Advertisement

Emergence of exosomal miRNAs as a diagnostic biomarker for Alzheimer's disease

  • Vo Van Giau
    Affiliations
    Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam, South Korea
    Search for articles by this author
  • Seong Soo A. An
    Correspondence
    Corresponding author at: Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, 1342 Sungnamdaero, Sujung-gu, Seongnam-si, Gyeonggi-do 461-701, South Korea.
    Affiliations
    Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam, South Korea
    Search for articles by this author
Published:December 04, 2015DOI:https://doi.org/10.1016/j.jns.2015.12.005

      Highlights

      • We reviewed recent advances in the research of exosomal biomarkers as well as exosomal miRNAs.
      • Exosomal biomarkers, including miRNAs with mouse models, were summarized for their potential applications in clinical AD diagnostics
      • Overview of the formation, function, and isolation of exosomes

      Abstract

      Alzheimer's disease (AD) is the most common progressive degenerative disorder, and is characterized by memory loss and cognitive decline. It is a complex disorder with both environmental and genetic components. Current diagnosis of AD is based primarily on the analysis of the patient's cognitive function using imaging techniques and the biochemical analyses of bodily fluids. Efforts have been made to develop not only an effective therapeutic, but also a diagnostic capable of identifying AD before the onset of irreversible neurological damage. The molecular content of exosomes is a fingerprint of the releasing cell type and its status. A significant body of literature has demonstrated that molecular constituents of exosomes, especially exosomal proteins and microRNAs (miRNAs), hold great promise as novel biomarkers for clinical diagnosis. In addition, expression profiling of miRNAs found in nanovesicles has revealed diagnostic potential in neurodegenerative diseases. Currently, exosomal miRNAs within biological fluids are known as good disease-related markers, and have emerged as a powerful tool for solving many difficulties in both the diagnosis and treatment of AD patients. In this review, we reviewed recent advances in the research of exosomal biomarkers as well as exosomal miRNAs, summarized of actively used approaches to identifying potential miRNA biomarkers through mouse models and their potential application in clinical diagnostics in AD. We also supply a comprehensive overview of the formation, function, and isolation of exosomes.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Admyre C.
        • Grunewald J.
        • Thyberg J.
        • Gripenbäck S.
        • Tornling G.
        • Eklund A.
        • et al.
        Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid.
        Eur. Respir. J. 2003; 22: 578-583
        • Admyre C.
        • Johansson S.M.
        • Qazi K.R.
        • Filén J.J.
        • Lahesmaa R.
        • Norman M.
        • et al.
        Exosomes with immune modulatory features are present in human breast milk.
        J. Immunol. 2003; 179: 1969-1978
        • Alais S.
        • Simoes S.
        • Baas D.
        • Lehmann S.
        • Raposo G.
        • Darlix J.L.
        • Leblanc P.
        Mouse neuroblastoma cells release prion infectivity associated with exosomal vesicles.
        Biol. Cell. 2008; 100: 603-615
        • Alegre-Abarrategui J.
        • Christian H.
        • Lufino M.M.
        • Mutihac R.
        • Venda L.L.
        • Ansorge O.
        • Wade-Martins R.
        LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model.
        Hum. Mol. Genet. 2009; 18: 4022-4034
        • Alexandrov P.N.
        • Dua P.
        • Hill J.M.
        • Bhattacharjee S.
        • Zhao Y.
        • Lukiw W.J.
        microRNA (miRNA) speciation in Alzheimer's disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF).
        Int. J. Biochem. Mol. Biol. 2012; 3: 365-373
        • Alvarez M.L.
        • Khosroheidari M.
        • Kanchi Ravi R.
        • Distefano J.K.
        Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers.
        Kidney Int. 2012; 82: 1024-1032
        • Alvarez-Erviti L.
        • Seow Y.
        • Schapira A.H.
        • Gardiner C.
        • Sargent I.L.
        • Wood M.J.
        • Cooper J.M.
        Lysosomal dysfunction increases exosomemediated alpha-synuclein release and transmission.
        Neurobiol. Dis. 2011; 42: 360-367
        • Aronin N.
        • Kim M.
        • Laforet G.
        • DiFiglia M.
        Are there multiple pathways in the pathogenesis of Huntington's disease?.
        Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1999; 354: 995-1003
        • Bellingham S.A.
        • Guo B.B.
        • Coleman B.M.
        • Hill A.F.
        Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases?.
        Front. Physiol. 2012; 3: 124
        • Bhatnagar S.
        • Chertkow H.
        • Schipper H.M.
        • Yuan Z.
        • Shetty V.
        • Jenkins S.
        • et al.
        Increased microRNA-34c abundance in Alzheimer's disease circulating blood plasma.
        Front Mol Neurosci. 2014; 7: 1-11
        • Blanchard N.
        • Lankar D.
        • Faure F.
        • Regnault A.
        • Dumont C.
        • Raposo G.
        • Hivroz C.
        TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex.
        J. Immunol. 2002; 168: 3235-3241
        • Booth A.M.
        • Fang Y.
        • Fallon J.K.
        • Yang J.M.
        • Hildreth J.E.
        • Gould S.J.
        Exosomes and HIV gag bud from endosome-like domains of the T cell plasma membrane.
