Advertisement
Review article| Volume 357, ISSUE 1-2, P8-18, October 15, 2015

The natural history of brain volume loss among patients with multiple sclerosis: A systematic literature review and meta-analysis

      Highlights

      • Summarized brain volume loss (BVL) in multiple sclerosis (MS) patients across studies
      • BVL was similar among first-generation DMT-treated and untreated MS patients.
      • In meta-regression, no relationship was observed between BVL and lesion volume.

      Abstract

      Background

      Multiple sclerosis has been associated with progressive brain volume loss.

      Objective

      We aimed to systematically summarize reported rates of brain volume loss in multiple sclerosis and explore associations between brain volume loss and markers of disease severity.

      Methods

      A systematic literature search (2003–2013) was conducted to identify studies with ≥12 months of follow-up, reported brain volume measurement algorithms, and changes in brain volume. Meta-analysis random-effects models were applied. Associations between brain volume change, changes in lesion volume and disease duration were examined in pre-specified meta-regression models.

      Results

      We identified 38 studies. For the meta-analysis, 12 studies that reported annualized percentage brain volume change (PBVC), specified first-generation disease-modifying treatments (e.g., interferon-beta or glatiramer acetate) and used Structural Image Evaluation of Normalized Atrophy algorithm were analyzed. The annualized PBVC ranged from −1.34% to −0.46% per year. The pooled PBVC was −0.69% (95% CI = −0.87% to −0.50%) in study arms receiving first-generation disease-modifying treatments (N = 6 studies) and −0.71% (95% CI = −0.81% to −0.61%) in untreated study arms (N = 6 studies).

      Conclusions

      In this study, the average multiple sclerosis patient receiving first-generation disease-modifying treatment or no disease-modifying treatment lost approximately 0.7% of brain volume/year, well above rates associated with normal aging (0.1%–0.3% of brain volume/year).

