        • Duchesne S.
        • Fox N.C.
        • Frisoni G.B.
        • Hampel H.
        • Hill D.L.
        • Johnson K.
        • Mangin J.F.
        • Scheltens P.
        • Schwarz A.J.
        • Sperling R.
        • Suhy J.
        • Thompson P.M.
        • Weiner M.
        • Foster N.L.
        Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer's disease.
        Alzheimers Dement. 2011; 7: 474-485
        • Menéndez González M.
        • Suárez-Sanmartin E.
        • García C.
        • Martínez-Camblor P.
        • Westman E.
        • Simmons A.
        Manual planimetry of the medial temporal lobe versus automated volumetry of the hippocampus in the diagnosis of Alzheimer's disease.
        Cureus. 2016; 8: e544
        • Jack Jr., C.R.
        • Petersen R.C.
        • O'Brien P.C.
        • Tangalos E.G.
        MR-based hippocampal volumetry in the diagnosis of Alzheimer's disease.
        Neurology. 1992; 42: 183-188
        • Parnetti L.
        • Lowenthal D.T.
        • Presciutti O.
        • Pelliccioli G.P.
        • Palumbo R.
        • Gobbi G.
        • Chiarini P.
        • Palumbo B.
        • Tarducci R.
        • Senin U.
        1H-MRS, MRI-based hippocampal volumetry, and 99mTc-HMPAO-SPECT in normal aging, age-associated memory impairment, and probable Alzheimer's disease.
        J. Am. Geriatr. Soc. 1996; 44: 133-138
        • Laakso M.P.
        • Partanen K.
        • Riekkinen P.
        • Lehtovirta M.
        • Helkala E.L.
        • Hallikainen M.
        • Hanninen T.
        • Vainio P.
        • Soininen H.
        Hippocampal volumes in Alzheimer's disease, Parkinson's disease with and without dementia, and in vascular dementia: an MRI study.
        Neurology. 1996; 46: 678-681
        • de Leon M.J.
        • Convit A.
        • DeSanti S.
        • Bobinski M.
        • George A.E.
        • Wisniewski H.M.
        • Rusinek H.
        • Carroll R.
        • Saint Louis L.A.
        Contribution of structural neuroimaging to the early diagnosis of Alzheimer's disease.
        Int. Psychogeriatr. 1997; 9 (discussion 247–52): 183-190
        • Mori E.
        • Yoneda Y.
        • Yamashita H.
        • Hirono N.
        • Ikeda M.
        • Yamadori A.
        Medial temporal structures relate to memory impairment in Alzheimer's disease: an MRI volumetric study.
        J. Neurol. Neurosurg. Psychiatry. 1997; 63: 214-221
        • Köhler S.
        • Black S.E.
        • Sinden M.
        • Szekely C.
        • Kidron D.
        • Parker J.L.
        • Foster J.K.
        • Moscovitch M.
        • Winocour G.
        • Szalai J.P.
        • Bronskill M.J.
        Memory impairments associated with hippocampal versus parahippocampal-gyrus atrophy: an MR volumetry study in Alzheimer's disease.
        Neuropsychologia. 1998; 36: 901-914
        • Laakso M.P.
        • Soininen H.
        • Partanen K.
        • Lehtovirta M.
        • Hallikainen M.
        • Hänninen T.
        • Helkala E.L.
        • Vainio P.
        • Riekkinen Sr., P.J.
        MRI of the hippocampus in Alzheimer's disease: sensitivity, specificity, and analysis of the incorrectly classified subjects.
        Neurobiol. Aging. 1998; 19: 23-31
        • Juottonen K.
        • Laakso M.P.
        • Partanen K.
        • Soininen H.
        Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer disease.
        AJNR Am. J. Neuroradiol. 1999; 20: 139-144
        • Golebiowski M.
        • Barcikowska M.
        • Pfeffer A.
        Magnetic resonance imaging-based hippocampal volumetry in patients with dementia of the Alzheimer type.
