Advertisement
Review article| Volume 367, P258-268, August 15, 2016

Genetic insights into migraine and glutamate: a protagonist driving the headache

  • Claudia F. Gasparini
    Affiliations
    Menzies Health Institute Queensland, Griffith University Gold Coast, Parklands Drive, Southport, QLD 4222, Australia
    Search for articles by this author
  • Robert A. Smith
    Affiliations
    Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Ave, Kelvin Grove, QLD 4059, Australia
    Search for articles by this author
  • Lyn R. Griffiths
    Correspondence
    Corresponding author at: Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Musk Ave, Kelvin Grove, QLD 4059, Australia.
    Affiliations
    Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Ave, Kelvin Grove, QLD 4059, Australia
    Search for articles by this author

      Highlights

      • Genetic evidence implicates the glutamatergic system in migraine attacks.
      • Biochemical studies show peripheral changes in the metabolism of glutamate.
      • Glutamate-modulating therapies have shown promise in treating migraine symptoms.
      • Glutamate and its receptors remains a “hot” target for drug discovery.

      Abstract

      Migraine is a complex polygenic disorder that continues to be a great source of morbidity in the developed world with a prevalence of 12% in the Caucasian population. Genetic and pharmacological studies have implicated the glutamate pathway in migraine pathophysiology. Glutamate profoundly impacts brain circuits that regulate core symptom domains in a range of neuropsychiatric conditions and thus remains a “hot” target for drug discovery. Glutamate has been implicated in cortical spreading depression (CSD), the phenomenon responsible for migraine with aura and in animal models carrying FHM mutations. Genotyping case-control studies have shown an association between glutamate receptor genes, namely, GRIA1 and GRIA3 with migraine with indirect supporting evidence from GWAS. New evidence localizes PRRT2 at glutamatergic synapses and shows it affects glutamate signalling and glutamate receptor activity via interactions with GRIA1. Glutamate-system defects have also been recently implicated in a novel FHM2 ATP1A2 disease-mutation mouse model. Adding to the growing evidence neurophysiological findings support a role for glutamate in cortical excitability. In addition to the existence of multiple genes to choreograph the functions of fast-signalling glutamatergic neurons, glutamate receptor diversity and regulation is further increased by the post-translational mechanisms of RNA editing and miRNAs. Ongoing genetic studies, GWAS and meta-analysis implicate neurogenic mechanisms in migraine pathology and the first genome-wide associated locus for migraine on chromosome X. Finally, in addition to glutamate modulating therapies, the kynurenine pathway has emerged as a candidate for involvement in migraine pathophysiology. In this review we discuss recent genetic evidence and glutamate modulating therapies that bear on the hypothesis that a glutamatergic mechanism may be involved in migraine susceptibility.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gallai V.
        • Alberti A.
        • Gallai B.
        • Coppola F.
        • Floridi A.
        • Sarchielli P.
        Glutamate and nitric oxide pathway in chronic daily headache: evidence from cerebrospinal fluid.
        Cephalalgia. 2003; 23: 166-174
        • Peres M.F.
        • Zukerman E.
        • Senne Soares C.A.
        • Alonso E.O.
        • Santos B.F.
        • Faulhaber M.H.
        Cerebrospinal fluid glutamate levels in chronic migraine.
        Cephalalgia. 2004; 24: 735-739
        • Vieira D.S.
        • Naffah-Mazzacoratti M.G.
        • Zukerman E.
        • Senne Soares C.A.
        • Abrao Cavalheiro E.
        • Prieto Peres M.F.
        Glutamate levels in cerebrospinal fluid and triptans overuse in chronic migraine.
        Headache. 2007; 47: 842-847
        • Ramadan N.M.
        The link between glutamate and migraine.
        CNS Spectr. 2003; 8: 446-449
        • Gasparini C.F.
        • Smith R.A.
        • Griffiths L.R.
        Biochemical studies of the neurotransmitter glutamate: a key player in migraine.
        Austin Journal of Clinical Neurology. 2015; 2: 1-8
        • Bittigau P.
        • Ikonomidou C.
        Glutamate in neurologic diseases.
        J. Child Neurol. 1997; 12: 471-485
        • Meldrum B.S.
        • Akbar M.T.
        • Chapman A.G.
        Glutamate receptors and transporters in genetic and acquired models of epilepsy.
        Epilepsy Res. 1999; 36: 189-204
        • Fifkova E.
        • van Harreveld A.
        Glutamate and spreading depression.
        J. Neurobiol. 1974; 5: 469-473
        • Costa C.
        • Tozzi A.
        • Rainero I.
        • Cupini L.M.
        • Calabresi P.
        • Ayata C.
        • et al.
        Cortical spreading depression as a target for anti-migraine agents.
        J. Headache Pain. 2013; 14
        • Basarsky T.A.
        • Feighan D.
        • MacVicar B.A.
        Glutamate release through volume-activated channels during spreading depression.
        J. Neurosci. 1999; 19: 6439-6445
        • Charles A.
        • Brennan K.C.
        Cortical spreading depression—new insights and persistent questions.
        Cephalalgia. 2009; 29: 1115-1124
        • Somjen G.G.
        Mechanisms of spreading depression and hypoxic spreading depression-like depolarization.
        Physiol. Rev. 2001; 81: 1065-1095
        • Kramer D.R.
        • Fujii T.
        • Ohiorhenuan I.
        • Liu C.Y.
        Cortical spreading depolarization: pathophysiology, implications, and future directions.
        J. Clin. Neurosci. 2016; 24: 22-27
        • Pietrobon D.
        • Moskowitz M.A.
        Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations.
        Nat. Rev. Neurosci. 2014; 15: 379-393
        • Nellgard B.
        • Wieloch T.
        NMDA-receptor blockers but not NBQX, an AMPA-receptor antagonist, inhibit spreading depression in the rat brain.
        Acta Physiol. Scand. 1992; 146: 497-503
        • Shatillo A.
        • Salo R.A.
        • Giniatullin R.
        • Gröhn O.H.
        Involvement of NMDA receptor subtypes in cortical spreading depression in rats assessed by fMRI.
        Neuropharmacology. 2015; 93: 164-170
        • Kritis A.
        • Stamoula E.
        • Paniskaki K.
        • Vavilis T.
        Researching glutamate-induced cytotoxicity in different cell lines: a comparative/, collective analysis/study.
        Front. Cell. Neurosci. 2015; 9
        • Olney J.W.
        Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate.
        Science. 1969; 164: 719-721
        • Lau A.
        • Tymianski M.
        Glutamate receptors, neurotoxicity and neurodegeneration.
        Pflugers Arch. 2010; 460: 525-542
        • Campos F.
        • Sobrino T.
        • Perez-Mato M.
        • Rodriguez-Osorio X.
        • Leira R.
        • Blanco M.
        • et al.
        Glutamate oxaloacetate transaminase: a new key in the dysregulation of glutamate in migraine patients.
        Cephalalgia. 2013;
        • Formicola D.
        • Aloia A.
        • Sampaolo S.
        • Farina O.
