Advertisement
Research Article| Volume 345, ISSUE 1-2, P125-130, October 15, 2014

Download started.

Ok

Cerebral microbleeds in a multiethnic elderly community: Demographic and clinical correlates

  • Anne F. Wiegman
    Affiliations
    Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
    Search for articles by this author
  • Irene B. Meier
    Affiliations
    Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
    Search for articles by this author
  • Nicole Schupf
    Affiliations
    Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA

    G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA

    Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
    Search for articles by this author
  • Jennifer J. Manly
    Affiliations
    Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA

    G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA

    Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
    Search for articles by this author
  • Vanessa A. Guzman
    Affiliations
    Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
    Search for articles by this author
  • Atul Narkhede
    Affiliations
    Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
    Search for articles by this author
  • Yaakov Stern
    Affiliations
    Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA

    G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA

    Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
    Search for articles by this author
  • Sergi Martinez-Ramirez
    Affiliations
    Massachusetts General Hospital, Stroke Research Center, Boston, MA, USA
    Search for articles by this author
  • Anand Viswanathan
    Affiliations
    Massachusetts General Hospital, Stroke Research Center, Boston, MA, USA
    Search for articles by this author
  • José A. Luchsinger
    Affiliations
    Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA

    Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
    Search for articles by this author
  • Steven M. Greenberg
    Affiliations
    Massachusetts General Hospital, Stroke Research Center, Boston, MA, USA
    Search for articles by this author
  • Richard Mayeux
    Affiliations
    Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA

    G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA

    Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA

    Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
    Search for articles by this author
  • Adam M. Brickman
    Correspondence
    Corresponding author at: Taub Institute for Research on Alzheimer's Disease and the Aging Brain, PS Box 16, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA. Tel.: +1 212 342 1348; fax: +1 212 342 1838.
    Affiliations
    Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA

    G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA

    Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
    Search for articles by this author

      Highlights

      • We examine MRI cerebral microbleeds in a large multi-ethnic cohort of older adults.
      • Twenty-seven percent of participants had detectable microbleeds.
      • Deep and lobar microbleeds were associated with vascular risk and cerebrovascular disease.

      Abstract

      Background

      Microbleeds, small perivascular collections of hemosiderin manifested radiologically as hypointensities on gradient-echo magnetic resonance imaging (MRI), are important markers of small vessel pathology. Despite their clinical relevance, little is known about their prevalence and demographic correlates, particularly among ethnically diverse older adults. We examined demographic and clinical correlates of regional microbleeds in a multi-ethnic cohort and examined categorization schemes of microbleed distribution and severity.

      Methods

      Between 2005 and 2007, 769 individuals participated in a MRI study as part of the Washington Heights/Inwood Columbia Aging Project. Approximately four years later, 243 out of 339 participants (mean age = 84.50) who returned for a repeat MRI had gradient-echo scans for microbleed assessment and comprised the sample. We examined the association of deep and lobar microbleeds with age, sex, education, vascular factors, cognitive status and markers of small vessel disease.

      Results

      Sixty-seven of the 243 (27%) participants had at least one microbleed. Individuals with microbleeds were more likely to have a history of stroke than individuals without. When categorized as having either no microbleeds, microbleeds in deep regions only, in lobar regions only, and both deep and lobar microbleeds, hypertension, proportion of strokes, and white matter hyperintensity volume (WMH) increased monotonically across the four groups. The number of lobar microbleeds correlated with WMH volume and diastolic blood pressure.

