Advertisement
Research Article| Volume 367, P311-318, August 15, 2016

Canine olfactory ensheathing cells from the olfactory mucosa can be engineered to produce active chondroitinase ABC

      Highlights

      • Olfactory ensheathing cells from the mucosa can be genetically modified to secrete chondroitinase ABC.
      • Lentiviral transduction of olfactory ensheathing cells did not change their morphology or cell marker expression (p75NGF).
      • Chondroitinase ABC production was confirmed using the Morgan-Elson assay and Western blot.

      Abstract

      A multitude of factors must be overcome following spinal cord injury (SCI) in order to achieve clinical improvement in patients. It is thought that by combining promising therapies these diverse factors could be combatted with the aim of producing an overall improvement in function. Chondroitin sulphate proteoglycans (CSPGs) present in the glial scar that forms following SCI present a significant block to axon regeneration. Digestion of CSPGs by chondroitinase ABC (ChABC) leads to axon regeneration, neuronal plasticity and functional improvement in preclinical models of SCI. However, the enzyme activity decays at body temperature within 24–72 h, limiting the translational potential of ChABC as a therapy. Olfactory ensheathing cells (OECs) have shown huge promise as a cell transplant therapy in SCI. Their beneficial effects have been demonstrated in multiple small animal SCI models as well as in naturally occurring SCI in canine patients. In the present study, we have genetically modified canine OECs from the mucosa to constitutively produce enzymatically active ChABC. We have developed a lentiviral vector that can deliver a mammalian modified version of the ChABC gene to mammalian cells, including OECs. Enzyme production was quantified using the Morgan-Elson assay that detects the breakdown products of CSPG digestion in cell supernatants. We confirmed our findings by immunolabelling cell supernatant samples using Western blotting. OECs normal cell function was unaffected by genetic modification as demonstrated by normal microscopic morphology and the presence of the low affinity neurotrophin receptor (p75NGF) following viral transduction. We have developed the means to allow production of active ChABC in combination with a promising cell transplant therapy for SCI repair.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fawcett J.W.
        • Asher R.A.
        The glial scar and central nervous system repair.
        Brain Res. Bull. 1999; 49: 377-391
        • Silver J.
        • Miller J.H.
        Regeneration beyond the glial scar.
        Nat. Rev. Neurosci. 2004; 5: 146-156
        • Bush T.G.
        • Puvanachandra N.
        • Horner C.H.
        • Polito A.
        • Ostenfeld T.
        • Svendsen C.N.
        • et al.
        Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice.
        Neuron. 1999; 23: 297-308
        • Sofroniew M.V.
        Reactive astrocytes in neural repair and protection.
        Neuroscientist. 2005; 11: 400-407
        • Schwab M.E.
        • Bartholdi D.
        Degeneration and regeneration of axons in the lesioned spinal cord.
        Physiol. Rev. 1996; 76: 319-370
        • Fournier A.E.
        • Strittmatter S.M.
        Repulsive factors and axon regeneration in the CNS.
        Curr. Opin. Neurobiol. 2001; 11: 89-94
        • Moon L.
        • Asher R.
        • Rhodes K.
        • Fawcett J.
        Relationship between sprouting axons, proteoglycans and glial cells following unilateral nigrostriatal axotomy in the adult rat.
        Neuroscience. 2002; 109: 101-117
        • Jones L.L.
        • Margolis R.U.
        • Tuszynski M.H.
        The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury.
        Exp. Neurol. 2003; 182: 399-411
        • Davies S.J.
        • Goucher D.R.
        • Doller C.
        • Silver J.
        Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord.
        J. Neurosci. 1999; 19: 5810-5822
        • Fawcett J.W.
        Overcoming inhibition in the damaged spinal cord.
        J. Neurotrauma. 2006; 23: 371-383
        • Bradbury E.J.
        • Moon L.D.
        • Popat R.J.
        • King V.R.
        • Bennett G.S.
        • Patel P.N.
        • et al.
        Chondroitinase ABC promotes functional recovery after spinal cord injury.
        Nature. 2002; 416: 636-640
        • Yick L.