        • Diodato D.
        • Griffiths L.R.
        • et al.
        Common variants in the regulative regions of GRIA1 and GRIA3 receptor genes are associated with migraine susceptibility.
        BMC Med. Genet. 2010; 11: 103-114
        • Maher B.H.
        • Lea R.
        • Follett J.
        • Cox H.C.
        • Fernandez F.
        • Esposito T.
        • et al.
        Association of a GRIA3 gene polymorphism with migraine in an Australian case-control cohort.
        Headache. 2013; 53: 1245-1249
        • Magri C.
        • Gardella R.
        • Valsecchi P.
        • Barlati S.D.
        • Guizzetti L.
        • Imperadori L.
        • et al.
        Study on GRIA2, GRIA3 and GRIA4 genes highlights a positive association between schizophrenia and GRIA3 in female patients.
        Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008; 147B: 745-753
        • Ibrahim H.M.
        • Hogg Jr., A.J.
        • Healy D.J.
        • Haroutunian V.
        • Davis K.L.
        • Meador-Woodruff J.H.
        Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia.
        Am. J. Psychiatry. 2000; 157: 1811-1823
        • Meador-Woodruff J.H.
        • Healy D.J.
        Glutamate receptor expression in schizophrenic brain.
        Brain Res. Brain Res. Rev. 2000; 31: 288-294
        • Gasparini C.F.
        • Sutherland H.G.
        • Haupt L.M.
        • Griffiths L.R.
        Genetic analysis of GRIA2 and GRIA4 genes in migraine.
        Headache. 2014; 54: 303-312
        • Cargnin S.
        • Viana M.
        • Mittino D.
        • Bellomo G.
        • Tassorelli C.
        • Nappi G.
        • et al.
        Lack of association between GRIA1 polymorphisms and haplotypes with migraine without aura or response to triptans.
        Neurol. Sci. 2013;
        • Fang J.
        • An X.
        • Chen S.
        • Yu Z.
        • Ma Q.
        • Qu H.
        Case-control study of GRIA1 and GRIA3 gene variants in migraine.
        J. Headache Pain. 2015; 17: 2
        • Endele S.
        • Rosenberger G.
        • Geider K.
        • Popp B.
        • Tamer C.
        • Stefanova I.
        • et al.
        Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes.
        Nat. Genet. 2010; 42: 1021-1026
        • Lemke J.R.
        • Hendrickx R.
        • Geider K.
        • Laube B.
        • Schwake M.
        • Harvey R.J.
        • et al.
        GRIN2B mutations in west syndrome and intellectual disability with focal epilepsy.
        Ann. Neurol. 2014; 75: 147-154
        • Uzunova G.
        • Hollander E.
        • Shepherd J.
        The role of ionotropic glutamate receptors in childhood neurodevelopmental disorders: autism spectrum disorders and fragile X syndrome.
        Curr. Neuropharmacol. 2014; 12: 71-98
        • Hamdan Fadi F.
        • Gauthier J.
        • Araki Y.
        • Lin D.-T.
        • Yoshizawa Y.
        • Higashi K.
        • et al.
        Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability.
        Am. J. Hum. Genet. 2011; 88: 306-316
        • Burnashev N.
        • Szepetowski P.
        NMDA receptor subunit mutations in neurodevelopmental disorders.
        Curr. Opin. Pharmacol. 2015; 20: 73-82
        • Dichgans M.
        • Freilinger T.
        • Eckstein G.
        • Babini E.
        • Lorenz-Depiereux B.
        • Biskup S.
        • et al.
        Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine.
        Lancet. 2005; 366: 371-377
        • De Fusco M.
        • Marconi R.
        • Silvestri L.
        • Atorino L.
        • Rampoldi L.
        • Morgante L.
        • et al.
        Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha 2 subunit associated with familial hemiplegic migraine type 2.
        Nat. Genet. 2003; 33: 192-196
        • Ophoff R.A.
        • Terwindt G.M.
        • Vergouwe M.N.
        • van Eijk R.
        • Oefner P.J.
        • Hoffman S.M.
        • et al.
        Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4.
        Cell. 1996; 87: 543-552
        • Vecchia D.
        • Tottene A.
        • van den Maagdenberg A.M.
        • Pietrobon D.
        Abnormal cortical synaptic transmission in CaV2.1 knockin mice with the S218L missense mutation which causes a severe familial hemiplegic migraine syndrome in humans.
        Front. Cell. Neurosci. 2015; 9: 8
        • Vecchia D.
        • Tottene A.
        • van den Maagdenberg A.M.
        • Pietrobon D.
        Mechanism underlying unaltered cortical inhibitory synaptic transmission in contrast with enhanced excitatory transmission in CaV2.1 knockin migraine mice.
        Neurobiol. Dis. 2014; 69: 225-234
        • Riant F.
        • Roze E.
        • Barbance C.
        • Meneret A.
        • Guyant-Marechal L.
        • Lucas C.
        • et al.
        PRRT2 mutations cause hemiplegic migraine.
        Neurology. 2012; 79: 2122-2124
        • Cloarec R.
        • Bruneau N.
        • Rudolf G.
        • Massacrier A.
        • Salmi M.
        • Bataillard M.
        • et al.
        PRRT2 links infantile convulsions and paroxysmal dyskinesia with migraine.
        Neurology. 2012; 79: 2097-2103
        • Marini C.
        • Conti V.
        • Mei D.
        • Battaglia D.
        • Lettori D.
        • Losito E.
        • et al.
        PRRT2 mutations in familial infantile seizures, paroxysmal dyskinesia, and hemiplegic migraine.
        Neurology. 2012; 79: 2109-2114
        • Dale R.C.
        • Gardiner A.
        • Antony J.
        • Houlden H.
        Familial PRRT2 mutation with heterogeneous paroxysmal disorders including paroxysmal torticollis and hemiplegic migraine.
        Dev. Med. Child Neurol. 2012; 54: 958-960
        • He Z.W.
        • Qu J.
        • Zhang Y.
        • Mao C.X.
        • Wang Z.B.
        • Mao X.Y.
        • et al.
        PRRT2 mutations are related to febrile seizures in epileptic patients.
        Int. J. Mol. Sci. 2014; 15: 23408-23417
        • Heron S.E.
        • Grinton B.E.
        • Kivity S.
        • Afawi Z.
        • Zuberi S.M.
        • Hughes J.N.
        • et al.
        PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome.
        Am. J. Hum. Genet. 2012; 90: 152-160
        • Castiglioni C.
        • Lopez I.
        • Riant F.
        • Bertini E.
        • Terracciano A.
        PRRT2 mutation causes paroxysmal kinesigenic dyskinesia and hemiplegic migraine in monozygotic twins.
        Eur. J. Paediatr. Neurol. 2013; 17: 254-258
        • Heron S.E.
        • Dibbens L.M.
        Role of PRRT2 in common paroxysmal neurological disorders: a gene with remarkable pleiotropy.
        J. Med. Genet. 2013; 50: 133-139
        • Li M.
        • Niu F.
        • Zhu X.