        J. Cell Biol. 2006; 172: 932-935
        • Bryant R.J.
        • Pawlowski T.
        • Catto J.W.
        • Marsden G.
        • Vessella R.L.
        • Rhees B.
        • et al.
        Changes in circulating microRNA levels associated with prostate cancer.
        Br. J. Cancer. 2012; 106: 768-774
        • Budoni M.
        • Fierabracci A.
        • Luciano R.
        • Petrini S.
        • Di Ciommo V.
        • Muraca M.
        The immunosuppressive effect of mesenchymal stromal cells on B lymphocytes is mediated by membrane vesicles.
        Cell Transplant. 2013; 22: 369-379
        • Burgos K.
        • Malenica I.
        • Metpally R.
        • Courtright A.
        • Rakela B.
        • Beach T.
        • et al.
        Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer's and Parkinson's diseases correlate with disease status and features of pathology.
        PLoS One. 2014; 9e106174
        • Burns G.
        • Brooks K.
        • Wildung M.
        • Navakanitworakul R.
        • Christenson L.K.
        • Spencer T.E.
        Extracellular vesicles in luminal fluid of the ovine uterus.
        PLoS One. 2014; 9e90913
        • Caby M.P.
        • Lankar D.
        • Vincendeau-Scherrer C.
        • Raposo G.
        • Bonnerot C.
        Exosomal-like vesicles are present in human blood plasma.
        Int. Immunol. 2005; 17: 879-887
        • Chen C.
        • Skog J.
        • Hsu C.H.
        • Lessard R.T.
        • Balaj L.
        • Wurdinger T.
        • et al.
        Microfluidic isolation and transcriptome analysis of serum microvesicles.
        Lab Chip. 2010; 10: 505-511
        • Cheng L.
        • Quek C.Y.
        • Sun X.
        • Bellingham S.A.
        • Hill A.F.
        The detection of microRNA associated with Alzheimer's disease in biological fluids using next-generation sequencing technologies.
        Front. Genet. 2013; 4: 150
        • Cheng L.
        • Sharples R.A.
        • Scicluna B.J.
        • Hill A.F.
        Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood.
        J. Extracell. Vesicles. 2014; 3 (e-pub ahead of print)https://doi.org/10.3402/jev.v3.23743
        • Chen-Plotkin A.S.
        • Unger T.L.
        • Gallagher M.D.
        • Bill E.
        • Kwong L.K.
        • Volpicelli-Daley L.
        • et al.
        TMEM106B, the risk gene for frontotemporal dementia, is regulated by the microRNA-132/212 cluster and affects progranulin pathways.
        J Neurosci. 2012; 32: 11213-11227
        • Cheruvanky A.
        • Zhou H.
        • Pisitkun T.
        • Kopp J.B.
        • Knepper M.A.
        • Yuen P.S.
        • Star R.A.
        Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator.
        Am. J. Physiol. Renal Physiol. 2007; 292: F1657-F1661
        • Clayton A.
        • Court J.
        • Navabi H.
        • Adams M.
        • Mason M.D.
        • Hobot J.A.
        • et al.
        Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry.
        J. Immunol. Methods. 2001; 247: 163-174
        • Cocucci E.
        • Racchetti G.
        • Meldolesi J.
        Shedding microvesicles: artefacts no more.
        Trends Cell Biol. 2009; 19: 43-51
        • Cogswell J.P.P.
        • Ward J.
        • Taylor I.A.
        • Waters M.
        • Shi Y.
        • Cannon B.
        • et al.
        Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways.
        J. Alzheimers Dis. 2008; 14: 27-41
        • Cole S.L.
        • Vassar R.
        The role of amyloid precursor protein processing by BACE1, the beta-secretase, in Alzheimer disease pathophysiology.
        J. Biol. Chem. 2008; 283: 29621-29625
        • Danborg P.B.
        • Simonsen A.H.
        • Waldemar G.
        • Heegaard N.H.
        The potential of microRNAs as biofluid markers of neurodegenerative diseases — a systematic review.
        Biomarkers. 2014; 19: 259-268
        • Denk J.
        • Boelmans K.
        • Siegismund C.
        • Lassner D.
        • Arlt S.
        • Jahn H.
        MicroRNA profiling of CSF reveals potential biomarkers to detect Alzheimer's disease.
        PLoS One. 2015; 10e0126423
        • Dong H.
        • Li J.
        • Huang L.
        • Chen X.
        • Li D.
        • Wang T.
        • et al.
        Serum MicroRNA profiles serve as novel biomarkers for the diagnosis of Alzheimer's disease.
        Dis. Markers. 2015; 11: 625659
        • Dragovic R.A.
        • Gardiner C.
        • Brooks A.S.
        • Tannetta D.S.
        • Ferguson D.J.
        • Hole P.
        • et al.
        Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis.
        Nanomedicine. 2011; 7: 780-788
        • Dudani J.S.
        • Gossett D.R.
        • Tse H.T.
        • Lamm R.J.
        • Kulkarni R.P.
        • Carlo D.D.
        Rapid inertial solution exchange for enrichment and flow cytometric detection of microvesicles.
        Biomicrofluidics. 2015; 9: 014112
        • Emmanouilidou E.
