Advertisement
Research Article| Volume 352, ISSUE 1-2, P62-67, May 15, 2015

Download started.

Ok

Blocking PAR2 attenuates oxaliplatin-induced neuropathic pain via TRPV1 and releases of substance P and CGRP in superficial dorsal horn of spinal cord

Published:March 26, 2015DOI:https://doi.org/10.1016/j.jns.2015.03.029

      Highlights

      • PAR2 contributes to mechanical hyperalgesia and cold hypersensitivity evoked by OXL.
      • TRPV1 contributes to mechanical hyperalgesia evoked by OXL.
      • TRPV1 is one of downstream pathways for PAR2 to play a role.

      Abstract

      Oxaliplatin (OXL) is a third-generation chemotherapeutic agent commonly used to treat metastatic digestive tumors; however, neuropathic pain is one of the main limiting complications of OXL. The purpose of this study was to examine the underlying mechanisms by which neuropathic pain is induced by OXL in a rat model. Our results demonstrated that blocking spinal proteinase-activated receptor 2 (PAR2) and transient receptor potential vanilloid 1 (TRPV1) attenuated pain responses evoked by mechanical stimulation and decreased the releases of substance P and CGRP in the superficial dorsal horn of the spinal cord. The attenuating effect on mechanical pain was significantly smaller in OXL-rats than that in control rats. Blocking PAR2 also attenuated a heightened cold sensitivity evoked by OXL; whereas blocking TRPV1 had little effects on OXL-evoked hypersensitive cold response. Our data also showed that OXL increased the protein expressions of PAR2 and TRPV1 in the superficial dorsal horn. In addition, blocking PAR2 decreased TRPV1 expression in OXL-rats. Overall, our data suggest that upregulated expression of PAR2 in the superficial dorsal horn contributes to mechanical hyperalgesia and cold hypersensitivity; whereas amplified TRPV1 plays a role in regulating mechanical hyperalgesia, but not cold hypersensitivity after administration of OXL. We further suggest that TRPV1 is likely one of the signaling pathways for PAR2 to play a role in regulating OXL-induced neuropathic pain.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hanna Magdi
        • Zylicz (Ben) Z.
        Cancer pain.
        Springer, 2013
        • Pasetto L.M.
        • D'Andrea M.R.
        • Rossi E.
        • Monfardini S.
        Oxaliplatin-related neurotoxicity: how and why?.
        Crit Rev Oncol Hematol. 2006; 59: 159-168
        • Hoskin P.J.
        Radiotherapy.
        Clinical pain management: cancer pain. Hodder Arnold, London2008: 251-255
        • Portenoy R.K.
        Treatment of cancer pain.
        Lancet. 2011; 377: 2236-2247
        • Bécouarn Y.
        • Agostini C.
        • Trufflandier N.
        • Boulanger V.
        Oxaliplatin: available data in non-colorectal gastrointestinal malignancies.
        Crit Rev Oncol Hematol. 2001; 40: 265-272
        • Sereno M.
        • Gutiérrez-Gutiérrez G.
        • Gómez-Raposo C.
        • López-Gómez M.
        • Merino-Salvador M.
        • Tébar F.Z.
        • et al.
        Oxaliplatin induced-neuropathy in digestive tumors.
        Crit Rev Oncol Hematol. 2014; 89: 166-178
        • Morgado C.
        • Terra P.P.
        • Tavares I.
        Neuronal hyperactivity at the spinal cord and periaqueductal grey during painful diabetic neuropathy: effects of gabapentin.
        Eur J Pain. 2010; 14: 693-699
        • Silva M.
        • Amorim D.
        • Almeida A.
        • Tavares I.
        • Pinto-Ribeiro F.
        • Morgado C.
        Pronociceptive changes in the activity of rostroventromedial medulla (RVM) pain modulatory cells in the streptozotocin-diabetic rat.
        Brain Res Bull. 2013; 96: 39-44
        • Bouhassira D.
        • Lantéri-Minet M.
        • Attal N.
        • Laurent B.
        • Touboul C.
        Prevalence of chronic pain with neuropathic characteristics in the general population.
        Pain. 2008; 136: 380-387
        • Hua X.-Y.
        • Yaksh T.L.
        Dorsal horn substance P and NK1 receptors: study of a model system in spinal nociceptive processing.