        • Wu X.
        • Shen N.
        • Peng X.
        • et al.
        PRRT2 mutant leads to dysfunction of glutamate signaling.
        Int. J. Mol. Sci. 2015; 16: 9134
        • Chen W.J.
        • Lin Y.
        • Xiong Z.Q.
        • Wei W.
        • Ni W.
        • Tan G.H.
        • et al.
        Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia.
        Nat. Genet. 2011; 43: 1252-1255
        • Lee H.Y.
        • Huang Y.
        • Bruneau N.
        • Roll P.
        • Roberson E.D.
        • Hermann M.
        • et al.
        Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions.
        Cell Rep. 2012; 1: 2-12
        • Herken H.
        • Erdal M.E.
        • Kenar A.N.İ.
        • Ünal G.A.
        • Çakaloz B.
        • Ay M.E.
        • et al.
        Association of SNAP-25 gene Ddel and Mnll polymorphisms with adult attention deficit hyperactivity disorder.
        Psychiatry Investigation. 2014; 11: 476-480
        • Kovacs-Nagy R.
        • Hu J.
        • Ronai Z.
        • Sasvari-Szekely M.
        SNAP-25: a novel candidate gene in psychiatric genetics.
        Neuropsychopharmacologia Hungarica. 2009; 11: 89-94
        • Zhang J.
        • Abdullah J.M.
        The role of GluA1 in central nervous system disorders.
        Rev. Neurosci. 2013; 24: 499-505
        • Gasparini C.F.
        • Smith R.A.
        • Griffiths L.R.
        Modulators of Glutamatergic Signaling as Potential Treatments for Neuropsychiatric Disorders.
        first ed. Nova Science Publishers, 2015
        • Prusiner S.B.
        Disorders of glutamate metabolism and neurological dysfunction.
        Annu. Rev. Med. 1981; 32: 521-542
        • Marmiroli P.
        • Cavaletti G.
        The glutamatergic neurotransmission in the central nervous system.
        Curr. Med. Chem. 2012; 19: 1269-1276
        • Monaco G.
        • van Dam S.
        • Casal Novo Ribeiro J.L.
        • Larbi A.
        • de Magalhães J.P.
        A comparison of human and mouse gene co-expression networks reveals conservation and divergence at the tissue, pathway and disease levels.
        BMC Evol. Biol. 2015; 15: 259
        • Mayer M.L.
        Emerging models of glutamate receptor ion channel structure and function.
        Structure. 2011; 19: 1370-1380
        • Fields S.
        • Song O.
        A novel genetic system to detect protein-protein interactions.
        Nature. 1989; 340: 245-246
        • Geyer M.A.
        • Ellenbroek B.
        Animal behavior models of the mechanisms underlying antipsychotic atypicality.
        Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2003; 27: 1071-1079
        • Mayer M.L.
        The structure and function of glutamate receptors: Mg block to X-ray diffraction.
        Neuropharmacology. 2016;
        • Meyerson J.R.
        • Kumar J.
        • Chittori S.
        • Rao P.
        • Pierson J.
        • Bartesaghi A.
        • et al.
        Structural mechanism of glutamate receptor activation and desensitization.
        Nature. 2014; 514: 328-334
        • Yelshanskaya M.V.
        • Li M.
        • Sobolevsky A.I.
        Structure of an agonist-bound ionotropic glutamate receptor.
        Science. 2014; 345: 1070-1074
        • Sahara Y.
        • Noro N.
        • Iida Y.
        • Soma K.
        • Nakamura Y.
        Glutamate receptor subunits GluR5 and KA-2 are coexpressed in rat trigeminal ganglion neurons.
        J. Neurosci. 1997; 17: 6611-6620
        • Storer R.J.
        • Goadsby P.J.
        Trigeminovascular nociceptive transmission involves N-methyl-d-aspartate and non-N-methyl-d-aspartate glutamate receptors.
        Neuroscience. 1999; 90: 1371-1376
        • Bøttger P.
        • Glerup S.
        • Gesslein B.
        • Illarionova N.B.
        • Isaksen T.J.
        • Heuck A.
        • et al.
        Glutamate-system defects behind psychiatric manifestations in a familial hemiplegic migraine type 2 disease-mutation mouse model.
        Sci. Report. 2016; 6: 22047
        • Vanmolkot K.R.
        • Kors E.E.
        • Turk U.
        • Turkdogan D.
        • Keyser A.
        • Broos L.A.
        • et al.
        Two de novo mutations in the Na,K-ATPase gene ATP1A2 associated with pure familial hemiplegic migraine.
        Eur. J. Hum. Genet. 2006; 14: 555-560
        • Capendeguy O.
        • Horisberger J.D.
        Functional effects of Na+,K+-ATPase gene mutations linked to familial hemiplegic migraine.
        Neruomol. Med. 2004; 6: 105-116
        • James P.F.
        • Grupp I.L.
        • Grupp G.
        • Woo A.L.
        • Askew G.R.
        • Croyle M.L.
        • et al.
        Identification of a specific role for the Na,K-ATPase alpha 2 isoform as a regulator of calcium in the heart.
        Mol. Cell. 1999; 3: 555-563
        • Ikeda K.
        • Onaka T.
        • Yamakado M.
        • Nakai J.
        • Ishikawa TO
        • Taketo M.M.
        • et al.
        Degeneration of the amygdala/piriform cortex and enhanced fear/anxiety behaviors in sodium pump alpha2 subunit (Atp1a2)-deficient mice.
        J. Neurosci. 2003; 23: 4667-4676
        • Leo L.
        • Gherardini L.
        • Barone V.
        • De Fusco M.
        • Pietrobon D.
        • Pizzorusso T.
        • et al.
        Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2.
        PLoS Genet. 2011; 7: e1002129
        • Gritz S.M.
        • Radcliffe R.A.
        Genetic effects of ATP1A2 in familial hemiplegic migraine type II and animal models.
        Human Genomics. 2013; 7: 8
        • Tottene A.
        • Conti R.
        • Fabbro A.
        • Vecchia D.
        • Shapovalova M.
        • Santello M.
        • et al.
        Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in Ca(v)2.1 knockin migraine mice.
        Neuron. 2009; 61: 762-773
        • Di Guilmi M.N.
        • Wang T.
        • Inchauspe C.G.
        • Forsythe I.D.
        • Ferrari M.D.
        • van den Maagdenberg A.M.
        • Borst J.G.
        • Uchitel O.D.
        Synaptic gain-of-function effects of mutant Cav2.1 channels in a mouse model of familial hemiplegic migraine are due to increased basal [Ca2+]i.
        J Neurosci. 2014 May 21; 34: 7047-7058
        • Eikermann-Haerter K.
        • Arbel-Ornath M.
        • Yalcin N.
        • Yu E.S.
        • Kuchibhotla K.V.
        • Yuzawa I.
        • et al.
        Abnormal synaptic Ca(2+) homeostasis and morphology in cortical neurons of familial hemiplegic migraine type 1 mutant mice.
        Ann. Neurol. 2015; 78: 193-210
        • Eising E.