        • Melachroinou K.
        • Roumeliotis T.
        • Garbis S.D.
        • Ntzouni M.
        • Margaritis L.H.
        • et al.
        Cell-produced α-synuclein is secreted in a calcium dependent manner by exosomes and impacts neuronal survival.
        J. Neurosci. 2010; 30: 6838-6851
        • Escola J.M.
        • Kleijmeer M.J.
        • Stoorvogel W.
        • Griffith J.M.
        • Yoshie O.
        • Geuze H.J.
        Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes.
        J. Biol. Chem. 1998; 273: 20121-20127
        • Faure J.
        • Lachenal G.
        • Court M.
        • Hirrlinger J.
        • Chatellard-Causse C.
        • Blot B.
        • et al.
        Exosomes are released by cultured cortical neurons.
        Mol. Cell. Neurosci. 2006; 31: 642-648
        • Fevrier B.
        • Vilette D.
        • Archer F.
        • Loew D.
        • Faigle W.
        • Vidal M.
        • et al.
        Cells release prions in association with exosomes.
        Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 9683-9688
        • Fiandaca M.S.
        • Kapogiannis D.
        • Mapstone M.
        • Boxer A.
        • Eitan E.
        • Schwartz J.B.
        • et al.
        Identification of pre clinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case–control study.
        Alzheimers Dement. 2015; 11 (e1): 600-607
        • Fineberg S.K.
        • Kosik K.S.
        • Davidson B.L.
        MicroRNAs potentiate neural development.
        Neuron. 2009; 64: 303-309
        • Geekiyanage H.
        • Jicha G.A.
        • Nelson P.T.
        • Chan C.
        Blood serum miRNA: non-invasive biomarkers for Alzheimer's disease.
        Exp. Neurol. 2012; 235: 491-496
        • Goedert M.
        • Clavaguera F.
        • Tolnay M.
        The propagation of prion-like protein inclusions in neurodegenerative diseases.
        Trends Neurosci. 2010; 33: 317-325
        • Goetzl E.J.
        • Boxer A.
        • Schwartz J.B.
        • Abner E.L.
        • Petersen R.C.
        • Miller B.L.
        • et al.
        Low Neural Exosomal Levels of Cellular Survival Factors in Alzheimer's disease, Annals of Clinical and Translational Neurology.
        2015https://doi.org/10.1002/acn3.211
        • Gomes C.
        • Keller S.
        • Altevogt P.
        • Costa J.
        Evidence for secretion of Cu, Zn superoxide dismutase via exosomes from a cell model of amyotrophic lateral sclerosis.
        Neurosci. Lett. 2007; 428: 43-46
        • Gonzales P.A.
        • Pisitkun T.
        • Hoffert J.D.
        • Tchapyjnikov D.
        • Star R.A.
        • Kleta R.
        • et al.
        Large-scale proteomics and phosphoproteomics of urinary exosomes.
        J. Am. Soc. Nephrol. 2009; 20: 363-379
        • Gonzales P.A.
        • Zhou H.
        • Pisitkun T.
        • Wang N.S.
        • Star R.A.
        • Knepper M.A.
        • Yuen P.S.
        Isolation and purification of exosomes in urine.
        Methods Mol. Biol. 2010; 641: 89-99
        • Guo B.B.
        • Bellingham S.A.
        • Hill A.F.
        The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes.
        J. Biol. Chem. 2015; 290: 3455-3467
        • Hansson O.
        • Zetterberg H.
        • Buchhave P.
        • Londos E.
        • Blennow K.
        • Minthon L.
        Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study.
        Lancet Neurol. 2006; 5: 228-234
        • Harding C.
        • Heuser J.
        • Stahl P.
        Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes.
        J. Cell Biol. 1983; 97: 329-339
        • Hardy J.
        • Allsop D.
        Amyloid deposition as the central event in the aetiology of Alzheimer's disease.
        Trends Pharmacol. 1991; 12: 383-388
        • Hebert S.S.
        • Wang W.X.
        • Zhu Q.
        • Nelson P.T.
        A study of small RNAs from cerebral neocortex of pathology-verified Alzheimer's disease, dementia with lewy bodies, hippocampal sclerosis, frontotemporal lobar dementia, and non-demented human controls.
        J. Alzheimers Dis. 2013; 35: 335-348
        • Horstman L.L.
        • Jy W.
        • Minagar A.
        • Bidot C.J.
        • Jimenez J.J.
        • Alexander J.S.
        • Ahn Y.S.
        Cell-derived microparticles and exosomes in neuroinflammatory disorders.
        Int. Rev. Neurobiol. 2007; 79: 227-268
        • Huang T.
        • Liu Y.
        • Huang M.
        • Zhao X.
        • Cheng L.
        Wnt1-cre-mediated conditional loss of Dicer results in malformation of the midbrain and cerebellum and failure of neural crest and dopaminergic differentiation in mice.
        J. Mol. Cell Biol. 2010; 2: 152-163
        • Hunter M.P.
        • Ismail N.
        • Zhang X.
        • Aguda B.D.
        • Lee E.J.
        • Yu L.
        • et al.
        Detection of microRNA expression in human peripheral blood microvesicles.
        PLoS One. 2008; 3e3694
        • Hyungsoon I.