        Dement. Geriatr. Cogn. Disord. 1999; 10: 284-288
        • Wahlund L.O.
        • Julin P.
        • Lindqvist J.
        • Scheltens P.
        Visual assessment of medical temporal lobe atrophy in demented and healthy control subjects: correlation with volumetry.
        Psychiatry Res. 1999; 90: 193-199
        • Petersen R.C.
        • Jack Jr., C.R.
        • Xu Y.C.
        • Waring S.C.
        • O'Brien P.C.
        • Smith G.E.
        • Ivnik R.J.
        • Tangalos E.G.
        • Boeve B.F.
        • Kokmen E.
        Memory and MRI-based hippocampal volumes in aging and AD.
        Neurology. 2000; 54: 581-587
        • Mega M.S.
        • Small G.W.
        • Xu M.L.
        • Felix J.
        • Manese M.
        • Tran N.P.
        • Dailey J.I.
        • Ercoli L.M.
        • Bookheimer S.Y.
        • Toga A.W.
        Hippocampal atrophy in persons with age-associated memory impairment: volumetry within a common space.
        Psychosom. Med. 2002; 64: 487-492
        • Kantarci K.
        • Xu Y.
        • Shiung M.M.
        • O'Brien P.C.
        • Cha R.H.
        • Smith G.E.
        • Ivnik R.J.
        • Boeve B.F.
        • Edland S.D.
        • Kokmen E.
        • Tangalos E.G.
        • Petersen R.C.
        • Jack Jr., C.R.
        Comparative diagnostic utility of different MR modalities in mild cognitive impairment and Alzheimer's disease.
        Dement. Geriatr. Cogn. Disord. 2002; 14: 198-207
        • Testa C.
        • Laakso M.P.
        • Sabattoli F.
        • Rossi R.
        • Beltramello A.
        • Soininen H.
        • Frisoni G.B.
        A comparison between the accuracy of voxel-based morphometry and hippocampal volumetry in Alzheimer's disease.
        J. Magn. Reson. Imaging. 2004; 19: 274-282
        • Müller M.J.
        • Greverus D.
        • Dellani P.R.
        • Weibrich C.
        • Wille P.R.
        • Scheurich A.
        • Stoeter P.
        • Fellgiebel A.
        Functional implications of hippocampal volume and diffusivity in mild cognitive impairment.
        NeuroImage. 2005; 28: 1033-1042
        • Bresciani L.
        • Rossi R.
        • Testa C.
        • Geroldi C.
        • Galluzzi S.
        • Laakso M.P.
        • Beltramello A.
        • Soininen H.
        • Frisoni G.B.
        Visual assessment of medial temporal atrophy on MR films in Alzheimer's disease: comparison with volumetry.
        Aging Clin. Exp. Res. 2005; 17: 8-13
        • Ishii K.
        • Soma T.
        • Kono A.K.
        • Sasaki H.
        • Miyamoto N.
        • Fukuda T.
        • Murase K.
        Automatic volumetric measurement of segmented brain structures on magnetic resonance imaging.
        Radiat. Med. 2006; 24: 422-430
        • Giesel F.L.
        • Thomann P.A.
        • Hahn H.K.
        • Politi M.
        • Stieltjes B.
        • Weber M.A.
        • Pantel J.
        • Wilkinson I.D.
        • Griffiths P.D.
        • Schröder J.
        • Essig M.
        Comparison of manual direct and automated indirect measurement of hippocampus using magnetic resonance imaging.
        Eur. J. Radiol. 2008; 66: 268-273
        • Colliot O.
        • Chételat G.
        • Chupin M.
        • Desgranges B.
        • Magnin B.
        • Benali H.
        • Dubois B.
        • Garnero L.
        • Eustache F.
        • Lehéricy S.
        Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus.
        Radiology. 2008; 248: 194-201
        • Jauhiainen A.M.
        • Pihlajamäki M.