        • Shyti R.
        • t Hoen P.A.
        • Vijfhuizen L.S.
        • Huisman S.M.
        • Broos L.A.
        Cortical spreading depression causes unique dysregulation of inflammatory pathways in a transgenic mouse model of migraine.
        Mol. Neurobiol. 2016; ([Epub ahead of print])https://doi.org/10.1007/s12035-015-9681-5
        • Coppola G.
        • Pierelli F.
        • Omland P.M.
        • Sand T.
        Neurophysiology of Migraine.
        in: Ashina M. Geppetti P. Pathophysiology of Headaches: From Molecule to Man. Springer International Publishing, Cham2015: 155-174
        • Coppola G.
        • Pierelli F.
        • Schoenen J.
        Is the cerebral cortex hyperexcitable or hyperresponsive in migraine?.
        Cephalalgia. 2007; 27: 1429-1439
        • Cosentino G.
        • Fierro B.
        • Brighina F.
        From different neurophysiological methods to conflicting pathophysiological views in migraine: a critical review of literature.
        Clin. Neurophysiol. 2014; 125: 1721-1730
        • Brighina F.
        • Cosentino G.
        • Fierro B.
        Brain stimulation in migraine.
        Handb. Clin. Neurol. 2013; 116: 585-598
        • Cosentino G.
        • Fierro B.
        • Vigneri S.
        • Talamanca S.
        • Paladino P.
        • Baschi R.
        • et al.
        Cyclical changes of cortical excitability and metaplasticity in migraine: evidence from a repetitive transcranial magnetic stimulation study.
        Pain. 2014; 155: 1070-1078
        • Brighina F.
        • Cosentino G.
        • Vigneri S.
        • Talamanca S.
        • Palermo A.
        • Giglia G.
        • et al.
        Abnormal facilitatory mechanisms in motor cortex of migraine with aura.
        European Journal of Pain (London, England). 2011; 15: 928-935
        • Schoenen J.
        Deficient habituation of evoked cortical potentials in migraine: a link between brain biology, behavior and trigeminovascular activation?.
        Biomed. Pharmacother. 1996; 50: 71-78
        • Versino M.
        • Sacco S.
        • Colnaghi S.
        Neurophysiology of Migraine. Vestibular Migraine and Related Syndromes.
        Springer, 2014: 19-27
        • Brighina F.
        • Cosentino G.
        • Fierro B.
        Habituation or lack of habituation: what is really lacking in migraine?.
        Clin. Neurophysiol. 2016; 127: 19-20
        • Omland P.M.
        • Uglem M.
        • Engstrom M.
        • Linde M.
        • Hagen K.
        • Sand T.
        Modulation of visual evoked potentials by high-frequency repetitive transcranial magnetic stimulation in migraineurs.
        Clin. Neurophysiol. 2014; 125: 2090-2099
        • Omland P.M.
        • Uglem M.
        • Hagen K.
        • Linde M.
        • Tronvik E.
        • Sand T.
        Visual evoked potentials in migraine: is the “neurophysiological hallmark” concept still valid?.
        Clin. Neurophysiol. 2016; 127: 810-816
        • Coppola G.
        • Bracaglia M.
        • Di Lenola D.
        • Di Lorenzo C.
        • Serrao M.
        • Parisi V.
        • et al.
        Visual evoked potentials in subgroups of migraine with aura patients.
        J. Headache Pain. 2015; 16: 1-11
        • Coppola G.
        • Currà A.
        • Sava S.L.
        • Alibardi A.
        • Parisi V.
        • Pierelli F.
        • et al.
        Changes in visual-evoked potential habituation induced by hyperventilation in migraine.
        J. Headache Pain. 2010; 11: 497-503
        • Coppola G.
        • Lorenzo C.
        • Schoenen J.
        • Pierelli F.
        Habituation and sensitization in primary headaches.
        J. Headache Pain. 2013; 14
        • Afra J.
        • Cecchini A.P.
        • De Pasqua V.
        • Albert A.
        • Schoenen J.
        Visual evoked potentials during long periods of pattern-reversal stimulation in migraine.
        Brain. 1998; 121: 233-241
        • Jancic J.
        • Petrusic I.
        • Pavlovski V.
        • Savkovic Z.
        • Vucinic D.
        • Martinovic Z.
        Pattern-reversal visual evoked potential parameters and migraine in the teenage population.
        J. Child Neurol. 2016; 31: 717-721
        • Ma Q.P.
        Co-localization of 5-HT(1B/1D/1F) receptors and glutamate in trigeminal ganglia in rats.
        Neuroreport. 2001; 12: 1589-1591
        • Badawy R.A.B.
        • Loetscher T.
        • Macdonell R.A.L.
        • Brodtmann A.
        Cortical excitability and neurology: insights into the pathophysiology.
        Funct. Neurol. 2012; 27: 131-145
        • Rivolta D.
        • Castellanos N.P.
        • Stawowsky C.
        • Helbling S.
        • Wibral M.
        • Grützner C.
        • Koethe D.
        • Birkner K.
        • Kranaster L.
        • Enning F.
        • Singer W.
        • Leweke F.M.
        • Uhlhaas P.J.
        Source-reconstruction of event-related fields reveals hyperfunction and hypofunction of cortical circuits in antipsychotic-naive, first-episode schizophrenia patients during Mooney face processing.
        J Neurosci. 2014 Apr 23; 34: 5909-5917
        • Cosentino G.
        • Fierro B.
        • Vigneri S.
        • Talamanca S.
        • Palermo A.
        • Puma A.
        • et al.
        Impaired glutamatergic neurotransmission in migraine with aura? Evidence by an input-output curves transcranial magnetic stimulation study.
        Headache. 2011; 51: 726-733
        • Vecchia D.
        • Pietrobon D.
        Migraine: a disorder of brain excitatory-inhibitory balance?.
        Trends Neurosci. 2012; 35: 507-520
      1. Lynch PJ, Jaffe CC. Brain bulbar region. Creative Commons Attribution 2.5 License; 2006.

        • Myers S.J.
        • Dingledine R.
        • Borges K.
        Genetic regulation of glutamate receptor ion channels.
        Annu. Rev. Pharmacol. Toxicol. 1999; 39: 221-241
        • Higuchi M.
        • Maas S.
        • Single F.N.
        • Hartner J.
        • Rozov A.
        • Burnashev N.
        • et al.
        Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2.
        Nature. 2000; 406: 78-81
        • Jonas P.
        • Burnashev N.
        Molecular mechanisms controlling calcium entry through AMPA-type glutamate receptor channels.
        Neuron. 1995; 15: 987-990
        • Geiger J.R.
        • Melcher T.
        • Koh D.S.
        • Sakmann B.
        • Seeburg P.H.
        • Jonas P.
        • et al.
        Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS.
        Neuron. 1995; 15: 193-204
        • Mannion N.
        • Arieti F.
        • Gallo A.
        • Keegan L.P.
        • O'Connell M.A.
        New insights into the biological role of mammalian ADARs; the RNA editing proteins.
