Objectifying eye movements during rapid number naming: Methodology for assessment of normative data for the King–Devick test

Published:January 22, 2016DOI:https://doi.org/10.1016/j.jns.2016.01.045

      Highlights

      • The King–Devick (K–D) test is a sensitive measure of concussion detection.
      • K–D reading times are slowed in concussion; however it is unclear why.
      • Eye movement recordings are needed to determine why, but methodology to analyze normal eye behavior is a prerequisite.
      • In this study, we developed methodology to analyze normal eye movement behavior during K–D reading.

      Abstract

      Objective

      Concussion is a major public health problem and considerable efforts are focused on sideline-based diagnostic testing to guide return-to-play decision-making and clinical care. The King–Devick (K–D) test, a sensitive sideline performance measure for concussion detection, reveals slowed reading times in acutely concussed subjects, as compared to healthy controls; however, the normal behavior of eye movements during the task and deficits underlying the slowing have not been defined.

      Methods

      Twelve healthy control subjects underwent quantitative eye tracking during digitized K–D testing.

      Results

      The total K–D reading time was 51.24 (±9.7) seconds. A total of 145 saccades (±15) per subject were generated, with average peak velocity 299.5°/s and average amplitude 8.2°. The average inter-saccadic interval was 248.4 ms. Task-specific horizontal and oblique saccades per subject numbered, respectively, 102 (±10) and 17 (±4). Subjects with the fewest saccades tended to blink more, resulting in a larger amount of missing data; whereas, subjects with the most saccades tended to make extra saccades during line transitions.