      Conclusions

      Microbleeds in deep and lobar locations are associated with worse outcomes than microbleeds in either location alone, although the presence of lobar microbleeds appears to be more clinically relevant.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Koennecke H.C.
        Cerebral microbleeds on mri: prevalence, associations, and potential clinical implications.
        Neurology. 2006; 66: 165-171
        • Sveinbjornsdottir S.
        • Sigurdsson S.
        • Aspelund T.
        • Kjartansson O.
        • Eiriksdottir G.
        • Valtysdottir B.
        • et al.
        Cerebral microbleeds in the population based AGES-Reykjavik study: prevalence and location.
        J Neurol Neurosurg Psychiatry. 2008; 79: 1002-1006
        • Vernooij M.W.
        • van der Lugt A.
        • Ikram M.A.
        • Wielopolski P.A.
        • Niessen W.J.
        • Hofman A.
        • et al.
        Prevalence and risk factors of cerebral microbleeds: the Rotterdam scan study.
        Neurology. 2008; 70: 1208-1214
        • Fazekas F.
        • Kleinert R.
        • Roob G.
        • Kleinert G.
        • Kapeller P.
        • Schmidt R.
        • et al.
        Histopathologic analysis of foci of signal loss on gradient-echo t2*-weighted mr images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds.
        AJNR Am J Neuroradiol. 1999; 20: 637-642
        • Greenberg S.M.
        • Vernooij M.W.
        • Cordonnier C.
        • Viswanathan A.
        • Al-Shahi Salman R.
        • Warach S.
        • et al.
        Cerebral microbleeds: a guide to detection and interpretation.
        Lancet Neurol. 2009; 8: 165-174
        • Knudsen K.A.
        • Rosand J.
        • Karluk D.
        • Greenberg S.M.
        Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria.
        Neurology. 2001; 56: 537-539
        • Smith E.E.
        • Gurol M.E.
        • Eng J.A.
        • Engel C.R.
        • Nguyen T.N.
        • Rosand J.
        • et al.
        White matter lesions, cognition, and recurrent hemorrhage in lobar intracerebral hemorrhage.
        Neurology. 2004; 63: 1606-1612
        • Arvanitakis Z.
        • Leurgans S.E.
        • Wang Z.
        • Wilson R.S.
        • Bennett D.A.
        • Schneider J.A.
        Cerebral amyloid angiopathy pathology and cognitive domains in older persons.
        Ann Neurol. 2011; 69: 320-327
        • Poels M.M.
        • Ikram M.A.
        • van der Lugt A.
        • Hofman A.
        • Niessen W.J.
        • Krestin G.P.
        • et al.
        Cerebral microbleeds are associated with worse cognitive function: the Rotterdam scan study.
        Neurology. 2012; 78: 326-333
        • Zlokovic B.V.
        Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders.
        Nat Rev Neurosci. 2011; 12: 723-738
        • Brickman A.M.
        • Muraskin J.
        • Zimmerman M.E.
        Structural neuroimaging in Alzheimer's disease: do white matter hyperintensities matter?.
        Dialogues Clin Neurosci. 2009; 11: 181-190
        • Richard E.
        • Moll van Charante E.P.
        • van Gool W.A.
        Vascular risk factors as treatment target to prevent cognitive decline.
        J Alzheimer's Dis. 2012; 32: 733-740
        • de la Torre J.C.
        Cerebral hemodynamics and vascular risk factors: setting the stage for Alzheimer's disease.
        J Alzheimer's Dis. 2012; 32: 553-567
        • Jellinger K.A.
        Alzheimer disease and cerebrovascular pathology: an update.
        J Neural Transm. 2002; 109: 813-836
        • Scheltens P.
        • Goos J.D.
        Dementia in 2011: microbleeds in dementia—singing a different ARIA.
        Nat Rev Neurol. 2012; 8: 68-70
        • Sperling R.A.
        • Jack Jr., C.R.
        • Black S.E.
        • Frosch M.P.
        • Greenberg S.M.
        • Hyman B.T.
        • et al.
        Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer's association research roundtable workgroup.
        Alzheimer's Dement. 2011; 7: 367-385
        • Jeerakathil T.
        • Wolf P.A.
        • Beiser A.
        • Hald J.K.
        • Au R.
        • Kase C.S.
        • et al.
        Cerebral microbleeds: prevalence and associations with cardiovascular risk factors in the Framingham study.
        Stroke. 2004; 35: 1831-1835
        • Roob G.
        • Schmidt R.
        • Kapeller P.
        • Lechner A.
        • Hartung H.P.
        • Fazekas F.
        Mri evidence of past cerebral microbleeds in a healthy elderly population.
        Neurology. 1999; 52: 991-994
        • Tsushima Y.
        • Aoki J.
        • Endo K.
        Brain microhemorrhages detected on t2*-weighted gradient-echo MR images.
        AJNR Am J Neuroradiol. 2003; 24: 88-96
        • Tang M.X.
        • Cross P.
        • Andrews H.