        Biomolecules. 2015; 5: 2338-2362
        • Nishikura K.
        Functions and regulation of RNA editing by ADAR deaminases.
        Annu. Rev. Biochem. 2010; 79: 321-349
        • Hideyama T.
        • Yamashita T.
        • Aizawa H.
        • Tsuji S.
        • Kakita A.
        • Takahashi H.
        • et al.
        Profound downregulation of the RNA editing enzyme ADAR2 in ALS spinal motor neurons.
        Neurobiol. Dis. 2012; 45: 1121-1128
        • Yamashita T.
        • Kwak S.
        The molecular link between inefficient GluA2 Q/R site-RNA editing and TDP-43 pathology in motor neurons of sporadic amyotrophic lateral sclerosis patients.
        Brain Res. 2014; 1584: 28-38
        • Wright A.
        • Vissel B.
        The essential role of AMPA receptor GluR2 subunit RNA editing in the normal and diseased brain.
        Front. Mol. Neurosci. 2012; 5: 34
        • Forni D.
        • Mozzi A.
        • Pontremoli C.
        • Vertemara J.
        • Pozzoli U.
        • Biasin M.
        • Bresolin N.
        • Clerici M.
        • Cagliani R.
        • Sironi M.
        Diverse selective regimes shape genetic diversity at ADAR genes and at their coding targets.
        RNA Biol. 2015; 12: 149-161
        • Gasparini C.F.
        • Sutherland H.G.
        • Maher B.
        • Rodriguez-Acevedo A.J.
        • Khlifi E.
        • Haupt L.M.
        • et al.
        Case-control study of ADARB1 and ADARB2 gene variants in migraine.
        J. Headache Pain. 2015; 16: 31
        • Rosenthal J.J.
        • Seeburg P.H.
        A-to-I RNA editing: effects on proteins key to neural excitability.
        Neuron. 2012; 74: 432-439
        • Hartner J.C.
        • Walkley C.R.
        • Lu J.
        • Orkin S.H.
        ADAR1 is essential for maintenance of hematopoiesis and suppression of interferon signaling.
        Nat. Immunol. 2009; 10: 109-115
        • Hartner J.C.
        • Schmittwolf C.
        • Kispert A.
        • Muller A.M.
        • Higuchi M.
        • Seeburg P.H.
        Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1.
        J. Biol. Chem. 2004; 279: 4894-4902
        • Wang Q.
        • Miyakoda M.
        • Yang W.
        • Khillan J.
        • Stachura D.L.
        • Weiss M.J.
        • et al.
        Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene.
        J. Biol. Chem. 2004; 279: 4952-4961
        • Karanovic J.
        • Svikovic S.
        • Pantovic M.
        • Durica S.
        • Brajuskovic G.
        • Damjanovic A.
        • et al.
        Joint effect of ADARB1 gene, HTR2C gene and stressful life events on suicide attempt risk in patients with major psychiatric disorders.
        World J. Biol. Psychiatry. 2015; 16: 261-271
        • Kubota-Sakashita M.
        • Iwamoto K.
        • Bundo M.
        • Kato T.
        A role of ADAR2 and RNA editing of glutamate receptors in mood disorders and schizophrenia.
        Molecular Brain. 2014; 7: 5
        • He L.
        • Hannon G.J.
        MicroRNAs: small RNAs with a big role in gene regulation.
        Nat. Rev. Genet. 2004; 5: 522-531
        • Guo H.
        • Ingolia N.T.
        • Weissman J.S.
        • Bartel D.P.
        Mammalian microRNAs predominantly act to decrease target mRNA levels.
        Nature. 2010; 466: 835-U66
        • Selbach M.
        • Schwanhausser B.
        • Thierfelder N.
        • Fang Z.
        • Khanin R.
        • Rajewsky N.
        Widespread changes in protein synthesis induced by microRNAs.
        Nature. 2008; 455: 58+
        • Hebert S.S.
        • De Strooper B.
        Alterations of the microRNA network cause neurodegenerative disease.
        Trends Neurosci. 2009; 32: 199-206
        • Henshall D.C.
        MicroRNA and epilepsy: profiling, functions and potential clinical applications.
        Curr. Opin. Neurol. 2014; 27: 199-205
        • Dogini D.B.
        • Avansini S.H.
        • Vieira A.S.
        • Lopes-Cendes I.
        MicroRNA regulation and dysregulation in epilepsy.
        Front. Cell. Neurosci. 2013; 7: 172
        • Tan L.
        • Yu J.T.
        • Tan L.
        Causes and consequences of microRNA dysregulation in neurodegenerative diseases.
        Mol. Neurobiol. 2015; 51: 1249-1262
        • Forstner A.J.
        • Hofmann A.
        • Maaser A.
        • Sumer S.
        • Khudayberdiev S.
        • Muhleisen T.W.
        • et al.
        Genome-wide analysis implicates microRNAs and their target genes in the development of bipolar disorder.
        Transl. Psychiatry. 2015; 5: e678
        • Muhleisen T.W.
        • Leber M.
        • Schulze T.G.
        • Strohmaier J.
        • Degenhardt F.
        • Treutlein J.
        • et al.
        Genome-wide association study reveals two new risk loci for bipolar disorder.
        Nat. Commun. 2014; 5: 3339
        • Petri R.
        • Malmevik J.
        • Fasching L.
        • Akerblom M.
        • Jakobsson J.
        miRNAs in brain development.
        Exp. Cell Res. 2014; 321: 84-89
        • Friedman R.C.
        • Farh K.K.
        • Burge C.B.
        • Bartel D.P.
        Most mammalian mRNAs are conserved targets of microRNAs.
        Genome Res. 2009; 19: 92-105
        • Bartel D.P.
        MicroRNAs: genomics, biogenesis, mechanism, and function.
        Cell. 2004; 116: 281-297
        • Morel L.
        • Regan M.
        • Higashimori H.
        • Ng S.K.
        • Esau C.
        • Vidensky S.
        • et al.
        Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1.
        J. Biol. Chem. 2013; 288: 7105-7116
        • Harraz M.M.
        • Eacker S.M.
        • Wang X.
        • Dawson T.M.
        • Dawson V.L.
        MicroRNA-223 is neuroprotective by targeting glutamate receptors.
        Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 18962-18967
        • Zhu Y.
        • Kalbfleisch T.
        • Brennan M.D.
        • Li Y.
        A microRNA gene is hosted in an intron of a schizophrenia-susceptibility gene.
        Schizophr. Res. 2009; 109: 86-89
        • Burmistrova O.A.
        • Goltsov A.Y.
        • Abramova L.I.
        • Kaleda V.G.
        • Orlova V.A.
        • Rogaev E.I.
        MicroRNA in schizophrenia: genetic and expression analysis of miR-130b (22q11).
        Biochemistry (Mosc). 2007; 72: 578-582
        • Andersen H.H.
        • Duroux M.
        • Gazerani P.
        Serum microRNA signatures in migraineurs during attacks and in pain-free periods.
        Mol. Neurobiol. 2016; 53: 1494-1500
        • Tafuri E.