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Noyes K.
        • Weinstock-Guttman B.
        Impact of diagnosis and early treatment on the course of multiple sclerosis.
        Am. J. Manag. Care. Nov 2013; 19: s321-s331
      1. Novartis gains FDA approval for Gilenya(TM), a novel first-line multiple sclerosis treatment shown to significantly reduce relapses and delay disability progression.
        (Accessed April 18, 2014)
        • Fox N.C.
        • Jenkins R.
        • Leary S.M.
        • et al.
        Progressive cerebral atrophy in MS: a serial study using registered, volumetric MRI.
        Neurology. 2000; 54: 807-812
        • Miller D.H.
        • Barkhof F.
        • Frank J.A.
        • Parker G.J.
        • Thompson A.J.
        Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance.
        Brain. Aug 2002; 125: 1676-1695
        • Raine C.S.
        • McFarland H.F.
        • Hohlfeld R.
        Multiple Sclerosis: A Comprehensive Text.
        Saunders/Elsevier, 2008
        • De Stefano N.
        • Giorgio A.
        • Battaglini M.
        • et al.
        Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes.
        Neurology. 2010; 74: 1868-1876
        • Zivadinov R.
        • Bakshi R.
        Role of MRI in multiple sclerosis II: brain and spinal cord atrophy.
        Front. Biosci. 2004; 9: 647-664
      2. Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011].
        (Accessed August 6, 2012)
        • Wells G.
        • Shea B.
        • O'Connell D.
        • Peterson J.
        • Welch V.
        • Losos M.
        • Tugwell P.
        The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analysis.
        (Accessed August 6, 2012)
        • Higgins J.P.
        • Thompson S.G.
        • Deeks J.J.
        • Altman D.G.
        Measuring inconsistency in meta-analyses.
        BMJ. 2003; 327: 557-560
        • DerSimonian R.
        • Laird N.
        Meta-analysis in clinical trials.
        Control. Clin. Trials. Sep 1986; 7: 177-188
        • Thompson S.G.
        • Higgins J.P.
        How should meta-regression analyses be undertaken and interpreted?.
        Stat. Med. 2002; 21: 1559-1573
        • Liberati A.
        • Altman D.G.
        • Tetzlaff J.
        • et al.
        The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration.
        BMJ. 2009; 339 (2009-07-21 11:46:49)
        • Kappos
        Long-term efficacy and safety of fingolimod (FTY720) in patients with relapsing–remitting multiple sclerosis.
        • Agosta F.
        • Rovaris M.
        • Pagani E.
        • Sormani M.P.
        • Comi G.
        • Filippi M.
        Magnetization transfer MRI metrics predict the accumulation of disability 8 years later in patients with multiple sclerosis.
        Brain. Oct 2006; 129: 2620-2627
        • Amato M.P.
        • Portaccio E.
        • Goretti B.
        • et al.
        Association of neocortical volume changes with cognitive deterioration in relapsing–remitting multiple sclerosis.
        Arch. Neurol. Aug 2007; 64: 1157-1161
        • Amato M.P.
        • Portaccio E.
        • Goretti B.
        • et al.
        Relevance of cognitive deterioration in early relapsing–remitting MS: a 3-year follow-up study.
        Mult. Scler. Dec 2010; 16: 1474-1482
        • Bendfeldt K.
        • Egger H.
        • Nichols T.E.
        • et al.
        Effect of immunomodulatory medication on regional gray matter loss in relapsing–remitting multiple sclerosis—a longitudinal MRI study.
        Brain Res. 2010; 1325: 174-182
        • Calabrese M.
        • Rocca M.A.
        • Atzori M.
        • et al.
        A 3-year magnetic resonance imaging study of cortical lesions in relapse-onset multiple sclerosis.
        Ann. Neurol. April 2010; 67
        • Calabrese M.
        • Bernardi V.
        • Atzori M.
        • et al.
        Effect of disease-modifying drugs on cortical lesions and atrophy in relapsing–remitting multiple sclerosis.
        Mult. Scler. Apr 2012; 18: 418-424
        • Calabrese M.
        • Rocca M.A.
        • Atzori M.
        • et al.
        Cortical lesions in primary progressive multiple sclerosis: a 2-year longitudinal MR study.
        Neurology. 2009; 72: 1330-1336
        • Lukas C.
        • Minneboo A.
        • De Groot V.
        • Moraal B.
        • Knol D.
        • Polman C.
        • Barkhof F.
        • Vrenken H.
        Early central atrophy rate predicts 5 year clinical outcome in multiple sclerosis.
        Journal of Neurology, Neurosurgery & Psychiatry. 2010; (jnnp-2009)
        • Chard D.T.
        • Griffin C.M.
        • Rashid W.
        • et al.
        Progressive grey matter atrophy in clinically early relapsing–remitting multiple sclerosis.
