Advertisement
Editorial| Volume 367, P347-348, August 15, 2016

Download started.

Ok

BOLD fMRI complexity predicts changes in brain processes, interactions and patterns, in health and disease

      The human brain is the most complex information processing system that exists in nature. Its information processing functionality exists at multiple levels of interactions which can be influenced by electrical, chemical and physical components governed by thresholds and saturation phenomena [
      • Abasolo D.
      • Hornero R.
      • Espino P.
      • Álvarez D.
      • Poza J.
      Entropy analysis of the EEG background activity in Alzheimer's disease patients.
      ]. When these thresholds are exceeded, saturation is reached, giving rise to nonlinear behaviour [
      • Sokunbi M.O.
      • Gradin V.B.
      • Waiter G.D.
      • Cameron G.G.
      • Ahearn T.S.
      • Murray A.D.
      • Steele D.J.
      • Staff R.T.
      Nonlinear complexity analysis of brain fMRI signals in schizophrenia.
      ]. The human brain like most dynamic systems in nature typically exhibit chaotic and complex behaviours with nonlinear dynamic properties [
      • Bertolaccini M.
      • Bussolati C.
      • Padovini G.
      A nonlinear filtering technique for the identification of biological signals.
      ]. This chaotic and complex behaviour has prompted the need for methods that can be used to characterise the human brain in a nonlinear manner.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abasolo D.
        • Hornero R.
        • Espino P.
        • Álvarez D.
        • Poza J.
        Entropy analysis of the EEG background activity in Alzheimer's disease patients.
        Physiol. Meas. 2006; 27: 241-253
        • Bassett D.S.
        • Bullmore E.T.
        Human brain networks in health and disease.
        Curr. Opin. Neurol. 2009; 22: 340-347
        • Bertolaccini M.
        • Bussolati C.
        • Padovini G.
        A nonlinear filtering technique for the identification of biological signals.
        IEEE Trans. Biomed. Eng. 1978; 25: 159-165
        • Chen W.
        • Wang Z.
        • Xie H.
        • Yu W.
        Characterization of surface EMG signal based on fuzzy entropy.
        IEEE Trans. Neural Syst. Rehabil. Eng. 2007; 15: 266-272
        • Costa M.
        • Goldberger A.L.
        • Peng C.K.
        Multiscale entropy analysis of complex physiologic time series.
        Phys. Rev. Lett. 2002; 89: 068102
        • Costa M.
        • Goldberger A.L.
        • Peng C.K.
        Multiscale entropy analysis of biological signals.
        Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2005; 71: 021906
        • Fernandez A.
        • Zuluaga P.
        • Abasolo D.
        • Gomez C.
        • Serra A.
        • Mendez M.A.
        • Hornero R.
        Brain oscillatory complexity across the life span.
        Clin. Neurophysiol. 2012; 123: 2154-2162
        • Hartman D.
        • Hlinka J.
        • Palus M.
        • Mantini D.
        • Corbetta M.
        The role of nonlinearity in computing graph-theoretical properties of resting-state functional magnetic resonance imaging brain networks.
        Chaos. 2011; 21: 013119
        • Hlinka J.
        • Palus M.
        • Vejmelka M.
        • Mantini D.
        • Corbetta M.
        Functional connectivity in resting-state fMRI: is linear correlation sufficient?.
        NeuroImage. 2011; 54: 2218-2225
        • Liu C.Y.
        • Krishnan A.P.
        • Yan L.
        • Smith R.X.
        • Kilroy E.
        • Alger J.R.
        • Ringman J.M.
        • Wang D.J.
        Complexity and synchronicity of resting state blood oxygenation level-dependent (BOLD) functional MRI in normal aging and cognitive decline.
        J. Magn. Reson. Imaging. 2013; 38: 36-45
        • Logothetis N.K.
        • Wandell B.A.
        Interpreting the BOLD signal.
        Annu. Rev. Physiol. 2004; 66: 735-769
        • Lu S.
        • Chen X.
        • Kanters J.K.
        • Solomon I.C.
        • Chon K.H.
        Automatic selection of the threshold value r for approximate entropy.
        IEEE Trans. Biomed. Eng. 2008; 55: 1966-1972
        • Pincus S.
        Approximate entropy (ApEn) as a complexity measure.
        Chaos. 1995; 5: 110-117
        • Pincus S.M.
        Assessing serial irregularity and its implications for health.
        Ann. N. Y. Acad. Sci. 2001; 954: 245-267
        • Pincus S.M.
        Approximate entropy as a measure of system complexity.
        Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 2297-2301
        • Pool R.
        Is it healthy to be chaotic?.
        Science. 1989; 243: 604-607
        • Pritchard W.S.
        • Laurienti P.J.
        • Burdette J.H.
        • Hayasaka S.