        • Shao H.
        • Park Y.I.
        • Peterson V.M.
        • Castro C.M.
        • Weissleder R.
        • Lee H.
        Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor.
        Nat. Biotechnol. 2014; 32: 490-495
        • Im H.I.
        • Kenny P.J.
        MicroRNAs in neuronal function and dysfunction.
        Trends Neurosci. 2012; 35: 325-334
        • Johnson R.
        • Zuccato C.
        • Belyaev N.D.
        • Guest D.J.
        • Cattaneo E.
        • Buckley N.J.
        A microRNA-based gene dysregulation pathway in Huntington's disease.
        Neurobiol. Dis. 2008; 29: 438-445
        • Johnstone R.M.
        • Adam M.
        • Hammond J.R.
        • Orr L.
        • Turbide C.
        Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes).
        J. Biol. Chem. 1987; 262: 9412-9420
        • Junn E.
        • Lee K.W.
        • Jeong B.S.
        • Chan T.W.
        • Im J.Y.
        Mouradian MM.Repression of alpha-synuclein expression and toxicity by microRNA-7.
        Proc. Natl. Acad. Sci. U. S. A. 2009; 4: 13052-13057
        • Kawase-Koga Y.
        • Otaegi G.
        • Sun T.
        Different timings of Dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system.
        Dev. Dyn. 2009; 238: 2800-2812
        • Kegel K.B.
        • Kim M.
        • Sapp E.
        • McIntyre C.
        • Castaño J.G.
        • Aronin N.
        • DiFiglia M.
        Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy.
        J. Neurosci. 2000; 20: 7268-7278
        • Keller S.
        • Rupp C.
        • Stoeck A.
        • Runz S.
        • Fogel M.
        • Lugert S.
        • et al.
        CD24 is a marker of exosomes secreted into urine and amniotic fluid.
        Kidney Int. 2007; 72: 1095-1102
        • Kettenmann H.
        • Hanisch U.K.
        • Noda M.
        • Verkhratsky A.
        Physiology of microglia.
        Physiol. Rev. 2011; 91: 461-553
        • Kim A.H.
        • Reimers M.
        • Maher B.
        • Williamson V.
        • McMichael O.
        • McClay J.L.
        • et al.
        MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders.
        Schizophr. Res. 2010; 124: 183-191
        • Kim J.
        • Inoue K.
        • Ishii J.
        • Vanti W.B.
        • Voronov S.V.
        • Murchison E.
        • et al.
        A MicroRNA feedback circuit in midbrain dopamine neurons.
        Science. 2007; 31: 1220-1224
        • Kowal J.
        • Tkach M.
        • Thery C.
        Biogenesis and secretion of exosomes.
        Curr. Opin. Cell Biol. 2014; 29C: 116-125
        • Kumar P.
        • Dezso Z.
        • MacKenzie C.
        • Oestreicher J.
        • Agoulnik S.
        • Byrne M.
        • et al.
        Circulating miRNA biomarkers for Alzheimer's disease.
        PLoS One. 2013; 8e69807
        • Lachenal G.
        • Pernet-Gallay K.
        • Chivet M.
        • Hemming F.J.
        • Belly A.
        • Bodon G.
        • et al.
        Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity.
        Mol. Cell. Neurosci. 2011; 46: 409-418
        • Lai R.C.
        • Tan S.S.
        • The B.J.
        • Sze S.K.
        • Arslan F.
        • de Kleijn K.P.
        • et al.
        Proteolytic potential of the MSC exosome proteome: implications for an exosome-mediated delivery of therapeutic proteasome.
        Int. J. Proteome. 2012; 971907
        • Lamparski H.G.
        • Metha-Damani A.
        • Yao J.Y.
        • Patel S.
        • Hsu D.H.
        • Ruegg C.
        • Le Pecq J.B.
        Production and characterization of clinical grade exosomes derived from dendritic cells.
        J. Immunol. Methods. 2002; 15: 211-226
        • Lau P.
        • Frigerio C.S.
        • De Strooper B.
        Variance in the identification of microRNAs deregulated in Alzheimer's disease and possible role of lincRNAs in the pathology: the need of larger datasets.
        Ageing Res. Rev. 2014; 17: 43-53
        • Laulagnier K.
        • Vincent-Schneider H.
        • Hamdi S.
        • Subra C.
        • Lankar D.
        • Record M.
        Characterization of exosome subpopulations from RBL-2H3 cells using fluorescent lipids.
        Blood Cells Mol. Dis. 2005; 35: 116-121
        • Laulagnier K.
        • Motta C.
        • Hamdi S.
        • Roy S.
        • Fauvelle F.
        • Pageaux J.F.
        • et al.
        Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization.
        Biochem. J. 2004; 380: 161-171
        • Lee J.H.
        • Kim J.A.
        • Kwon M.H.
        • Kang J.Y.
        • Rhee W.J.
        In situ single step detection of exosome microRNA using molecular beacon.
        Biomaterials. Jun. 2015; 54: 116-125
        • Leidinger P.
        • Backes C.
        • Deutscher S.
        • Schmitt K.
        • Mueller S.C.
        • Frese K.
        • et al.
        A blood based 12-miRNA signature of Alzheimer disease patients.