        Mult. Scler. 2004; 10: 387-391
        • Chen J.T.
        • Narayanan S.
        • Collins D.L.
        • Smith S.M.
        • Matthews P.M.
        • Arnold D.L.
        Relating neocortical pathology to disability progression in multiple sclerosis using MRI.
        NeuroImage. Nov 2004; 23: 1168-1175
        • Furby J.
        • Hayton T.
        • Altmann D.
        • et al.
        A longitudinal study of MRI-detected atrophy in secondary progressive multiple sclerosis.
        J. Neurol. Sep 2010; 257: 1508-1516
        • Hardmeier M.
        • Wagenpfeil S.
        • Freitag P.
        • et al.
        Rate of brain atrophy in relapsing MS decreases during treatment with IFNbeta-1a.
        Neurology. 2005; 64: 236-240
        • Horakova D.
        • Cox J.L.
        • Havrdova E.
        • et al.
        Evolution of different MRI measures in patients with active relapsing–remitting multiple sclerosis over 2 and 5 years: a case–control study.
        J. Neurol. Neurosurg. Psychiatry. Apr 2008; 79: 407-414
        • Horakova D.
        • Dwyer M.G.
        • Havrdova E.
        • et al.
        Gray matter atrophy and disability progression in patients with early relapsing–remitting multiple sclerosis: a 5-year longitudinal study.
        J. Neurol. Sci. 2009; 282: 112-119
        • Jasperse B.
        • Minneboo A.
        • de Groot V.
        • et al.
        Determinants of cerebral atrophy rate at the time of diagnosis of multiple sclerosis.
        Arch. Neurol. Feb 2007; 64: 190-194
        • Jasperse B.
        • Vrenken H.
        • Sanz-Arigita E.
        • et al.
        Regional brain atrophy development is related to specific aspects of clinical dysfunction in multiple sclerosis.
        NeuroImage. 2007; 38: 529-537
        • Kappos L.
        • Radue E.W.
        • O'Connor P.
        • et al.
        A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis.
        N. Engl. J. Med. 2010; 362: 387-401
        • Khaleeli Z.
        • Altmann D.R.
        • Cercignani M.
        • Ciccarelli O.
        • Miller D.H.
        • Thompson A.J.
        Magnetization transfer ratio in gray matter: a potential surrogate marker for progression in early primary progressive multiple sclerosis.
        Arch. Neurol. Nov 2008; 65: 1454-1459
        • Khan O.
        • Bao F.
        • Shah M.
        • et al.
        Effect of disease-modifying therapies on brain volume in relapsing–remitting multiple sclerosis: results of a five-year brain MRI study.
        J. Neurol. Sci. 2012; 312: 7-12
        • Martola J.
        • Bergstrom J.
        • Fredrikson S.
        • et al.
        A longitudinal observational study of brain atrophy rate reflecting four decades of multiple sclerosis: a comparison of serial 1D, 2D, and volumetric measurements from MRI images.
        Neuroradiology. Feb 2010; 52: 109-117
        • Mesaros S.
        • Rocca M.A.
        • Sormani M.P.
        • Charil A.
        • Comi G.
        • Filippi M.
        Clinical and conventional MRI predictors of disability and brain atrophy accumulation in RRMS. A large scale, short-term follow-up study.
        J. Neurol. Sep 2008; 255: 1378-1383
        • Moodie J.
        • Healy B.C.
        • Buckle G.J.
        • et al.
        Magnetic resonance disease severity scale (MRDSS) for patients with multiple sclerosis: a longitudinal study.
        J. Neurol. Sci. 2012; 315: 49-54
        • Oreja-Guevara C.
        • Rovaris M.
        • Iannucci G.
        • et al.
        Progressive gray matter damage in patients with relapsing–remitting multiple sclerosis: a longitudinal diffusion tensor magnetic resonance imaging study.
        Arch. Neurol. Apr 2005; 62: 578-584
        • Petzold A.
        • Mondria T.
        • Kuhle J.
        • et al.
        Evidence for acute neurotoxicity after chemotherapy.
        Ann. Neurol. Dec 2010; 68: 806-815
        • Radue E.W.
        • O'Connor P.
        • Polman C.H.
        • et al.
        Impact of fingolimod therapy on magnetic resonance imaging outcomes in patients with multiple sclerosis.
        Arch. Neurol. Oct 2012; 69: 1259-1269
        • Richert N.D.
        • Howard T.
        • Frank J.A.
        • et al.
        Relationship between inflammatory lesions and cerebral atrophy in multiple sclerosis.
        Neurology. 2006; 66: 551-556
        • Rojas J.I.
        • Patrucco L.
        • Besada C.
        • Bengolea L.
        • Cristiano E.
        Brain atrophy at onset and physical disability in multiple sclerosis.
        Arq. Neuropsiquiatr. Oct 2012; 70: 765-768
        • Rovaris M.
        • Comi G.
        • Rocca M.A.
        • et al.