      Conclusions

      Establishment of normal and objective ocular motor behavior during the K–D test is a critical first step towards defining the range of deficits underlying abnormal testing in concussion. Further, it sets the groundwork for exploration of K–D correlations with cognitive dysfunction and saccadic paradigms that may reflect specific neuroanatomic deficits in the concussed brain.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Heitger M.H.
        • Jones R.D.
        • Anderson T.J.
        A new approach to predicting postconcussion syndrome after mild traumatic brain injury based upon eye movement function.
        Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008; 2008 (Epub 2009/01/24. (PubMed PMID: 19163480)): 3570-3573https://doi.org/10.1109/IEMBS.2008.4649977
        • Ciuffreda K.J.
        • Kapoor N.
        • Rutner D.
        • Suchoff I.B.
        • Han M.E.
        • Craig S.
        Occurrence of oculomotor dysfunctions in acquired brain injury: a retrospective analysis.
        Optometry. 2007; 78 (Epub 2007/04/03. (PubMed PMID: 17400136)): 155-161https://doi.org/10.1016/j.optm.2006.11.011
        • Rutland-Brown W.
        • Langlois J.A.
        • Thomas K.E.
        • Xi Y.L.
        Incidence of traumatic brain injury in the United States, 2003.
        J. Head Trauma Rehabil. 2006; 21 (Epub 2006/11/24. PubMed PMID: 17122685): 544-548
        • Torres D.M.
        • Galetta K.M.
        • Phillips H.W.
        • Dziemianowicz E.M.
        • Wilson J.A.
        • Dorman E.S.
        • et al.
        Sports-related concussion: anonymous survey of a collegiate cohort.
        Neurol. Clin. Pract. 2013; 3 (PubMed PMID: 24195017; PubMed Central PMCID: PMC3787116): 279-287https://doi.org/10.1212/CPJ.0b013e3182a1ba22
        • Bakhos L.L.
        • Lockhart G.R.
        • Myers R.
        • Linakis J.G.
        Emergency department visits for concussion in young child athletes.
        Pediatrics. 2010; 126 (Epub 2010/09/02. PubMed PMID: 20805145): e550-e556https://doi.org/10.1542/peds.2009-3101
        • Prins M.L.
        • Giza C.C.
        Repeat traumatic brain injury in the developing brain.
        Int. J. Dev. Neurosci. 2012; 30 (PubMed PMID: 21683132): 185-190https://doi.org/10.1016/j.ijdevneu.2011.05.009
        • Giza C.C.
        • Kutcher J.S.
        • Ashwal S.
        • Barth J.
        • Getchius T.S.
        • Gioia G.A.
        • et al.
        Summary of evidence-based guideline update: evaluation and management of concussion in sports: report of the Guideline Development Subcommittee of the American Academy of Neurology.
        Neurology. 2013; 80 (PubMed PMID: 23508730; PubMed Central PMCID: PMC3721093): 2250-2257https://doi.org/10.1212/WNL.0b013e31828d57dd
        • Gavett B.E.
        • Stern R.A.
        • McKee A.C.
        Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma.
        Clin. Sports Med. 2011; 30 (PubMed PMID: 21074091; PubMed Central PMCID: PMC2995699): 179-88, xihttps://doi.org/10.1016/j.csm.2010.09.007
        • Galetta K.M.
        • Barrett J.
        • Allen M.
        • Madda F.
        • Delicata D.
        • Tennant A.T.
        • et al.
        The King–Devick test as a determinant of head trauma and concussion in boxers and MMA fighters.
        Neurology. 2011; 76 (Epub 2011/02/04. PubMed PMID: 21288984; PubMed Central PMCID: PMCPmc3087467): 1456-1462https://doi.org/10.1212/WNL.0b013e31821184c9
        • Galetta K.M.
        • Brandes L.E.
        • Maki K.
        • Dziemianowicz M.S.
        • Laudano E.
        • Allen M.
        • et al.
        The King–Devick test and sports-related concussion: study of a rapid visual screening tool in a collegiate cohort.
        J. Neurol. Sci. 2011; 309 (Epub 2011/08/19. PubMed PMID: 21849171): 34-39https://doi.org/10.1016/j.jns.2011.07.039
        • Galetta M.S.
        • Galetta K.M.
        • McCrossin J.
        • Wilson J.A.
        • Moster S.
        • Galetta S.L.
        • et al.
        Saccades and memory: baseline associations of the King–Devick and SCAT2 SAC tests in professional ice hockey players.
        J. Neurol. Sci. 2013; 328 (Epub 2013/03/19. PubMed PMID: 23499425): 28-31https://doi.org/10.1016/j.jns.2013.02.008
        • Leong D.F.
        • Balcer L.J.
        • Galetta S.L.
        • Liu Z.
        • Master C.L.
        The King–Devick test as a concussion screening tool administered by sports parents.
        J. Sports Med. Phys. Fitness. 2014; 54 (Epub 2014/01/22. PubMed PMID: 24445547): 70-77
        • Galetta K.M.
        • Morganroth J.
        • Moehringer N.
        • Mueller B.
        • Hasanaj L.
        • Webb N.
        • et al.
        Adding vision to concussion testing: a prospective study of sideline testing in youth and collegiate athletes.
        J. Neuroophthalmol. 2015; (Epub 2015/03/06. PubMed PMID: 25742059)https://doi.org/10.1097/WNO.0000000000000226
        • Pierrot-Deseilligny C.
        • Muri R.M.
        • Nyffeler T.
        • Milea D.
        The role of the human dorsolateral prefrontal cortex in ocular motor behavior.
        Ann. N. Y. Acad. Sci. 2005; 1039 (PubMed PMID: 15826978): 239-251https://doi.org/10.1196/annals.1325.023
        • Pierrot-Deseilligny C.
        • Muri R.M.
        • Ploner C.J.
        • Gaymard B.
        • Demeret S.
        • Rivaud-Pechoux S.
        Decisional role of the dorsolateral prefrontal cortex in ocular motor behaviour.
        Brain. 2003; 126 (Epub 2003/05/24. PubMed PMID: 12764065): 1460-1473
        • Pierrot-Deseilligny C.
        • Ploner C.J.
        • Muri R.M.
        • Gaymard B.
        • Rivaud-Pechoux S.
        Effects of cortical lesions on saccadic: eye movements in humans.
        Ann. N. Y. Acad. Sci. 2002; 956 (Epub 2002/04/19. PubMed PMID: 11960806): 216-229
        • Choi W.
        • Desai R.H.
        • Henderson J.M.
        The neural substrates of natural reading: a comparison of normal and nonword text using eyetracking and fMRI.
        Front Hum Neurosci. 2014; 8 (Epub 2015/01/08. PubMed PMID: 25566039; PubMed Central PMCID: PMCPmc4274877): 1024https://doi.org/10.3389/fnhum.2014.01024
        • Dziemianowicz M.S.
        • Kirschen M.P.
        • Pukenas B.A.
        • Laudano E.
        • Balcer L.J.
        • Galetta S.L.
        Sports-related concussion testing.
        Curr. Neurol. Neurosci. Rep. 2012; 12 (PubMed PMID: 22791281): 547-559https://doi.org/10.1007/s11910-012-0299-y
        • Otero-Millan J.
        • Troncoso X.G.
        • Macknik S.L.
        • Serrano-Pedraza I.
        • Martinez-Conde S.
        Saccades and microsaccades during visual fixation, exploration, and search: foundations for a common saccadic generator.
        J. Vis. 2008; 8(14) (PubMed PMID: 19146322): 1-18https://doi.org/10.1167/8.14.21
        • Engbert R.
        Microsaccades: a microcosm for research on oculomotor control, attention, and visual perception.
        Prog. Brain Res. 2006; 154 (PubMed PMID: 17010710): 177-192https://doi.org/10.1016/S0079-6123(06)54009-9
        • Engbert R.
        • Kliegl R.
        Microsaccades keep the eyes' balance during fixation.
        Psychol. Sci. 2004; 15 (PubMed PMID: 15147499): 431-436https://doi.org/10.1111/j.0956-7976.2004.00697.x
        • Engbert R.
        • Kliegl R.
        Microsaccades uncover the orientation of covert attention.
        Vis. Res. 2003; 43 (PubMed PMID: 12676246): 1035-1045
      1. Roos JC, Calandrini DM, Carpenter RH. A single mechanism for the timing of spontaneous and evoked saccades. Exp. Brain Res. 2008;187(2):283–93. doi: http://dx.doi.org/10.1007/s00221-008-1304-1. PubMed Epub 2008/02/20. PMID: 18283445.

        • Ramat S.
        • Leigh R.J.
        • Zee D.S.
        • Optican L.M.
        What clinical disorders tell us about the neural control of saccadic eye movements.
        Brain. 2007; 130 (Epub 2006/11/24. (PubMed PMID: 17121745)): 10-35https://doi.org/10.1093/brain/awl309