        • Tervo S.
        • Niskanen E.
        • Tanila H.
        • Hänninen T.
        • Vanninen R.L.
        • Soininen H.
        Discriminating accuracy of medial temporal lobe volumetry and fMRI in mild cognitive impairment.
        Hippocampus. 2009; 19: 166-175
        • Chupin M.
        • Gérardin E.
        • Cuingnet R.
        • Boutet C.
        • Lemieux L.
        • Lehéricy S.
        • Benali H.
        • Garnero L.
        • Colliot O.
        Alzheimer's disease neuroimaging initiative: fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI.
        Hippocampus. 2009; 19: 579-587
        • Cherubini A.
        • Péran P.
        • Spoletini I.
        • Di Paola M.
        • Di Iulio F.
        • Hagberg G.E.
        • Sancesario G.
        • Gianni W.
        • Bossù P.
        • Caltagirone C.
        • Sabatini U.
        • Spalletta G.
        Combined volumetry and DTI in subcortical structures of mild cognitive impairment and Alzheimer's disease patients.
        J. Alzheimers Dis. 2010; 19: 1273-1282
        • Mak H.K.
        • Zhang Z.
        • Yau K.K.
        • Zhang L.
        • Chan Q.
        • Chu L.W.
        Efficacy of voxel-based morphometry with DARTEL and standard registration as imaging biomarkers in Alzheimer's disease patients and cognitively normal older adults at 3.0 Tesla MR imaging.
        J. Alzheimers Dis. 2011; 23: 655-664
        • Cavallin L.
        • Bronge L.
        • Zhang Y.
        • Oksengård A.R.
        • Wahlund L.O.
        • Fratiglioni L.
        • Axelsson R.
        Comparison between visual assessment of MTA and hippocampal volumes in an elderly, non-demented population.
        Acta Radiol. 2012; 53: 573-579
        • Boutet C.
        • Chupin M.
        • Colliot O.
        • Sarazin M.
        • Mutlu G.
        • Drier A.
        • Pellot A.
        • Dormont D.
        • Lehéricy S.
        Alzheimer's disease neuroimaging initiative: is radiological evaluation as good as computer-based volumetry to assess hippocampal atrophy in Alzheimer's disease?.
        Neuroradiology. 2012; 54: 1321-1330
        • Ferrarini L.
        • van Lew B.
        • Reiber J.H.
        • Gandin C.
        • Galluzzo L.
        • Scafato E.
        • Frisoni G.B.
        • Milles J.
        • Pievani M.
        IPREA working group (Italian Project on epidemiology of Alzheimer's disease): hippocampal atrophy in people with memory deficits: results from the population-based IPREA study.
        Int. Psychogeriatr. 2014; 26: 1067-1081
        • Han S.H.
        • Lee M.A.
        • An S.S.
        • Ahn S.W.
        • Youn Y.C.
        • Park K.Y.
        Diagnostic value of Alzheimer's disease-related individual structural volume measurements using IBASPM.
        J. Clin. Neurosci. 2014; 21: 2165-2169
        • Jung W.B.
        • Lee Y.M.
        • Kim Y.H.
        • Mun C.W.
        Automated classification to predict the progression of Alzheimer's disease using whole-brain Volumetry and DTI.
        Psychiatry Investig. 2015; 12: 92-102
        • Suppa P.
        • Anker U.
        • Spies L.
        • Bopp I.
        • Rüegger-Frey B.
        • Klaghofer R.
        • Gocke C.
        • Hampel H.
        • Beck S.
        • Buchert R.
        Fully automated atlas-based hippocampal volumetry for detection of Alzheimer's disease in a memory clinic setting.
        J. Alzheimers Dis. 2015; 44: 183-193
        • Kril J.J.
        • Hodges J.
        • Halliday G.
        Relationship between hippocampal volume and CA1 neuron loss in brains of humans with and without Alzheimer's disease.