        Long-term follow-up of patients treated with glatiramer acetate: a multicentre, multinational extension of the European/Canadian double-blind, placebo-controlled, MRI-monitored trial.
        Mult. Scler. May 2007; 13: 502-508
        • Rovaris M.
        • Gallo A.
        • Valsasina P.
        • et al.
        Short-term accrual of gray matter pathology in patients with progressive multiple sclerosis: an in vivo study using diffusion tensor MRI.
        NeuroImage. 2005; 24: 1139-1146
        • Rovaris M.
        • Judica E.
        • Gallo A.
        • et al.
        Grey matter damage predicts the evolution of primary progressive multiple sclerosis at 5 years.
        Brain. Oct 2006; 129: 2628-2634
        • Samann P.G.
        • Knop M.
        • Golgor E.
        • Messler S.
        • Czisch M.
        • Weber F.
        Brain volume and diffusion markers as predictors of disability and short-term disease evolution in multiple sclerosis.
        AJNR Am. J. Neuroradiol. Aug 2012; 33: 1356-1362
        • Sastre-Garriga J.
        • Ingle G.T.
        • Chard D.T.
        • et al.
        Grey and white matter volume changes in early primary progressive multiple sclerosis: a longitudinal study.
        Brain. Jun 2005; 128: 1454-1460
        • Summers M.
        • Fisniku L.
        • Anderson V.
        • Miller D.
        • Cipolotti L.
        • Ron M.
        Cognitive impairment in relapsing–remitting multiple sclerosis can be predicted by imaging performed several years earlier.
        Mult. Scler. Mar 2008; 14: 197-204
        • Tiberio M.
        • Chard D.T.
        • Altmann D.R.
        • et al.
        Gray and white matter volume changes in early RRMS: a 2-year longitudinal study.
        Neurology. 2005; 64: 1001-1007
        • Tur C.
        • Khaleeli Z.
        • Ciccarelli O.
        • et al.
        Complementary roles of grey matter MTR and T2 lesions in predicting progression in early PPMS.
        J. Neurol. Neurosurg. Psychiatry. Apr 2011; 82: 423-428
        • Turner B.
        • Lin X.
        • Calmon G.
        • Roberts N.
        • Blumhardt L.D.
        Cerebral atrophy and disability in relapsing–remitting and secondary progressive multiple sclerosis over four years.
        Mult. Scler. 2003; 9: 21-27
        • Zivadinov R.
        • Locatelli L.
        • Cookfair D.
        • et al.
        Interferon beta-1a slows progression of brain atrophy in relapsing–remitting multiple sclerosis predominantly by reducing gray matter atrophy.
        Mult. Scler. May 2007; 13: 490-501
        • Davatzikos C.
        • Fan Y.
        • Wu X.
        • Shen D.
        • Resnick S.M.
        Detection of prodromal Alzheimer's disease via pattern classification of MRI.
        Neurobiol. Aging. 2008; 29: 514-523
        • De Stefano N.
        • Airas L.
        • Grigoriadis N.
        • et al.
        Clinical relevance of brain volume measures in multiple sclerosis.
        CNS Drugs. Feb 2014; 28: 147-156
        • Fisher E.
        • Lee J.C.
        • Nakamura K.
        • Rudick R.A.
        Gray matter atrophy in multiple sclerosis: a longitudinal study.
        Ann. Neurol. Sep 2008; 64: 255-265
        • Bermel R.A.
        • Bakshi R.
        The measurement and clinical relevance of brain atrophy in multiple sclerosis.
        Lancet Neurol. Feb 2006; 5: 158-170
        • Arnold D.L.
        • Gold R.
        • Kappos L.
        • et al.
        Effects of delayed-release dimethyl fumarate on MRI measures in the phase 3 DEFINE study.
        J. Neurol. Sep 2014; 261: 1794-1802
        • Calabresi P.A.
        • Radue E.W.
        • Goodin D.
        • et al.
        Safety and efficacy of fingolimod in patients with relapsing–remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial.
        Lancet Neurol. Jun 2014; 13: 545-556
        • Barkhof F.
        • Cohen J.A.
        • Radue E.W.
        • et al.
        Brain volume changes, on-study correlations and the link to disability in three fingolimod phase 3 studies.
        in: Paper Presented at: ECTRIMS 2013; Copenhagen, Denmark. 2013
        • Zivadinov R.
        • Bakshi R.
        Central nervous system atrophy and clinical status in multiple sclerosis.
        J. Neuroimaging. Jul 2004; 14: 27S-35S
        • Meier D.S.
        • Weiner H.L.
        • Guttmann C.R.
        Time-series modeling of multiple sclerosis disease activity: a promising window on disease progression and repair potential?.
        Neurotherapeutics. Jul 2007; 4: 485-498
        • Tortorella C.
        • Bellacosa A.
        • Paolicelli D.
        • et al.
        Age-related gadolinium-enhancement of MRI brain lesions in multiple sclerosis.
        J. Neurol. Sci. 2005; 239: 95-99