        in: Malcangio M. Synaptic plasticity in pain. Springer Science Business Media, 2009: 109-138
        • Engel M.A.
        • Khalil M.
        • Mueller-Tribbensee S.M.
        • Becker C.
        • Neuhuber W.L.
        • Neurath M.F.
        • et al.
        The proximodistal aggravation of colitis depends on substance P released from TRPV1-expressing sensory neurons.
        J Gastroenterol. 2012; 47: 256-265
        • Lin Q.
        • Li D.
        • Xu X.
        • Zou X.
        • Fang L.
        Roles of TRPV1 and neuropeptidergic receptors in dorsal root reflex-mediated neurogenic inflammation induced by intradermal injection of capsaicin.
        Mol Pain. 2007; 3: 30
        • Puttfarcken P.S.
        • Han P.
        • Joshi S.K.
        • Neelands T.R.
        • Gauvin D.M.
        • Baker S.J.
        • et al.
        A-995662 [(R)-8-(4-methyl-5-(4-(trifluoromethyl)phenyl)oxazol-2-ylamino)-1,2,3,4-tetrahydr onaphthalen-2-ol], a novel, selective TRPV1 receptor antagonist, reduces spinal release of glutamate and CGRP in a rat knee joint pain model.
        Pain. 2010; 150: 319-326
        • Alier K.A.
        • Endicott J.A.
        • Stemkowski P.L.
        • Cenac N.
        • Cellars L.
        • Chapman K.
        • et al.
        Intrathecal administration of proteinase-activated receptor-2 agonists produces hyperalgesia by exciting the cell bodies of primary sensory neurons.
        J Pharmacol Exp Ther. 2008; 324: 224-233
        • Vergnolle N.
        • Bunnett N.W.
        • Sharkey K.A.
        • Brussee V.
        • Compton S.J.
        • Grady E.F.
        • et al.
        Proteinase-activated receptor-2 and hyperalgesia: a novel pain pathway.
        Nat Med. 2001; 7: 821-826
        • Ferrier J.
        • Bayet-Robert M.
        • Pereira B.
        • Daulhac L.
        • Eschalier A.
        • Pezet D.
        • et al.
        A polyamine-deficient diet prevents oxaliplatin-induced acute cold and mechanical hypersensitivity in rats.
        PLoS One. 2013; 8: e77828
        • Ling B.
        • Coudore-Civiale M.A.
        • Balayssac D.
        • Eschalier A.
        • Coudore F.
        • Authier N.
        Behavioral and immunohistological assessment of painful neuropathy induced by a single oxaliplatin injection in the rat.
        Toxicology. 2007; 234: 176-184
        • Ling B.
        • Authier N.
        • Balayssac D.
        • Eschalier A.
        • Coudore F.
        Behavioral and pharmacological description of oxaliplatin-induced painful neuropathy in rat.
        Pain. 2007; 128: 225-234
        • Kanai Y.
        • Hara T.
        • Imai A.
        Participation of the spinal TRPV1 receptors in formalin-evoked pain transduction: a study using a selective TRPV1 antagonist, iodo-resiniferatoxin.
        J Pharm Pharmacol. 2006; 58: 489-493
        • Chaplan S.R.
        • Bach F.W.
        • Pogrel J.W.
        • Chung J.M.
        • Yaksh T.L.
        Quantitative assessment of tactile allodynia in the rat paw.
        J Neurosci Methods. 1994; 53: 55-63
        • Wang D.
        • Zhao J.
        • Wang J.
        • Li J.
        • Yu S.
        • Guo X.
        Deficiency of female sex hormones augments PGE and CGRP levels within midbrain periaqueductal gray.
        J Neurol Sci. 2014; 346: 107-111
        • Cottrell G.S.
        • Amadesi S.
        • Schmidlin F.
        • Bunnett N.
        Protease-activated receptor 2: activation, signalling and function.
        Biochem Soc Trans. 2003; 31: 1191-1197
        • D'Andrea M.R.
        • Derian C.K.
        • Leturcq D.
        • Baker S.M.
        • Brunmark A.
        • Ling P.
        • et al.
        Characterization of protease-activated receptor-2 immunoreactivity in normal human tissues.
        J Histochem Cytochem. 1998; 46: 157-164
        • Steinhoff M.
        • Vergnolle N.
        • Young S.H.
        • Tognetto M.
        • Amadesi S.
        • Ennes H.S.
        • et al.
        Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism.