        Axonal regeneration of Clarke's neurons beyond the spinal cord injury scar after treatment with chondroitinase ABC.
        Exp. Neurol. 2003; 182: 160-168
        • Caggiano A.O.
        • Zimber M.P.
        • Ganguly A.
        • Blight A.R.
        • Gruskin E.A.
        Chondroitinase ABCI improves locomotion and bladder function following contusion injury of the rat spinal cord.
        J. Neurotrauma. 2005; 22: 226-239
        • Houle J.D.
        • Tom V.J.
        • Mayes D.
        • Wagoner G.
        • Phillips N.
        • Silver J.
        Combining an autologous peripheral nervous system “bridge” and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord.
        J. Neurosci. 2006; 26: 7405-7415
        • Massey J.M.
        • Hubscher C.H.
        • Wagoner M.R.
        • Decker J.A.
        • Amps J.
        • Silver J.
        • et al.
        Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury.
        J. Neurosci. 2006; 26: 4406-4414
        • Cafferty W.B.
        • Bradbury E.J.
        • Lidierth M.
        • Jones M.
        • Duffy P.J.
        • Pezet S.
        • et al.
        Chondroitinase ABC-mediated plasticity of spinal sensory function.
        J. Neurosci. 2008; 28: 11998-12009
        • Garcia-Alias G.
        • Barkhuysen S.
        • Buckle M.
        • Fawcett J.W.
        Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation.
        Nat. Neurosci. 2009; 12: 1145-1151
        • Alilain W.J.
        • Horn K.P.
        • Hu H.
        • Dick T.E.
        • Silver J.
        Functional regeneration of respiratory pathways after spinal cord injury.
        Nature. 2011; 475: 196-200
        • Jefferson S.C.
        • Tester N.J.
        • Howland D.R.
        Chondroitinase ABC promotes recovery of adaptive limb movements and enhances axonal growth caudal to a spinal hemisection.
        J. Neurosci. 2011; 31: 5710-5720
        • Lee Y.S.
        • Lin C.Y.
        • Jiang H.H.
        • Depaul M.
        • Lin V.W.
        • Silver J.
        Nerve regeneration restores supraspinal control of bladder function after complete spinal cord injury.
        J. Neurosci. 2013; 33: 10591-10606
        • Iaci J.F.
        • Vecchione A.M.
        • Zimber M.P.
        • Caggiano A.O.
        Chondroitin sulfate proteoglycans in spinal cord contusion injury and the effects of chondroitinase treatment.
        J. Neurotrauma. 2007; 24: 1743-1760
        • James N.D.
        • Shea J.
        • Muir E.M.
        • Verhaagen J.
        • Schneider B.L.
        • Bradbury E.J.
        Chondroitinase gene therapy improves upper limb function following cervical contusion injury.
        Exp. Neurol. 2015; 271: 131-135
        • Bartus K.
        • James N.D.
        • Didangelos A.
        • Bosch K.D.
        • Verhaagen J.
        • Yanez-Munoz R.J.
        • et al.
        Large-scale chondroitin sulfate proteoglycan digestion with chondroitinase gene therapy leads to reduced pathology and modulates macrophage phenotype following spinal cord contusion injury.
        J. Neurosci. 2014; 34: 4822-4836
        • Tester N.J.
        • Howland D.R.
        Chondroitinase ABC improves basic and skilled locomotion in spinal cord injured cats.
        Exp. Neurol. 2008; 209: 483-496
        • Bowes C.
        • Massey J.M.
        • Burish M.
        • Cerkevich C.M.
        • Kaas J.H.
        Chondroitinase ABC promotes selective reactivation of somatosensory cortex in squirrel monkeys after a cervical dorsal column lesion.
        Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 2595-2600
        • Tester N.J.
        • Plaas A.H.
        • Howland D.R.
        Effect of body temperature on chondroitinase ABC's ability to cleave chondroitin sulfate glycosaminoglycans.
        J. Neurosci. Res. 2007; 85: 1110-1118
        • Muir E.M.
        • Fyfe I.
        • Gardiner S.
        • Li L.
        • Warren P.
        • Fawcett J.W.
        • et al.
        Modification of N-glycosylation sites allows secretion of bacterial chondroitinase ABC from mammalian cells.