        • Santovito D.
        • de Nardis V.
        • Marcantonio P.
        • Paganelli C.
        • Affaitati G.
        • et al.
        MicroRNA profiling in migraine without aura: pilot study.
        Ann. Med. 2015; 47: 468-473
        • Stoicea N.
        • Du A.
        • Lakis D.C.
        • Tipton C.
        • Arias-Morales C.E.
        • Bergese S.D.
        The MiRNA journey from theory to practice as a CNS biomarker.
        Front. Genet. 2016; 7: 11
        • Grasso M.
        • Piscopo P.
        • Confaloni A.
        • Denti M.A.
        Circulating miRNAs as biomarkers for neurodegenerative disorders.
        Molecules (Basel, Switzerland). 2014; 19: 6891-6910
        • Sheinerman K.S.
        • Umansky S.R.
        Circulating cell-free microRNA as biomarkers for screening, diagnosis, and monitoring of neurodegenerative diseases and other neurologic pathologies.
        Front. Cell. Neurosci. 2015; 7
        • Anttila V.
        • Stefansson H.
        • Kallela M.
        • Todt U.
        • Terwindt G.M.
        • Calafato M.S.
        • et al.
        Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1.
        Nat. Genet. 2010; 42: 869-873
        • Chasman D.I.
        • Schurks M.
        • Anttila V.
        • de Vries B.
        • Schminke U.
        • Launer L.J.
        • et al.
        Genome-wide association study reveals three susceptibility loci for common migraine in the general population.
        Nat. Genet. 2011; 43: 695-698
        • Ligthart L.
        • de Vries B.
        • Smith A.V.
        • Ikram M.A.
        • Amin N.
        • Hottenga J.J.
        • et al.
        Meta-analysis of genome-wide association for migraine in six population-based European cohorts.
        Eur. J. Hum. Genet. 2011; 19: 901-907
        • Noch E.
        • Khalili K.
        The role of AEG-1/MTDH/LYRIC in the pathogenesis of central nervous system disease.
        Adv. Cancer Res. 2013; 120: 159-192
        • Kang D.C.
        • Su Z.Z.
        • Sarkar D.
        • Emdad L.
        • Volsky D.J.
        • Fisher P.B.
        Cloning and characterization of HIV-1-inducible astrocyte elevated gene-1, AEG-1.
        Gene. 2005; 353: 8-15
        • Noch E.
        • Khalili K.
        Molecular mechanisms of necrosis in glioblastoma: the role of glutamate excitotoxicity.
        Cancer Biol. Ther. 2009; 8: 1791-1797
        • Dallas M.
        • Boycott H.E.
        • Atkinson L.
        • Miller A.
        • Boyle J.P.
        • Pearson H.A.
        • et al.
        Hypoxia suppresses glutamate transport in astrocytes.
        J. Neurosci. 2007; 27: 3946-3955
        • Emdad L.
        • Sarkar D.
        • Su Z.Z.
        • Lee S.G.
        • Kang D.C.
        • Bruce J.N.
        • et al.
        Astrocyte elevated gene-1: recent insights into a novel gene involved in tumor progression, metastasis and neurodegeneration.
        Pharmacol. Ther. 2007; 114: 155-170
        • Emdad L.
        • Das S.K.
        • Dasgupta S.
        • Hu B.
        • Sarkar D.
        • Fisher P.B.
        AEG-1/MTDH/LYRIC: signaling pathways, downstream genes, interacting proteins, and regulation of tumor angiogenesis.
        Adv. Cancer Res. 2013; 120: 75-111
        • Lee S.-G.
        • Kim K.
        • Kegelman T.P.
        • Dash R.
        • Das S.K.
        • Choi J.K.
        • et al.
        Oncogene AEG-1 promotes glioma-induced neurodegeneration by increasing glutamate excitotoxicity.
        Cancer Res. 2011; 71: 6514-6523
        • Rothstein J.D.
        • Dykes-Hoberg M.
        • Pardo C.A.
        • Bristol L.A.
        • Jin L.
        • Kuncl R.W.
        • et al.
        Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate.
        Neuron. 1996; 16: 675-686
        • Zeng L.-H.
        • Ouyang Y.
        • Gazit V.
        • Cirrito J.R.
        • Jansen L.A.
        • Ess K.C.
        • et al.
        Abnormal glutamate homeostasis and impaired synaptic plasticity and learning in a mouse model of tuberous sclerosis complex.
        Neurobiol. Dis. 2007; 28: 184-196
        • Tanaka K.
        • Watase K.
        • Manabe T.
        • Yamada K.
        • Watanabe M.
        • Takahashi K.
        • et al.
        Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1.
        Science. 1997; 276: 1699-1702
        • Grewer C.
        • Gameiro A.
        • Rauen T.
        SLC1 glutamate transporters.
        Pflugers Arch. - Eur. J. Physiol. 2014; 466: 3-24
        • de Vries B.
        • Mamsa H.
        • Stam A.H.
        • Wan J.
        • Bakker S.L.
        • Vanmolkot K.R.
        • et al.
        Episodic ataxia associated with EAAT1 mutation C186S affecting glutamate reuptake.
        Arch. Neurol. 2009; 66: 97-101
        • Winter N.
        • Kovermann P.
        • Fahlke C.
        A point mutation associated with episodic ataxia 6 increases glutamate transporter anion currents.
        Brain. 2012; 135: 3416-3425
        • Jen J.C.
        • Wan J.
        • Palos T.P.
        • Howard B.D.
        • Baloh R.W.
        Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures.
        Neurology. 2005; 65: 529-534
        • Harms M.J.
        • Lim H.W.
        • Ho Y.
        • Shapira S.N.
        • Ishibashi J.
        • Rajakumari S.
        • et al.
        PRDM16 binds MED1 and controls chromatin architecture to determine a brown fat transcriptional program.
        Genes Dev. 2015; 29: 298-307
        • Bautista D.M.
        • Siemens J.
        • Glazer J.M.
        • Tsuruda P.R.
        • Basbaum A.I.
        • Stucky C.L.
        • et al.
        The menthol receptor TRPM8 is the principal detector of environmental cold.
        Nature. 2007; 448: 204-208
        • Lillis A.P.
        • Van Duyn L.B.
        • Murphy-Ullrich J.E.
        • Strickland D.K.
        LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies.
        Physiol. Rev. 2008; 88: 887-918
        • Freilinger T.
        • Anttila V.
        • de Vries B.
        • Malik R.
        • Kallela M.
        • Terwindt G.M.
        • et al.
        Genome-wide association analysis identifies susceptibility loci for migraine without aura.
        Nat. Genet. 2012; 44: 777-782
        • Esserlind A.L.
        • Christensen A.F.
        • Le H.
        • Kirchmann M.
        • Hauge A.W.
        • Toyserkani N.M.
        • et al.
        Replication and meta-analysis of common variants identifies a genome-wide significant locus in migraine.
        Eur. J. Neurol. 2013; 20: 765-772
        • Sintas C.
        • Fernandez-Morales J.
        • Vila-Pueyo M.