        Nat Med. 2000; 6: 151-158
        • Chen Y.
        • Yang C.
        • Wang Z.J.
        Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain.
        Neuroscience. 2011; 193: 440-451
        • Caterina M.J.
        • Leffler A.
        • Malmberg A.B.
        • Martin W.J.
        • Trafton J.
        • Petersen-Zeitz K.R.
        • et al.
        Impaired nociception and pain sensation in mice lacking the capsaicin receptor.
        Science. 2000; 288: 306-313
        • Caterina M.J.
        • Schumacher M.A.
        • Tominaga M.
        • Rosen T.A.
        • Levine J.D.
        • Julius D.
        The capsaicin receptor: a heat-activated ion channel in the pain pathway.
        Nature. 1997; 389: 816-824
        • Davis J.B.
        • Gray J.
        • Gunthorpe M.J.
        • Hatcher J.P.
        • Davey P.T.
        • Overend P.
        • et al.
        Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia.
        Nature. 2000; 405: 183-187
        • Bevan S.
        • Quallo T.
        • Andersson D.A.
        TRPV1.
        Handb Exp Pharmacol. 2014; 222: 207-245
        • Julius D.
        TRP channels and pain.
        Annu Rev Cell Dev Biol. 2013; 29: 355-384
        • Peppin J.F.
        • Pappagallo M.
        Capsaicinoids in the treatment of neuropathic pain: a review.
        Ther Adv Neurol Disord. 2014; 7: 22-32
        • Spicarova D.
        • Nerandzic V.
        • Palecek J.
        Update on the role of spinal cord TRPV1 receptors in pain modulation.
        Physiol Res. 2014; 63: S225-S236
        • Andersson D.A.
        • Gentry C.
        • Moss S.
        • Bevan S.
        Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress.
        J Neurosci. 2008; 28: 2485-2494
        • Bandell M.
        • Story G.M.
        • Hwang S.W.
        • Viswanath V.
        • Eid S.R.
        • Petrus M.J.
        • et al.
        Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin.
        Neuron. 2004; 41: 849-857
        • Bautista D.M.
        • Movahed P.
        • Hinman A.
        • Axelsson H.E.
        • Sterner O.
        • Hogestatt E.D.
        • et al.
        Pungent products from garlic activate the sensory ion channel TRPA1.
        Proc Natl Acad Sci U S A. 2005; 102: 12248-12252
        • Jordt S.E.
        • Bautista D.M.
        • Chuang H.H.
        • McKemy D.D.
        • Zygmunt P.M.
        • Hogestatt E.D.
        • et al.
        Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1.
        Nature. 2004; 427: 260-265
        • Sawada Y.
        • Hosokawa H.
        • Matsumura K.
        • Kobayashi S.
        Activation of transient receptor potential ankyrin 1 by hydrogen peroxide.
        Eur J Neurosci. 2008; 27: 1131-1142
        • Kwan K.Y.
        • Allchorne A.J.
        • Vollrath M.A.
        • Christensen A.P.
        • Zhang D.S.
        • Woolf C.J.
        • et al.
        TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction.
        Neuron. 2006; 50: 277-289
        • Story G.M.
        • Peier A.M.
        • Reeve A.J.
        • Eid S.R.
        • Mosbacher J.
        • Hricik T.R.
        • et al.
        ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures.
        Cell. 2003; 112: 819-829
        • Zhao M.
        • Isami K.
        • Nakamura S.
        • Shirakawa H.
        • Nakagawa T.
        • Kaneko S.
        Acute cold hypersensitivity characteristically induced by oxaliplatin is caused by the enhanced responsiveness of TRPA1 in mice.
        Mol Pain. 2012; 8: 55
        • Ma W.
        • Eisenach J.C.
        Intraplantar injection of a cyclooxygenase inhibitor ketorolac reduces immunoreactivities of substance P, calcitonin gene-related peptide, and dynorphin in the dorsal horn of rats with nerve injury or inflammation.
        Neuroscience. 2003; 121: 681-690
        • Argyriou A.A.
        • Polychronopoulos P.
        • Iconomou G.
        • Chroni E.
        • Kalofonos H.P.
        A review on oxaliplatin-induced peripheral nerve damage.
        Cancer Treat Rev. 2008; 34: 368-377