        J. Biotechnol. 2010; 145: 103-110
        • Kanno H.
        • Pressman Y.
        • Moody A.
        • Berg R.
        • Muir E.M.
        • Rogers J.H.
        • et al.
        Combination of engineered Schwann cell grafts to secrete neurotrophin and chondroitinase promotes axonal regeneration and locomotion after spinal cord injury.
        J. Neurosci. 2014; 34: 1838-1855
        • Zhao R.R.
        • Muir E.M.
        • Alves J.N.
        • Rickman H.
        • Allan A.Y.
        • Kwok J.C.
        • et al.
        Lentiviral vectors express chondroitinase ABC in cortical projections and promote sprouting of injured corticospinal axons.
        J. Neurosci. Methods. 2011; 201: 228-238
        • Baekelandt V.
        • Eggermont K.
        • Michiels M.
        • Nuttin B.
        • Debyser Z.
        Optimized lentiviral vector production and purification procedure prevents immune response after transduction of mouse brain.
        Gene Ther. 2003; 10: 1933-1940
        • Hendriks W.T.J.
        • Ruitenberg M.J.
        • Blits B.
        • Boer G.J.
        • Verhaagen J.
        Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord.
        Prog. Brain Res. 2004; 146: 451-476
        • Bunge M.B.
        Novel combination strategies to repair the injured mammalian spinal cord.
        J. Spinal Cord Med. 2008; 31: 262
        • Thuret S.
        • Moon L.D.
        • Gage F.H.
        Therapeutic interventions after spinal cord injury.
        Nat. Rev. Neurosci. 2006; 7: 628-643
        • Zhao R.-R.
        • Fawcett J.W.
        Combination treatment with chondroitinase ABC in spinal cord injury—breaking the barrier.
        Neurosci. Bull. 2013; 29: 477-483
        • Franklin R.J.
        Remyelination by transplanted olfactory ensheathing cells.
        Anat. Rec. B New Anat. 2003; 271: 71-76
        • Doucette R.
        Glial influences on axonal growth in the primary olfactory system.
        Glia. 1990; 3: 433-449
        • Roet K.C.
        • Verhaagen J.
        Understanding the neural repair-promoting properties of olfactory ensheathing cells.
        Exp. Neurol. 2014; 261C: 594-609
        • Richter M.W.
        • Roskams A.J.
        Olfactory ensheathing cell transplantation following spinal cord injury: hype or hope?.
        Exp. Neurol. 2008; 209: 353-367
        • Ramon-Cueto A.
        • Cordero M.I.
        • Santos-Benito F.F.
        • Avila J.
        Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia.
        Neuron. 2000; 25: 425-435
        • Ramón-Cueto A.
        • Plant G.W.
        • Avila J.
        • Bunge M.B.
        Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants.
        J. Neurosci. 1998; 18: 3803-3815
        • Ramón-Cueto A.
        • Nieto-Sampedro M.
        Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants.
        Exp. Neurol. 1994; 127: 232-244
        • Li Y.
        • Decherchi P.
        • Raisman G.
        Transplantation of olfactory ensheathing cells into spinal cord lesions restores breathing and climbing.
        J. Neurosci. 2003; 23: 727-731
        • Li Y.
        • Field P.M.
        • Raisman G.
        Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells.
        Science (New York, N.Y.). 1997; 277: 2000-2002
        • Granger N.
        • Blamires H.
        • Franklin R.J.
        • Jeffery N.D.
        Autologous olfactory mucosal cell transplants in clinical spinal cord injury: a randomized double-blinded trial in a canine translational model.
        Brain. 2012; 135: 3227-3237
        • Fouad K.
        • Pearse D.D.
        • Tetzlaff W.
        • Vavrek R.
        Transplantation and repair: combined cell implantation and chondroitinase delivery prevents deterioration of bladder function in rats with complete spinal cord injury.
        Spinal Cord. 2009; 47: 727-732
        • Fouad K.
        • Schnell L.
        • Bunge M.B.
        • Schwab M.E.
        • Liebscher T.
        • Pearse D.D.
        Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord.