        Neurosci. Lett. 2004; 361: 9-12
        • Mueller S.G.
        • Weiner M.W.
        Selective effect of age, Apo e4, and Alzheimer's disease on hippocampal subfields.
        Hippocampus. 2009; 19: 558-564
        • Gerardin E.
        • Chételat G.
        • Chupin M.
        • Cuingnet R.
        • Desgranges B.
        • Kim H.S.
        • Niethammer M.
        • Dubois B.
        • Lehéricy S.
        • Garnero L.
        • Eustache F.
        • Colliot O.
        Alzheimer's disease neuroimaging initiative: multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging.
        NeuroImage. 2009; 47: 1476-1486
        • Nesteruk T.
        • Nesteruk M.
        • Styczyńska M.
        • Barcikowska-Kotowicz M.
        • Walecki J.
        Radiological evaluation of strategic structures in patients with mild cognitive impairment and early Alzheimer's disease.
        Pol. J. Radiol. 2016; 81: 288-294
        • Luckhaus C.
        • Jänner M.
        • Cohnen M.
        • Flüss M.O.
        • Teipel S.J.
        • Grothe M.
        • Hampel H.
        • Kornhuber J.
        • Rüther E.
        • Peters O.
        • Supprian T.
        • Gaebel W.
        • Mödder U.
        • Wittsack H.J.
        A novel MRI-biomarker candidate for Alzheimer's disease composed of regional brain volume and perfusion variables.
        Eur. J. Neurol. 2010; 17: 1437-1444
        • Callen D.J.
        • Black S.E.
        • Gao F.
        • Caldwell C.B.
        • Szalai J.P.
        Beyond the hippocampus: MRI volumetry confirms widespread limbic atrophy in AD.
        Neurology. 2001; 57: 1669-1674
        • Ryu S.Y.
        • Kwon M.J.
        • Lee S.B.
        • Yang D.W.
        • Kim T.W.
        • Song I.U.
        • Yang P.S.
        • Kim H.J.
        • Lee A.Y.
        Measurement of precuneal and hippocampal volumes using magnetic resonance volumetry in Alzheimer's disease.
        J. Clin. Neurol. 2010; 6: 196-203
        • Palesi F.
        • Vitali P.
        • Chiarati P.
        • Castellazzi G.
        • Caverzasi E.
        • Pichiecchio A.
        • Colli-Tibaldi E.
        • D'Amore F.
        • D'Errico I.
        • Sinforiani E.
        • Bastianello S.
        DTI and MR Volumetry of hippocampus-PC/PCC circuit: in search of early micro- and macrostructural signs of Alzheimer's disease.
        Neurol. Res. Int. 2012; 2012: 517876
        • Clerx L.
        • Jacobs H.I.
        • Burgmans S.
        • Gronenschild E.H.
        • Uylings H.B.
        • Echávarri C.
        • Visser P.J.
        • Verhey F.R.
        • Aalten P.
        Sensitivity of different MRI-techniques to assess gray matter atrophy patterns in Alzheimer's disease is region-specific.
        Curr. Alzheimer Res. 2013; 10: 940-951
        • Mak H.K.
        • Qian W.
        • Ng K.S.
        • Chan Q.
        • Song Y.Q.
        • Chu L.W.
        • Yau K.K.
        Combination of MRI hippocampal volumetry and arterial spin labeling MR perfusion at 3-Tesla improves the efficacy in discriminating Alzheimer's disease from cognitively normal elderly adults.
        J. Alzheimers Dis. 2014; 41: 749-758
        • Grothe M.
        • Heinsen H.
        • Teipel S.
        Longitudinal measures of cholinergic forebrain atrophy in the transition from healthy aging to Alzheimer's disease.
        Neurobiol. Aging. 2013; 34: 1210-1220
        • Newman T.B.
        • Kohn M.A.
        Evidence-based Diagnosis.
        Cambridge University Press, Cambridge, UK2009: 99