        • Narberhaus B.
        • Arenas C.
        • Pozo-Rosich P.
        • et al.
        Replication study of previous migraine genome-wide association study findings in a Spanish sample of migraine with aura.
        Cephalalgia. 2015; 35: 776-782
        • Ghosh J.
        • Pradhan S.
        • Mittal B.
        Genome-wide-associated variants in migraine susceptibility: a replication study from North India.
        Headache. 2013; 53: 1583-1594
        • Ran C.
        • Graae L.
        • Magnusson P.K.E.
        • Pedersen N.L.
        • Olson L.
        • Belin A.C.
        A replication study of GWAS findings in migraine identifies association in a Swedish case–control sample.
        BMC Med. Genet. 2014; 15: 38
        • Fan X.
        • Wang J.
        • Fan W.
        • Chen L.
        • Gui B.
        • Tan G.
        • et al.
        Replication of migraine GWAS susceptibility loci in Chinese Han population.
        Headache. 2014; 54: 709-715
        • Jacobsen K.K.
        • Nievergelt C.M.
        • Zayats T.
        • Greenwood T.A.
        • Anttila V.
        • Akiskal H.S.
        • et al.
        Genome wide association study identifies variants in NBEA associated with migraine in bipolar disorder.
        J. Affect. Disord. 2015; 172: 453-461
        • Anttila V.
        • Winsvold B.S.
        • Gormley P.
        • Kurth T.
        • Bettella F.
        • McMahon G.
        • et al.
        Genome-wide meta-analysis identifies new susceptibility loci for migraine.
        Nat. Genet. 2013; 45: 912-917
        • Tolner E.A.
        • Houben T.
        • Terwindt G.M.
        • de Vries B.
        • Ferrari M.D.
        • van den Maagdenberg A.M.
        From migraine genes to mechanisms.
        Pain. 2015; 156: S64-S74
        • Eising E.
        • de Leeuw C.
        • Min J.L.
        • Anttila V.
        • Verheijen M.H.
        • Terwindt G.M.
        • et al.
        Involvement of astrocyte and oligodendrocyte gene sets in migraine.
        Cephalalgia. 2015; 0333102415618614
        • Zhu M.
        • Deng X.
        • Joshi T.
        • Xu D.
        • Stacey G.
        • Cheng J.
        Reconstructing differentially co-expressed gene modules and regulatory networks of soybean cells.
        BMC Genomics. 2012; 13: 437
        • Eising E.
        • Huisman S.M.
        • Mahfouz A.
        • Vijfhuizen L.S.
        • Anttila V.
        • Winsvold B.S.
        • et al.
        Gene co-expression analysis identifies brain regions and cell types involved in migraine pathophysiology: a GWAS-based study using the Allen Human Brain Atlas.
        Hum. Genet. 2016; 1-15
        • Son J.H.
        • Shim J.H.
        • Kim K.-H.
        • Ha J.-Y.
        • Han J.Y.
        Neuronal autophagy and neurodegenerative diseases.
        Exp. Mol. Med. 2012; 44: 89-98
        • Cassano T.
        • Pace L.
        • Bedse G.
        • Lavecchia A.M.
        • De Marco F.
        • Gaetani S.
        • et al.
        Glutamate and mitochondria: two prominent players in the oxidative stress-induced neurodegeneration.
        Current Alzheimer Research. 2016; 13: 185-197
        • Duchen M.R.
        Mitochondria, calcium-dependent neuronal death and neurodegenerative disease.
        Pflugers Arch. 2012; 464: 111-121
        • Smaili S.S.
        • Ureshino R.P.
        • Rodrigues L.
        • Rocha K.K.
        • Carvalho J.T.
        • Oseki K.T.
        • et al.
        The role of mitochondrial function in glutamate-dependent metabolism in neuronal cells.
        Curr. Pharm. Des. 2011; 17: 3865-3877
        • Rintoul G.L.
        • Filiano A.J.
        • Brocard J.B.
        • Kress G.J.
        • Reynolds I.J.
        Glutamate decreases mitochondrial size and movement in primary forebrain neurons.
        J. Neurosci. 2003; 23: 7881-7888
        • Sparaco M.
        • Feleppa M.
        • Lipton R.B.
        • Rapoport A.M.
        • Bigal M.E.
        Mitochondrial dysfunction and migraine: evidence and hypotheses.
        Cephalalgia. 2006; 26: 361-372
        • Zaki E.A.
        • Freilinger T.
        • Klopstock T.
        • Baldwin E.E.
        • Heisner K.R.
        • Adams K.
        • et al.
        Two common mitochondrial DNA polymorphisms are highly associated with migraine headache and cyclic vomiting syndrome.
        Cephalalgia. 2009; 29: 719-728
        • Montagna P.
        • Sacquegna T.
        • Martinelli P.
        • Cortelli P.
        • Bresolin N.
        • Moggio M.
        • et al.
        Mitochondrial abnormalities in migraine. Preliminary findings.
        Headache. 1988; 28: 477-480
        • Bresolin N.
        • Martinelli P.
        • Barbiroli B.
        • Zaniol P.
        • Ausenda C.
        • Montagna P.
        • et al.
        Muscle mitochondrial DNA deletion and 31P NMR spectroscopy alterations in a migraine patient.
        J. Neurol. Sci. 1991; 104: 182-189
        • Uncini A.
        • Lodi R.
        • Di Muzio A.
        • Silvestri G.
        • Servidei S.
        • Lugaresi A.
        • et al.
        Abnormal brain and muscle energy metabolism shown by 31P-MRS in familial hemiplegic migraine.
        J. Neurol. Sci. 1995; 129: 214-222
        • Guo S.
        • Esserlind A.L.
        • Andersson Z.
        • Frederiksen A.L.
        • Olesen J.
        • Vissing J.
        • et al.
        Prevalence of migraine in persons with the 3243A>G mutation in mitochondrial DNA.
        Eur. J. Neurol. 2016; 23: 175-181
        • Gormley P.
        • Anttila V.
        • Winsvold B.S.
        • Palta P.
        • Esko T.
        • Pers T.H.
        • et al.
        Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine.
        bioRxiv. 2015; : 030288
        • Rodriguez-Acevedo A.J.
        • Ferreira M.A.
        • Benton M.C.
        • Carless M.A.
        • Goring H.H.
        • Curran J.E.
        • et al.
        Common polygenic variation contributes to risk of migraine in the Norfolk Island population.
        Hum. Genet. 2015; 134: 1079-1087
        • Nyholt D.R.
        • Curtain R.P.
        • Griffiths L.R.
        Familial typical migraine: significant linkage and localization of a gene to Xq24-28.
        Hum. Genet. 2000; 107: 18-23
        • Nyholt D.R.
        • Dawkins J.L.
        • Brimage P.J.
        • Goadsby P.J.
        • Nicholson G.A.
        • Griffiths L.R.
        Evidence for an X-linked genetic component in familial typical migraine.
        Hum. Mol. Genet. 1998; 7: 459-463
        • Maher B.H.
        • Kerr M.