        J. Neurosci. 2005; 25: 1169-1178
        • Cordero-Llana Ó.
        • Houghton B.C.
        • Rinaldi F.
        • Taylor H.
        • Yáñez-Muñoz R.J.
        • Uney J.B.
        • et al.
        Enhanced efficacy of the CDNF/MANF family by combined intranigral overexpression in the 6-OHDA rat model of Parkinson's disease.
        Mol. Ther. 2014;
        • Mitrophanous K.
        • Yoon S.
        • Rohll J.
        • Patil D.
        • Wilkes F.
        • Kim V.
        • et al.
        Stable gene transfer to the nervous system using a non-primate lentiviral vector.
        Gene Ther. 1999; 6: 1808-1818
        • Ito D.
        • Ibanez C.
        • Ogawa H.
        • Franklin R.J.
        • Jeffery N.D.
        Comparison of cell populations derived from canine olfactory bulb and olfactory mucosal cultures.
        Am. J. Vet. Res. 2006; 67: 1050-1056
        • Morgan W.T.J.
        • Elson L.A.
        A colorimetric method for the determination of N-acetylglucosamine and N-acetylchrondrosamine.
        Biochem. J. 1934; 28: 988
        • Smith P.M.
        • Lakatos A.
        • Barnett S.C.
        • Jeffery N.D.
        • Franklin R.J.M.
        Cryopreserved cells isolated from the adult canine olfactory bulb are capable of extensive remyelination following transplantation into the adult rat CNS.
        Exp. Neurol. 2002; 176: 402-406
        • Jani H.R.
        • Raisman G.
        Ensheathing cell cultures from the olfactory bulb and mucosa.
        Glia. 2004; 47: 130-137
        • Jeffery N.D.
        • Hamilton L.
        • Granger N.
        Designing clinical trials in canine spinal cord injury as a model to translate successful laboratory interventions into clinical practice.
        Vet. Rec. 2011; 168: 102-107
        • Jeffery N.D.
        • Lakatos A.
        • Franklin R.J.
        Autologous olfactory glial cell transplantation is reliable and safe in naturally occurring canine spinal cord injury.
        J. Neurotrauma. 2005; 22: 1282-1293
        • Kachramanoglou C.
        • Law S.
        • Andrews P.
        • Li D.
        • Choi D.
        Culture of olfactory ensheathing cells for central nerve repair: the limitations and potential of endoscopic olfactory mucosal biopsy.
        Neurosurgery. 2013; 72: 170-179
        • Choi D.
        • Li D.
        • Law S.
        • Powell M.
        • Raisman G.
        A prospective observational study of the yield of olfactory ensheathing cells cultured from biopsies of septal nasal mucosa.
        Neurosurgery. 2008; 62: 1140-1145
        • Ruitenberg M.
        • Plant G.
        • Christensen C.
        • Blits B.
        • Niclou S.
        • Harvey A.
        • et al.
        Viral vector-mediated gene expression in olfactory ensheathing glia implants in the lesioned rat spinal cord.
        Gene Ther. 2002; 9: 135-146
        • Barnett S.C.
        • Hutchins A.-M.
        • Noble M.
        Purification of olfactory nerve ensheathing cells from the olfactory bulb.
        Dev. Biol. 1993; 155: 337-350
        • Au E.
        • Roskams A.J.
        Culturing olfactory ensheathing glia from the mouse olfactory epithelium.
        in: Neural Stem Cells: Methods and Protocols. Springer, 2002: 49-53
        • Lakatos A.
        • Smith P.M.
        • Barnett S.C.
        • Franklin R.J.
        Meningeal cells enhance limited CNS remyelination by transplanted olfactory ensheathing cells.
        Brain. 2003; 126: 598-609
        • Yamamoto M.
        • Raisman G.
        • Li D.
        • Li Y.
        Transplanted olfactory mucosal cells restore paw reaching function without regeneration of severed corticospinal tract fibres across the lesion.
        Brain Res. 2009; 1303: 26-31
        • Curinga G.M.
        • Snow D.M.
        • Mashburn C.
        • Kohler K.
        • Thobaben R.
        • Caggiano A.O.
        • et al.
