Research Article| Volume 345, ISSUE 1-2, P220-223, October 15, 2014

Mitochondrial complex I gene variations; as a potential genetic risk factor in pathogenesis of multiple sclerosis


      • MS is considered as a chronic inflammatory disease of the central nervous system.
      • The both nuclear and mitochondrial genes are involved in MS development.
      • The mtDNA of complex I gene variations are involved in the progression of MS.
      • Relationship between mitochondrial complex I gene variations and MS.


      Background and purpose

      Multiple sclerosis (MS) is an autoimmune-mediated inflammatory and debilitating disease of the central nervous system. Several investigations have suggested that the mitochondrial DNA encoded subunits of complex I gene variations are involved in the progression of MS. In this study, we investigated the possible association between mitochondrial complex I gene variations and MS in a Filipino population.

      Material and methods

      A total of 300 individuals were included in the present study, two-hundred patients with MS clinical symptoms, and one-hundred healthy subjects without MS clinical features. We amplified target genes of mtDNA using polymerase chain reaction technique (PCR), and sequenced these to evaluate mitochondrial complex I gene variations.


      We found nine variations (Nt 4216 T > C, Nt 5153 A > G, Nt 10142 C > T, Nt 11353 T > C, Nt 11935 T > C, Nt 12062 C > T, Nt 13042 G > A, Nt 13708 G > A and Nt 14179 G > A) in mtDNA-encoded complex I subunit genes. Our results showed that the prevalence of ND1, ND2, ND3, ND4 and ND5 gene variations was significantly higher in patients than in healthy controls (P < 0.0001). Whereas, the frequency of Nt 14179 G > A variation in ND6 gene was significantly higher in the control group compared with the patients (P < 0.0001).


      Taken together our data supports a strongly positive association between mitochondrial complex I gene variations and MS pathogenesis in a Filipino population.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Glass C.K.
        • Saijo K.
        • Winner B.
        • Marchetto M.C.
        • Gage F.H.
        Mechanisms underlying inflammation in neurodegeneration.
        Cell. 2010; 140: 918-934
        • Sadovnick A.D.
        Genetic background of multiple sclerosis.
        Autoimmun Rev. 2012; 11: 163-166
        • Andalib S.
        • Talebi M.
        • Sakhinia E.
        • Farhoudi M.
        • Sadeghi-Bazargani H.
        • Motavallian A.
        • et al.
        Multiple sclerosis and mitochondrial gene variations: a review.
        J Neurol Sci. 2013; 330: 10-15
        • Ban M.
        • Elson J.
        • Walton A.
        • Turnbull D.
        • Compston A.
        • Chinnery P.
        • et al.
        Investigation of the role of mitochondrial DNA in multiple sclerosis susceptibility.
        PLoS One. 2008; 3: e2891
        • Witte M.E.
        • Mahad D.J.
        • Lassmann H.
        • van Horssen J.
        Mitochondrial dysfunction contributes to neurodegeneration in multiple sclerosis.
        Trends Mol Med. 2014; 20: 179-187
        • Mahad D.
        • Lassmann H.
        • Turnbull D.
        Mitochondria and disease progression in multiple sclerosis.
        Neuropathol Appl Neurobiol. 2008; 34: 577-589
        • Mao P.
        • Reddy P.H.
        Is multiple sclerosis a mitochondrial disease?.
        Biochim Biophys Acta. 2010; 1802: 66-79
        • DiMauro S.
        • Schon E.A.
        Mitochondrial DNA mutations in human disease.
        Am J Med Genet. 2001; 106: 18-26
        • Reeve A.K.
        • Krishnan K.J.
        • Turnbull D.
        Mitochondrial DNA mutations in disease, aging, and neurodegeneration.
        Ann N Y Acad Sci. 2008; 1147: 21-29
        • Smeitink J.
        • van den Heuvel L.
        • DiMauro S.
        The genetics and pathology of oxidative phosphorylation.
        Nat Rev Genet. 2001; 2: 342-352
        • Kumleh H.H.
        • Riazi G.H.
        • Houshmand M.
        • Sanati M.H.
        • Gharagozli K.
        • Shafa M.
        Complex I deficiency in Persian multiple sclerosis patients.
        J Neurol Sci. 2006; 243: 65-69
        • Rezaee A.R.
        • Azadi A.
        • Houshmand M.
        • Mahmoodi F.
        • Purpak Z.
        • Safaei S.
        • et al.
        Mitochondrial and nuclear genes as the cause of complex I deficiency.
        Genet Mol Res. 2013; 12: 3551-3554
        • Poser C.M.
        • Paty D.W.
        • Scheinberg L.
        • Mc Donald W.I.
        • Davis F.A.
        • Ebers G.C.
        • et al.
        New diagnostic criteria for multiple sclerosis guide lines for research protocols.
        Ann Neurol. 1983; 13: 227-237
        • Su K.
        • Bourdette D.
        • Forte M.
        Mitochondrial dysfunction and neurodegeneration in multiple sclerosis.
        Front Physiol. 2013; 4: 169
        • Andrews H.E.
        • Nichols P.P.
        • Bates D.
        • Turnbull D.M.
        Mitochondrial dysfunction plays a key role in progressive axonal loss in multiple sclerosis.
        Med Hypotheses. 2005; 64: 669-677
        • Maruszak A.
        • Zekanowski C.
        Mitochondrial dysfunction and Alzheimer's disease.
        Prog Neuropsychopharmacol Biol Psychiatry. 2011; 35: 320-330
        • Winklhofer K.F.
        • Haass C.
        Mitochondrial dysfunction in Parkinson's disease.
        Biochim Biophys Acta. 2010; 1802: 29-44
        • Zhu J.
        • Chu C.T.
        Mitochondrial dysfunction in Parkinson's disease.
        J Alzheimers Dis. 2010; 20: 325-334
        • Calabrese V.
        • Lodi R.
        • Tonon C.
        • D’Agata V.
        • Sapienza M.
        • Scapagnini G.
        • et al.
        Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
        J Neurol Sci. 2005; 233: 145-162
        • Chaturvedi R.K.
        • Beal M.F.
        Mitochondrial diseases of the brain.
        Free Radic Biol Med. 2013; 63: 1-29
        • Federico A.
        • Cardaioli E.
        • Da Pozzo P.
        • Formichi P.
        • Gallus G.N.
        • Radi E.
        Mitochondria, oxidative stress and neurodegeneration.
        J Neurol Sci. 2012; 322: 254-262
        • Yu X.
        • Koczan D.
        • Sulonen A.M.
        • Akkad D.A.
        • Kroner A.
        • Comabella M.
        • et al.
        mtDNA nt13708A variant increases the risk of multiple sclerosis.
        PLoS One. 2008; 3: e1530