        Genome Biol. 2013; 3: R78
        • Li X.
        • Valencia A.
        • Sapp E.
        • Masso N.
        • Alexander J.
        • Reeves P.
        • et al.
        Aberrant Rab11-dependent trafficking of the neuronal glutamate transporter EAAC1 causes oxidative stress and cell death in Huntington's disease.
        J. Neurosci. 2010; 30: 4552-4561
        • Li X.B.
        • Zhang Z.R.
        • Schluesener H.J.
        • Xu S.Q.
        Role of exosomes in immune regulation.
        J. Cell. Mol. Med. 2006; 10: 364-375
        • Li Y.
        • Chin L.S.
        • Levey A.I.
        • Li L.
        Huntingtin-associated protein 1 interacts with hepatocyte growth factor-regulated tyrosine kinase substrate and functions in endosomal trafficking.
        J. Biol. Chem. 2002; 277: 28212-28221
        • Lukiw W.J.
        • Alexandrov P.N.
        • Zhao Y.
        • Hill J.M.
        • Bhattacharjee S.
        Spreading of Alzheimer's disease inflammatory signaling through soluble micro-RNA.
        Neuroreport. 2012; 23: 621-626
        • Mareike M.
        • Jäkel L.
        • Bruinsma I.B.
        • Claassen J.A.
        • Kuiperij H.B.
        • Verbeek M.M.
        MicroRNA-29a is a candidate biomarker for Alzheimer's disease in cell-free cerebrospinal fluid.
        Mol. Neurobiol. 2015; 1: 559-1182
        • Mathivanan S.
        • Fahner C.J.
        • Reid G.E.
        • Simpson R.J.
        Exocarta 2012: database of exosomal proteins, RNA and lipids.
        Nucleic Acids Res. 2012; 40: D1241-D1244
        • Mehdiani A.
        • Maier A.
        • Pinto A.
        • Barth M.
        • Akhyari P.
        • Lichtenberg A.
        An innovative method for exosome quantification and size measurement.
        J. Vis. Exp. 2015; 95e50974
        • Melkonyan H.S.
        • Feaver W.J.
        • Meyer E.
        • Scheinker V.
        • Shekhtman E.M.
        • Xin Z.
        • Umansky S.R.
        Transrenal nucleic acids: from proof of principle to clinical tests.
        Ann. N.Y. Acad. Sci. 2008; 1137: 73-81
        • Merchant M.L.
        • Powell D.W.
        • Wilkey D.W.
        • Cummins T.D.
        • Deegens J.K.
        • Rood I.M.
        • et al.
        Microfiltration isolation of human urinary exosomes for characterization by MS.
        Proteomics Clin. 2010; 4: 84-96
        • Mitchell P.S.
        • Parkin R.K.
        • Kroh E.M.
        • Fritz B.R.
        • Wyman S.K.
        • Pogosova-Agadjanyan E.L.
        • et al.
        Circulating microRNAs as stable blood-based markers for cancer detection.
        Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 10513-10518
        • Momen-Heravi F.
        • Balaj L.
        • Alian S.
        • Trachtenberg A.J.
        • Hochberg F.H.
        • Skog J.
        • Kuo W.P.
        Impact of biofluid viscosity on size and sedimentation efficiency of the isolated microvesicles.
        Front. Physiol. 2012; 3: 162
        • Nelson P.T.
        • Wang W.X.
        MiR-107 is reduced in Alzheimer's disease brain neocortex: validation study.
        J. Alzheimers Dis. 2010; 21: 75-79
        • Nolte-’t Hoen E.N.
        • van der Vlist E.J.
        • Aalberts M.
        • Mertens H.C.
        • Bosch B.J.
        • Bartelink W.
        • et al.
        Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles.
        Nanomedicine. 2012; 8: 712-720
        • Ostrowski M.
        • Carmo N.B.
        • Krumeich S.
        • Fanget I.
        • Raposo G.
        • Savina A.
        • et al.
        Rab27a and Rab27b control different steps of the exosome secretion pathway.
        Nat. Cell Biol. 2010; 12: 19-30
        • Pacifici M.
        • Delbue S.
        • Ferrante P.
        • Jeansonne D.
        • Kadri F.
        • Nelson S.
        • et al.
        Cerebrospinal fluid miRNA profile in HIV-encephalitis.
        J. Cell. Physiol. 2013; 228: 1070-1075
        • Packer A.N.
        • Xing Y.
        • Harper S.Q.
        • Jones L.
        • Davidson B.L.
        Davidson the bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease.
        J. Neurosci. 2008; 28: 14341-14346
        • Pan B.T.
        • Teng K.
        • Wu C.
        • Adam M.
        • Johnstone R.M.
        Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes.
        J. Cell Biol. 1985; 101: 942-948
        • Patz S.
        • Trattnig C.
        • Grünbacher G.
        • Ebner B.
        • Gülly C.
        • Novak A.
        • et al.
        More than cell dust: microparticles isolated from cerebrospinal fluid of brain injured patients are messengers carrying mRNAs, miRNAs and proteins.
        J. Neurotrauma. 2013; 30: 1232-1242
        • Pegtel D.M.
        • Cosmopoulos K.
        • Thorley-Lawson D.A.