        • Jacobs D.M.
        • Small S.
        • Bell K.
        • et al.
        Incidence of ad in African-Americans, Caribbean Hispanics, and Caucasians in northern Manhattan.
        Neurology. 2001; 56: 49-56
        • Brickman A.M.
        • Schupf N.
        • Manly J.J.
        • Luchsinger J.A.
        • Andrews H.
        • Tang M.X.
        • et al.
        Brain morphology in older African Americans, Caribbean Hispanics, and Whites from northern Manhattan.
        Arch Neurol. 2008; 65: 1053-1061
        • Brickman A.M.
        • Provenzano F.A.
        • Muraskin J.
        • Manly J.J.
        • Blum S.
        • Apa Z.
        • et al.
        Regional white matter hyperintensity volume, not Hippocampal atrophy, predicts incident Alzheimer disease in the community.
        Arch Neurol. 2012; 69: 1621-1627
        • Brickman A.M.
        • Sneed J.R.
        • Provenzano F.A.
        • Garcon E.
        • Johnert L.
        • Muraskin J.
        • et al.
        Quantitative approaches for assessment of white matter hyperintensities in elderly populations.
        Psychiatry Res. 2011; 193: 101-106
        • Luchsinger J.A.
        • Reitz C.
        • Honig L.S.
        • Tang M.X.
        • Shea S.
        • Mayeux R.
        Aggregation of vascular risk factors and risk of incident Alzheimer disease.
        Neurology. 2005; 65: 545-551
        • Hatano S.
        plans for prevention of stroke formulated by who and practice in Japan.
        Nihon Rinsho. 1976; 34: 131-136
        • Whitworth J.A.
        • World Health Organization ISoHWG
        2003 world health organization (WHO)/international society of hypertension (ISH) statement on management of hypertension.
        J Hypertens. 2003; 21: 1983-1992
        • Hixson J.E.
        • Vernier D.T.
        • Powers P.K.
        Detection of SstI restriction site polymorphism in human APOC3 by the polymerase chain reaction.
        Nucleic Acids Res. 1991; 19: 196
        • Mayeux R.
        • Ottman R.
        • Maestre G.
        • Ngai C.
        • Tang M.X.
        • Ginsberg H.
        • et al.
        Synergistic effects of traumatic head injury and apolipoprotein-epsilon 4 in patients with Alzheimer's disease.
        Neurology. 1995; 45: 555-557
        • Manly J.J.
        • Tang M.X.
        • Schupf N.
        • Stern Y.
        • Vonsattel J.P.
        • Mayeux R.
        Frequency and course of mild cognitive impairment in a multiethnic community.
        Ann Neurol. 2008; 63: 494-506
        • Vernooij M.W.
        • Ikram M.A.
        • Wielopolski P.A.
        • Krestin G.P.
        • Breteler M.M.
        • van der Lugt A.
        Cerebral microbleeds: Accelerated 3D T2*-weighted GRE MR imaging versus conventional 2D T2*-weighted GRE MR imaging for detection.
        Radiology. 2008; 248: 272-277
        • Gilbert J.J.
        • Vinters H.V.
        Cerebral amyloid angiopathy: incidence and complications in the aging brain. I. Cerebral hemorrhage.
        Stroke. 1983; 14: 915-923
        • Greenberg S.M.
        • Rebeck G.W.
        • Vonsattel J.P.
        • Gomez-Isla T.
        • Hyman B.T.
        Apolipoprotein e epsilon 4 and cerebral hemorrhage associated with amyloid angiopathy.
        Ann Neurol. 1995; 38: 254-259
        • Maxwell S.S.
        • Jackson C.A.
        • Paternoster L.
        • Cordonnier C.
        • Thijs V.
        • Al-Shahi Salman R.
        • et al.
        Genetic associations with brain microbleeds: systematic review and meta-analyses.
        Neurology. 2011; 77: 158-167
        • Chen Y.W.
        • Gurol M.E.
        • Rosand J.
        • Viswanathan A.
        • Rakich S.M.
        • Groover T.R.
        • et al.
        Progression of white matter lesions and hemorrhages in cerebral amyloid angiopathy.
        Neurology. 2006; 67: 83-87
        • Nakata-Kudo Y.
        • Mizuno T.
        • Yamada K.
        • Shiga K.
        • Yoshikawa K.
        • Mori S.
        • et al.
        Microbleeds in Alzheimer disease are more related to cerebral amyloid angiopathy than cerebrovascular disease.
        Dement Geriatr Cogn Disord. 2006; 22: 8-14
        • Pettersen J.A.
        • Sathiyamoorthy G.
        • Gao F.Q.
        • Szilagyi G.
        • Nadkarni N.K.
        • St George-Hyslop P.
        • et al.
        Microbleed topography, leukoaraiosis, and cognition in probable Alzheimer disease from the sunnybrook dementia study.
        Arch Neurol. 2008; 65: 790-795
        • Zhu Y.C.
        • Chabriat H.
        • Godin O.
        • Dufouil C.
        • Rosand J.
        • Greenberg S.M.
        • et al.
        Distribution of white matter hyperintensity in cerebral hemorrhage and healthy aging.
        J Neurol. 2012; 259: 530-536
        • Goos J.D.
        • Kester M.I.