        Functional brain networks formed using cross-sample entropy are scale free.
        Brain Connect. 2014; 4: 454-464
        • Richman J.S.
        • Moorman J.R.
        Physiological time-series analysis using approximate and sample entropy.
        Am. J. Physiol. Heart Circ. Physiol. 2000; 278: H2039-H2049
        • Smith R.X.
        • Jann K.
        • Ances B.
        • Wang D.J.
        Wavelet-based regularity analysis reveals recurrent spatiotemporal behavior in resting-state fMRI.
        Hum. Brain Mapp. 2015; 36: 3603-3620
        • Sokunbi M.O.
        • Staff R.T.
        • Waiter G.D.
        • Ahearn T.S.
        • Fox H.C.
        • Deary I.J.
        • Starr J.M.
        • Whalley L.J.
        • Murray A.D.
        Inter-individual differences in fMRI entropy measurements in old age.
        IEEE Trans. Biomed. Eng. 2011; 58: 3206-3214
        • Sokunbi M.O.
        Sample entropy reveals high discriminatory power between young and elderly adults in short fMRI data sets.
        Front. Neuroinform. 2014; 8: 69
        • Sokunbi M.O.
        • Gradin V.B.
        • Waiter G.D.
        • Cameron G.G.
        • Ahearn T.S.
        • Murray A.D.
        • Steele D.J.
        • Staff R.T.
        Nonlinear complexity analysis of brain fMRI signals in schizophrenia.
        PLoS One. 2014; 9: e95146
        • Sokunbi M.O.
        • Fung W.
        • Sawlani V.
        • Choppin S.
        • Linden D.E.J.
        • Thome J.
        Resting state fMRI entropy probes complexity of brain activity in adults with ADHD.
        Psychiatry Res. Neuroimaging. 2013; 214: 341-348
        • Sokunbi M.O.
        • Cameron G.G.
        • Ahearn T.S.
        • Murray A.D.
        • Staff R.T.
        Fuzzy approximate entropy analysis of resting state fMRI signal complexity across the adult life span.
        Med. Eng. Phys. 2015; 37: 1082-1090
        • Sporns O.
        Networks of the Brain.
        MIT Press, 2010
        • Sporns O.
        Contributions and challenges for network models in cognitive neuroscience.
        Nat. Neurosci. 2014; 17: 652-660
        • Stam C.J.
        Modern network science of neurological disorders.
        Nat. Rev. Neurosci. 2014; 15: 683-695
        • Sun J.
        • Taylor D.
        • Bollt E.M.
        Causal network inference by optimal causation entropy.
        SIAM J. Dyn. Syst. 2015; 14: 73-106
        • Vaillancourt D.E.
        • Newell K.M.
        Changing complexity in human behavior and physiology through aging and disease.
        Neurobiol. Aging. 2002; 23: 1-11
        • Wang Z.
        • Li Y.
        • Childress A.R.
        • Detre J.A.
        Brain entropy mapping using fMRI.
        PLoS One. 2014; 9: e89948
        • Xie H.B.
        • Guo J.Y.
        • Zheng Y.P.
        Fuzzy approximate entropy analysis of chaotic and natural complex systems: detecting muscle fatigue using electromyography signals.
        Ann. Biomed. Eng. 2010; 38: 1483-1496
        • Xie H.B.
        • Guo J.Y.
        • Zheng Y.P.
        A comparative study of pattern synchronization detection between neural signals using different cross-entropy measures.
        Biol. Cybern. 2010; 102: 123-135
        • Yang A.C.
        • Huang C.C.
        • Yeh H.L.
        • Liu M.E.
        • Hong C.J.
        • Tu P.C.
        • Chen J.F.
        • Huang N.E.
        • Peng C.K.
        • Lin C.P.
        • Tsai S.J.
        Complexity of spontaneous BOLD activity in default mode network is correlated with cognitive function in normal male elderly: a multiscale entropy analysis.
        Neurobiol. Aging. 2013; 34: 428-438
        • Yang A.C.
        • Hong C.J.
        • Liou Y.J.
        • Huang K.L.
        • Huang C.C.
        • Liu M.E.
        • Lo M.T.
        • Huang N.E.
        • Peng C.K.
        • Lin C.P.
        • Tsai S.J.
        Decreased resting-state brain activity complexity in schizophrenia characterized by both increased regularity and randomness.
        Hum. Brain Mapp. 2015; 36: 2174-2186
        • Yang A.C.
        • Huang C.C.
        • Liu M.E.
        • Liou Y.J.
        • Hong C.J.
        • Lo M.T.
        • Huang N.E.
        • Peng C.K.
        • Lin C.P.
        • Tsai S.J.
        The APOE ɛ4 allele affects complexity and functional connectivity of resting brain activity in healthy adults.
        Hum. Brain Mapp. 2014; 35: 3238-3248
        • Zhang X.
        • Roy R.J.
        Derived fuzzy knowledge model for estimating the depth of anesthesia.
        IEEE Trans. Biomed. Eng. 2001; 48: 312-323
        • Zhou F.
        • Zhuang Y.
        • Gong H.
        • Zhan J.
        • Grossman M.
        • Wang Z.
        Resting state brain entropy alterations in relapsing remitting multiple sclerosis.
        PLoS One. 2016; 11: e0146080https://doi.org/10.1371/npone.0146080