        • van Eijndhoven M.A.
        • Hopmans E.S.
        • Lindenberg J.L.
        • et al.
        Functional delivery of viral miRNAs via exosomes.
        Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 6328-6333
        • Perkins D.O.
        • Jeffries C.D.
        • Jarskog L.F.
        • Thomson J.M.
        • Woods K.
        • Newman M.A.
        • et al.
        microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder.
        Genome Biol. 2007; 8: R27
        • Pisitkun T.
        • Shen R.F.
        • Knepper M.A.
        Identification and proteomic profiling of exosomes in human urine.
        Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 13368-13373
        • Prusiner S.B.
        Shattuck lecture—neurodegenerative diseases and prions.
        N. Engl. J. Med. 2001; 344: 1516-1526
        • Rajendran L.
        • Honsho M.
        • Zahn T.R.
        • Keller P.
        • Geiger K.D.
        • Verkade P.
        • Simons K.
        Alzheimer's disease beta-amyloid peptides are released in association with exosomes.
        Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 11172-11177
        • Raposo G.
        • Tenza D.
        • Mecheri S.
        • Peronet R.
        • Bonnerot C.
        • Desaymard C.
        Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation.
        Mol. Biol. Cell. 1997; 8: 2631-2645
        • Raposo G.
        • Nijman H.W.
        • Stoorvogel W.
        • Liejendekker R.
        • Harding C.V.
        • Melief C.J.
        • Geuze H.J.
        B lymphocytes secrete antigen-presenting vesicles.
        J. Exp. Med. 1996; 183: 1161-1172
        • Rekker K.
        • Saarea M.
        • Roosta A.M.
        • Kubod A.L.
        • Zarovnid N.
        • Chiesid A.A.
        • et al.
        Comparison of serum exosome isolation methods for microRNA profiling.
        Clin. Biochem. 2014; 47: 135-138
        • Risacher S.
        • Saykin A.
        Neuroimaging and other biomarkers for Alzheimer's Disease: the changing landscape of early detection.
        Annu. Rev. Clin. Psychol. 2012; 9: 18.1-18.28
        • Rosenmann H.
        CSF biomarkers for amyloid and tau pathology in Alzheimer's disease.
        J. Mol. Neurosci. 2012; 47: 1-14
        • Sala Frigerio C.
        • Lau P.
        • Salta E.
        • Tournoy J.
        • Bossers K.
        • Vandenberghe R.
        • et al.
        Reduced expression of hsa-miR-27a-3p in CSF of patients with Alzheimer disease.
        Neurology. 2013; 81: 2103-2106
        • Santa-Maria I.
        • Alaniz M.E.
        • Renwick N.
        • Cela C.
        • Fulga T.A.
        • Van Vactor D.
        • et al.
        Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau.
        J. Clin. Invest. 2015; 125: 681-686
        • Satoh J.
        • Kino Y.
        • Niida S.
        MicroRNA-Seq data analysis pipeline to identify blood biomarkers for Alzheimer's Disease from public data.
        Biomark. Insights. 2015; 10: 21-31
        • Satoh J.
        Molecular network of microRNA targets in Alzheimer's disease brains.
        Exp. Neurol. 2012; 235: 436-446
        • Schonrock N.
        • Ke Y.D.
        • Humphreys D.
        • Staufenbiel M.
        • Ittner L.M.
        • Preiss T.
        • Götz J.
        Neuronal microRNA deregulation in response to Alzheimer's disease amyloid-beta.
        PLoS One. 2010; 5e11070
        • Schorey J.S.
        • Sweet L.
        The mycobacterial glycopeptidolipids: structure, function, and their ro le in pathogenesis.
        Glycobiology. 2008; 18: 832-841
        • Sempere L.F.
        • Freemantle S.
        • Pitha-Rowe I.
        • Moss E.
        • Dmitrovsky E.
        • Ambros V.
        Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation.
        Genome Biol. 2004; 5: R13
        • Sharma S.
        • Rasool H.
        • Palanisamy V.
        • Mathisen C.
        • Schmidt M.
        • Wong D.
        • Gimzewski J.
        Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy.
        ACS Nano. 2010; 4: 1921-1926
        • Sheinerman K.S.
        • Tsivinsky V.G.
        • Crawford F.
        • Mullan M.J.
        • Abdullah L.
        • Umansky S.R.
        Plasma microRNA biomarkers for detection of mild cognitive impairment.
        Aging (Albany NY). 2012; 4: 590-605
        • Simpson R.J.
        • Kalra H.
        • Mathivanan S.
        ExoCarta as a resource for exosomal research.
        J. Extracell. Vesicles. 2012; https://doi.org/10.3402/jev.v1i0.18374
        • Skog J.
        • Wurdinger T.
        • van Rijn S.
        • Meijer D.H.
        • Gainche L.
        • Sena-Esteves M.
        • et al.
        Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers.
        Nat. Cell Biol. 2008; 10: 1470-1476
        • Tan L.
        • Yu J.T.
        • Liu Q.Y.
        • Tan M.S.
        • Zhang W.
        • Hu N.
        • et al.
        Circulating miR-125b as a biomarker of Alzheimer's disease.
        J. Neurol. Sci. 2014; 336: 52-56
        • Tauro B.J.