        • Barkhof F.
        • Klein M.
        • Blankenstein M.A.
        • Scheltens P.
        • et al.
        Patients with Alzheimer disease with multiple microbleeds: relation with cerebrospinal fluid biomarkers and cognition.
        Stroke. 2009; 40: 3455-3460
        • Yamada S.
        • Saiki M.
        • Satow T.
        • Fukuda A.
        • Ito M.
        • Minami S.
        • et al.
        Periventricular and deep white matter leukoaraiosis have a closer association with cerebral microbleeds than age.
        Eur J Neurol. 2012; 19: 98-104
        • Nicoll J.A.
        • Wilkinson D.
        • Holmes C.
        • Steart P.
        • Markham H.
        • Weller R.O.
        Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report.
        Nat Med. 2003; 9: 448-452
        • Fisher M.
        • Vasilevko V.
        • Passos G.F.
        • Ventura C.
        • Quiring D.
        • Cribbs D.H.
        Therapeutic modulation of cerebral microhemorrhage in a mouse model of cerebral amyloid angiopathy.
        Stroke. 2011; 42: 3300-3303
        • Pfeifer M.
        • Boncristiano S.
        • Bondolfi L.
        • Stalder A.
        • Deller T.
        • Staufenbiel M.
        • et al.
        Cerebral hemorrhage after passive anti-abeta immunotherapy.
        Science. 2002; 298: 1379
        • Carlson C.
        • Estergard W.
        • Oh J.
        • Suhy J.
        • Jack Jr., C.R.
        • Siemers E.
        • et al.
        Prevalence of asymptomatic vasogenic edema in pretreatment Alzheimer's disease study cohorts from phase 3 trials of semagacestat and solanezumab.
        Alzheimer's Dement. 2011; 7: 396-401
        • Cordonnier C.
        • van der Flier W.M.
        Brain microbleeds and Alzheimer's disease: innocent observation or key player?.
        Brain. 2011; 134: 335-344
        • Greenberg S.M.
        • Eng J.A.
        • Ning M.
        • Smith E.E.
        • Rosand J.
        Hemorrhage burden predicts recurrent intracerebral hemorrhage after lobar hemorrhage.
        Stroke. 2004; 35: 1415-1420
        • Soo Y.O.
        • Yang S.R.
        • Lam W.W.
        • Wong A.
        • Fan Y.H.
        • Leung H.H.
        • et al.
        Risk vs benefit of anti-thrombotic therapy in ischaemic stroke patients with cerebral microbleeds.
        J Neurol. 2008; 255: 1679-1686
        • Thijs V.
        • Lemmens R.
        • Schoofs C.
        • Gorner A.
        • Van Damme P.
        • Schrooten M.
        • et al.
        Microbleeds and the risk of recurrent stroke.
        Stroke. 2010; 41: 2005-2009
        • Igase M.
        • Tabara Y.
        • Igase K.
        • Nagai T.
        • Ochi N.
        • Kido T.
        • et al.
        Asymptomatic cerebral microbleeds seen in healthy subjects have a strong association with asymptomatic lacunar infarction.
        Circ J. 2009; 73: 530-533
        • Rosand J.
        Hypertension and the brain: stroke is just the tip of the iceberg.
        Neurology. 2004; 63: 6-7
        • Cordonnier C.
        • Al-Shahi Salman R.
        • Wardlaw J.
        Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting.
        Brain. 2007; 130: 1988-2003
        • Horita Y.
        • Imaizumi T.
        • Niwa J.
        • Yoshikawa J.
        • Miyata K.
        • Makabe T.
        • et al.
        analysis of dot-like hemosiderin spots using brain dock system.
        No Shinkei Geka. 2003; 31: 263-267
        • Tsushima Y.
        • Tanizaki Y.
        • Aoki J.
        • Endo K.
        Mr detection of microhemorrhages in neurologically healthy adults.
        Neuroradiology. 2002; 44: 31-36
        • Qiu C.
        • Cotch M.F.
        • Sigurdsson S.
        • Jonsson P.V.
        • Jonsdottir M.K.
        • Sveinbjrnsdottir S.
        • et al.
        Cerebral microbleeds, retinopathy, and dementia: the AGES-Reykjavik study.
        Neurology. 2010; 75: 2221-2228
        • Takashima Y.
        • Mori T.
        • Hashimoto M.
        • Kinukawa N.
        • Uchino A.
        • Yuzuriha T.
        • et al.
        Clinical correlating factors and cognitive function in community-dwelling healthy subjects with cerebral microbleeds.
        J Stroke Cerebrovasc Dis. 2011; 20: 105-110
        • Yakushiji Y.
        • Nishiyama M.
        • Yakushiji S.
        • Hirotsu T.
        • Uchino A.
        • Nakajima J.
        • et al.
        Brain microbleeds and global cognitive function in adults without neurological disorder.
        Stroke. 2008; 39: 3323-3328
        • Conijn M.M.
        • Geerlings M.I.
        • Biessels G.J.
        • Takahara T.
        • Witkamp T.D.
        • Zwanenburg J.J.
        • et al.
        Cerebral microbleeds on mr imaging: comparison between 1.5 and 7T.
        AJNR Am J Neuroradiol. 2011; 32: 1043-1049