        Mammalian-produced chondroitinase AC mitigates axon inhibition by chondroitin sulfate proteoglycans.
        J. Neurochem. 2007; 102: 275-288
        • Jin Y.
        • Ketschek A.
        • Jiang Z.
        • Smith G.
        • Fischer I.
        Chondroitinase activity can be transduced by a lentiviral vector in vitro and in vivo.
        J. Neurosci. Methods. 2011; 199: 208-213
        • Rolls A.
        • Shechter R.
        • Schwartz M.
        The bright side of the glial scar in CNS repair.
        Nat. Rev. Neurosci. 2009; 10: 235-241
        • Lee H.
        • McKeon R.J.
        • Bellamkonda R.V.
        Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury.
        Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 3340-3345
        • Shen Y.
        • Tenney A.P.
        • Busch S.A.
        • Horn K.P.
        • Cuascut F.X.
        • Liu K.
        • et al.
        PTPσ is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration.
        Science (New York, N.Y.). 2009; 326: 592-596
        • Lang B.T.
        • Cregg J.M.
        • DePaul M.A.
        • Tran A.P.
        • Xu K.
        • Dyck S.M.
        • et al.
        Modulation of the proteoglycan receptor PTPσ promotes recovery after spinal cord injury.
        Nature. 2014; 518: 404-408
        • Zhou H.X.
        • Li X.Y.
        • Li F.Y.
        • Liu C.
        • Liang Z.P.
        • Liu S.
        • et al.
        Targeting RPTPsigma with lentiviral shRNA promotes neurites outgrowth of cortical neurons and improves functional recovery in a rat spinal cord contusion model.
        Brain Res. 2014; 1586: 46-63
        • Rolls A.
        • Cahalon L.
        • Bakalash S.
        • Avidan H.
        • Lider O.
        • Schwartz M.
        A sulfated disaccharide derived from chondroitin sulfate proteoglycan protects against inflammation-associated neurodegeneration.
        FASEB J. 2006; 20: 547-549
        • Rolls A.
        • Avidan H.
        • Cahalon L.
        • Schori H.
        • Bakalash S.
        • Litvak V.
        • et al.
        A disaccharide derived from chondroitin sulphate proteoglycan promotes central nervous system repair in rats and mice.
        Eur. J. Neurosci. 2004; 20: 1973-1983
        • Reginensi D.
        • Carulla P.
        • Nocentini S.
        • Seira O.
        • Serra-Picamal X.
        • Torres-Espin A.
        • et al.
        Increased migration of olfactory ensheathing cells secreting the Nogo receptor ectodomain over inhibitory substrates and lesioned spinal cord.
        Cell. Mol. Life Sci. 2015; 72: 2719-2737
        • Ekberg J.A.
        • Amaya D.
        • Mackay-Sim A.
        • St John J.A.
        The migration of olfactory ensheathing cells during development and regeneration.
        Neuro-Signals. 2012; 20: 147-158
        • Pearse D.D.
        • Sanchez A.R.
        • Pereira F.C.
        • Andrade C.M.
        • Puzis R.
        • Pressman Y.
        • et al.
        Transplantation of Schwann cells and/or olfactory ensheathing glia into the contused spinal cord: survival, migration, axon association, and functional recovery.
        Glia. 2007; 55: 976-1000
        • Novikova L.N.
        • Lobov S.
        • Wiberg M.
        • Novikov L.N.
        Efficacy of olfactory ensheathing cells to support regeneration after spinal cord injury is influenced by method of culture preparation.
        Exp. Neurol. 2011; 229: 132-142
        • Gorrie C.A.
        • Hayward I.
        • Cameron N.
        • Kailainathan G.
        • Nandapalan N.
        • Sutharsan R.
        • et al.
        Effects of human OEC-derived cell transplants in rodent spinal cord contusion injury.
        Brain Res. 2010; 1337: 8-20
        • Richter M.W.
        • Fletcher P.A.
        • Liu J.
        • Tetzlaff W.
        • Roskams A.J.
        Lamina propria and olfactory bulb ensheathing cells exhibit differential integration and migration and promote differential axon sprouting in the lesioned spinal cord.
        J. Neurosci. 2005; 25: 10700-10711