        • Greeninga D.W.
        • Mathiasa R.A.
        • Jia H.
        • Mathivanana S.
        • Scottc A.M.
        • Simpson R.J.
        Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes.
        Methods. 2012; 56: 293-304
        • Taylor D.D.
        • Akyol S.
        • Gercel-Taylor C.
        Pregnancy-associated exosomes and their modulation of T cell signaling.
        J. Immunol. 2006; 176: 1534-1542
        • Théry C.
        • Ostrowski M.
        • Segura E.
        Membrane vesicles as conveyors of immune responses.
        Nat. Rev Immunol. 2009; 9: 581-593
        • Théry C.
        • Amigorena S.
        • Raposo G.
        • Clayton A.
        Isolation and characterization of exosomes from cell culture supernatants and biological fluids, current protocols in cell biology chapter 3.
        2006 (Unit 3 22)
        • Théry C.
        • Regnault A.
        • Garin J.
        • Wolfers J.
        • Zitvogel L.
        • Ricciardi-Castagnoli P.
        • et al.
        Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73.
        J. Cell Biol. 1999; 147: 599-610
        • Théry C.
        • Zitvogel L.
        • Amigorena S.
        Exosomes: composition, biogenesis and function.
        Nat. Rev. Immunol. 2002; 2: 569-579
        • Tomlinson P.R.
        • Zheng Y.
        • Fischer R.
        • Heidasch R.
        • Gardiner C.
        • Evetts S.
        • et al.
        Identification of distinct circulating exosomes in Parkinson's disease.
        Ann. Clin. Transl. Neurol. 2015; 2: 353-361
        • Tu M.
        • Wei F.
        • Yang J.
        • Wong D.
        Detection of exosomal biomarker by electric field-induced release and measurement (EFIRM).
        J. Vis. Exp. 2015; 95e52439
        • Valadi H.
        • Ekstrom K.
        • Bossios A.
        • Sjostrand M.
        • Lee J.J.
        • Lotvall J.O.
        Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.
        Nat. Cell Biol. 2007; 9: 654-659
        • van der Pol E.
        • Böing A.N.
        • Harrison P.
        • Sturk A.
        • Nieuwland R.
        Classification, functions, and clinical relevance of extracellular vesicles.
        Pharmacol. Rev. 2012; 64: 676-705
        • van Niel G.
        • Porto-Carreiro I.
        • Simoes S.
        • Raposo G.
        Exosomes: a common pathway for a specialized function.
        J. Biochem. 2006; 140: 13-21
        • van Niel G.
        • Raposo G.
        • Candalh C.
        • Boussac M.
        • Hershberg R.
        • Cerf-Bensussan N.
        • Heyman M.
        Intestinal epithelial cells secrete exosome-like vesicles.
        Gastroenterology. 2001; 121: 337-349
        • Vella L.J.
        • Sharples R.A.
        • Lawson V.A.
        • Masters C.L.
        • Cappai R.
        • Hill A.F.
        Packaging of prions into exosomes is associated with a novel pathway of PrP processing.
        J. Pathol. 2007; 211: 582-590
        • Villemagne V.L.
        • Burnham S.
        • Bourgeat P.
        • Brown B.
        • Ellis K.A.
        • Salvado O.
        • et al.
        Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study.
        Lancet Neurol. 2013; 12: 357-367
        • Walsh D.M.
        • Selkoe D.J.
        Deciphering the molecular basis of memory failure in Alzheimer's disease.
        Neuron. 2004; 44: 181-193
        • Wang G.
        • Zhou X.
        • Bai Y.
        • Zhang Z.
        • Zhao D.
        Cellular prion protein released on exosomes from macrophages binds to Hsp70.
        Acta Biochim. Biophys. Sin. 2010; 42: 345-350
        • Wang W.X.
        • Rajeev B.W.
        • Stromberg A.J.
        • Ren N.
        • Tang G.
        • Huang Q.
        • et al.
        The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1.
        J. Neurosci. 2008; 28: 1213-1223
        • Watt A.D.
        • Perez K.A.
        • Faux N.G.
        • Pike K.E.
        • Rowe C.C.
        • Bourgeat P.
        • et al.
        Increasing the predictive accuracy of amyloid-beta blood-borne biomarkers in Alzheimer's disease.
        J. Alzheimers Dis. 2011; 24: 47-59
        • Weber J.A.
        • Baxter D.H.
        • Zhang S.
        • Huang D.Y.
        • Huang K.H.
        • Lee M.J.
        • et al.
        The microRNA spectrum in 12 body fluids.
        Clin. Chem. 2010; 56: 1733-1741
        • Wong H.K.
        • Veremeyko T.
        • Patel N.
        • Lemere C.A.
        • Walsh D.M.
        • Esau C.
        • et al.
        Derepression of FOXO3a death axis by microRNA-132 and 2212 causes neuronal apoptosis in Alzheimer's disease.
        Hum. Mol. Genet. 2013; 22: 3077-3092
        • Wubbolts R.
        • Leckie R.S.
        • Veenhuizen P.T.
        • Schwarzmann G.
        • Möbius W.
        • Hoernschemeyer J.
        • et al.
        Proteomc and biochemical analyses of human B cell-derived exosomes.