        • Cox H.C.
        • MacMillan J.C.
        • Brimage P.J.
        • Esposito T.
        • et al.
        Confirmation that Xq27 and Xq28 are susceptibility loci for migraine in independent pedigrees and a case-control cohort.
        Neurogenetics. 2012; 13: 97-101
        • Buse D.C.
        • Loder E.W.
        • Gorman J.A.
        • Stewart W.F.
        • Reed M.L.
        • Fanning K.M.
        • et al.
        Sex differences in the prevalence, symptoms, and associated features of migraine, probable migraine and other severe headache: results of the American Migraine Prevalence and Prevention (AMPP) Study.
        Headache. 2013; 53: 1278-1299
        • Russell M.B.
        • Rasmussen B.K.
        • Thorvaldsen P.
        • Olesen J.
        Prevalence and sex-ratio of the subtypes of migraine.
        Int. J. Epidemiol. 1995; 24: 612-618
        • Russell M.B.
        • Olesen J.
        Increased familial risk and evidence of genetic factor in migraine.
        BMJ. 1995; 311: 541-544
        • Burnet P.W.
        • Harrison P.J.
        • Goodwin G.M.
        • Battersby S.
        • Ogilvie A.D.
        • Olesen J.
        • et al.
        Allelic variation in the serotonin 5-HT2C receptor gene and migraine.
        Neuroreport. 1997; 8: 2651-2653
        • Johnson M.P.
        • Lea R.A.
        • Curtain R.P.
        • MacMillan J.C.
        • Griffiths L.R.
        An investigation of the 5-HT2C receptor gene as a migraine candidate gene.
        Am. J. Med. Genet. B Neuropsychiatr. Genet. 2003; 117B: 86-89
        • Racchi M.
        • Leone M.
        • Porrello E.
        • Rigamonti A.
        • Govoni S.
        • Sironi M.
        • et al.
        Familial migraine with aura: association study with 5-HT1B/1D, 5-HT2C, and hSERT polymorphisms.
        Headache. 2004; 44: 311-317
        • Fernandez F.
        • Esposito T.
        • Lea R.A.
        • Colson N.J.
        • Ciccodicola A.
        • Gianfrancesco F.
        • Griffiths L.R.
        Investigation of gamma-aminobutyric acid (GABA) A receptors genes and migraine susceptibility.
        BMC Med Genet. 2008; 9: 109
        • Hollmann M.
        • O'Shea-Greenfield A.
        • Rogers S.W.
        • Heinemann S.
        Cloning by functional expression of a member of the glutamate receptor family.
        Nature. 1989; 342: 643-648
        • Diener H.-C.
        • Charles A.
        • Goadsby P.J.
        • Holle D.
        New therapeutic approaches for the prevention and treatment of migraine.
        The Lancet Neurology. 2015; 14: 1010-1022
        • Weiss B.
        • Alt A.
        • Ogden A.M.
        • Gates M.
        • Dieckman D.K.
        • Clemens-Smith A.
        • et al.
        Pharmacological characterization of the competitive GLUK5 receptor antagonist decahydroisoquinoline LY466195 in vitro and in vivo.
        J. Pharmacol. Exp. Ther. 2006; 318: 772-781
        • Gomez-Mancilla B.
        • Brand R.
        • Jurgens T.P.
        • Gobel H.
        • Sommer C.
        • Straube A.
        • et al.
        Randomized, multicenter trial to assess the efficacy, safety and tolerability of a single dose of a novel AMPA receptor antagonist BGG492 for the treatment of acute migraine attacks.
        Cephalalgia. 2014; 34: 103-113
        • Marin J.C.
        • Goadsby P.J.
        Glutamatergic fine tuning with ADX-10059: a novel therapeutic approach for migraine?.
        Expert Opin. Investig. Drugs. 2010; 19: 555-561
        • Sang C.N.
        • Ramadan N.M.
        • Wallihan R.G.
        • Chappell A.S.
        • Freitag F.G.
        • Smith T.R.
        • et al.
        LY293558, a novel AMPA/GluR5 antagonist, is efficacious and well-tolerated in acute migraine.
        Cephalalgia. 2004; 24: 596-602
        • Huang L.
        • Bocek M.
        • Jordan J.K.
        • Sheehan A.H.
        Memantine for the prevention of primary headache disorders.
        Ann. Pharmacother. 2014; 48: 1507-1511
        • Pelzer N.
        • Stam A.H.
        • Carpay J.A.
        • Vries B.D.
        • van den Maagdenberg A.M.
        • Ferrari M.D.
        • et al.
        Familial hemiplegic migraine treated by sodium valproate and lamotrigine.
        Cephalalgia. 2014; 34: 708-711
        • Afridi S.K.
        • Giffin N.J.
        • Kaube H.
        • Goadsby P.J.
        A randomized controlled trial of intranasal ketamine in migraine with prolonged aura.
        Neurology. 2013; 80: 642-647
        • Azimova Y.E.
        • Tabeeva G.R.
        Topiramate in the treatment of chronic migraine.
        Neurosci. Behav. Physiol. 2014; 44: 310-314
        • Silberstein S.D.
        • Dodick D.W.
        • Aurora S.K.
        • Diener H.C.
        • DeGryse R.E.
        • Lipton R.B.
        • et al.
        Per cent of patients with chronic migraine who responded per onabotulinumtoxinA treatment cycle: PREEMPT.
        J. Neurol. Neurosurg. Psychiatry. 2014;
        • Monteith T.S.
        • Goadsby P.J.
        Acute migraine therapy: new drugs and new approaches.
        Curr. Treat. Options Neurol. 2011; 13: 1-14
        • Chan K.
        • MaassenVanDenBrink A.
        Glutamate receptor antagonists in the management of migraine.
        Drugs. 2014; 74: 1165-1176
        • Schwarcz R.
        • Bruno J.P.
        • Muchowski P.J.
        • Wu H.Q.
        Kynurenines in the mammalian brain: when physiology meets pathology.
        Nat. Rev. Neurosci. 2012; 13: 465-477
        • Moroni F.
        • Cozzi A.
        • Sili M.
        • Mannaioni G.
        Kynurenic acid: a metabolite with multiple actions and multiple targets in brain and periphery.
        J. Neural Transm. 2012; 119: 133-139
        • Pardutz A.
        • Fejes A.
        • Bohar Z.
        • Tar L.
        • Toldi J.
        • Vecsei L.
        Kynurenines and headache.
        J. Neural Transm. 2012; 119: 285-296
        • Curto M.
        • Lionetto L.
        • Negro A.
        • Capi M.
        • Perugino F.
        • Fazio F.
        • et al.
        Altered serum levels of kynurenine metabolites in patients affected by cluster headache.
        J. Headache Pain. 2015; 17: 27
        • Curto M.
        • Lionetto L.
        • Fazio F.
        • Mitsikostas D.-D.
        • Martelletti P.
        Fathoming the kynurenine pathway in migraine: why understanding the enzymatic cascades is still critically important.
        Intern. Emerg. Med. 2015; 10: 413-421