        J. Biol. Chem. 2003; 278: 10963-10972
        • Yuana Y.
        • Koning R.I.
        • Kuil M.E.
        • Rensen P.C.
        • Koster A.J.
        • Bertina R.M.
        • Osanto S.
        Cryo-electron microscopy of extracellular vesicles in fresh plasma.
        J. Extracell. Vesicles. 2013; 2https://doi.org/10.3402/jev.v2i0.21494
        • Zhou H.
        • Yuen P.S.
        • Pisitkun T.
        • Gonzales P.A.
        • Yasuda H.
        • Dear J.W.
        • et al.
        Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery.
        Kidney Int. 2006; 69: 1471-1476
        • Zitvogel L.
        • Regnault A.
        • Lozier A.
        • Wolfers J.
        • Flament C.
        • Tenza D.
        • et al.
        Eradication of established murine tumors using a novel cell-free vaccinedendritic cell-derived exosomes.
        Nat. Med. 1998; 4: 594-600
        • Hebert S.S.
        • Horre K.
        • Nicolai L.
        • Papadopoulou A.S.
        • Mandemakers W.
        • Silahtaroglu A.N.
        • et al.
        Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/beta-secretase expression.
        Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 6415-6420
        • Schonrock N.
        • Matamales M.
        • Ittner L.M.
        • Gotz J.
        MicroRNA networks surrounding APP and amyloid-beta metabolism–implications for Alzheimer's disease.
        Exp. Neurol. 2012; 235: 447-454
        • Wang X.
        • Liu P.
        • Zhu H.
        • Xu Y.
        • Ma C.
        • Dai X.
        • et al.
        miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer's disease, inhibits bcl2 translation.
        Brain Res. Bull. 2009; 80: 268-273
        • Luo H.
        • Wu Q.
        • Ye X.
        • Xiong Y.
        • Zhu J.
        • Xu J.
        • et al.
        Genome-wide analysis of miRNA signature in the APPswe/PS1ΔE9 mouse model of Alzheimer’s disease.
        PLoS One. 2014; 9e101725
        • Garza-Manero S.
        • Arias C.
        • Bermúdez-Rattoni F.
        • Vaca L.
        • Zepeda A.
        Identification of age- and disease-related alterations in circulating miRNAs in a mouse model of Alzheimer's disease.
        Front. Cell. Neurosci. 2015; 9: 53
        • Giau V.V.
        • Bagyinszky E.
        • An S.S.
        • Kim S.Y.
        Role of apolipoprotein E in neurodegenerative diseases.
        Neuropsychiatr. Dis. Treat. 2015; 11: 1723-1737
        • Pan Y.
        • Terpstra E.
        • Wang Y.
        • Qiao F.
        • Wang J.
        • Tong Y.
        • et al.
        Dysregulation and diagnostic potential of microRNA in Alzheimer’s disease.
        J. Alzheimers Dis. 2015; 49: 1-12
        • Zhao Y.
        • Bhattacharjee S.
        • Dua P.
        • Alexandrov P.N.
        • Lukiw W.J.
        MicroRNA-based biomarkers and the diagnosis of Alzheimer’s disease.
        Front Neurol. 2015; 6: 162
        • Kappel A.
        • Backes C.
        • Huang Y.
        • Zafari S.
        • Leidinger P.
        • Meder B.
        • et al.
        MicroRNA in vitro diagnostics using immunoassay analyzers.
        Clin. Chem. 2015; 61: 600-607
        • Giau V.V.
        • An S.S.
        • Bagyinszky E.
        • Kim S.Y.
        Gene panels and primers for next generation sequencing studies on neurodegenerative disorders.
        Mol. Cell. Toxicol. 2015; 11: 89-143
        • Nunez-Iglesias J.
        • Liu C.C.
        • Morgan T.E.
        • Finch C.E.
        • Zhou X.J.
        Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer's disease cortex reveals altered miRNA regulation.
        PloS One. 2010; 5e8898
        • Shioya M.
        • Obayashi S.
        • Tabunoki H.
        • Arima K.
        • Saito Y.
        • Ishida T.
        • Satoh J.
        Aberrant microRNA expression in the brains of neurodegenerative diseases: MiR-29a decreased in Alzheimer disease brains targets neurone navigator 3.
        Neuropathol. Appl. Neurobiol. 2010; 36: 320-330
        • Wang W.X.
        • Huang Q.
        • Hu Y.
        • Stromberg A.J.
        • Nelson P.T.
        Patterns of microRNA expression in normal and early Alzheimer's disease human temporal cortex: white matter versus gray matter.
        Acta Neuropathol. 2011; 121: 193-205
        • Shen J.
        • Kelleher R.J.
        The presenilin hypothesis of Alzheimer's disease: evidence for a loss-of-function pathogenic mechanism.
        Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 403-409
        • Krichevsky A.M.
        • King K.S.
        • Donahue C.P.
        • Khrapko K.
        • Kosik K.S.
        A microRNA array reveals extensive regulation of microRNAs during brain development.
        RNA. 2003; 9: 1274-1281
        • Li L.
        • Chen X.P.
        • Li Y.J.
        microRNA-146a and human disease.
        Scand. J. Immunol. 2010; 71: 227-231