Advertisement
Research Article| Volume 345, ISSUE 1-2, P48-55, October 15, 2014

Download started.

Ok

Intranasal nerve growth factor attenuates tau phosphorylation in brain after traumatic brain injury in rats

      Highlights

      • Nerve growth factor reduces tau hyperphosphorylation after traumatic brain injury.
      • Nerve growth factor decreases the GSK-3β activation in traumatic brain injury rats.
      • Nerve growth factor lowers the IL-1β and NF-κB in traumatic brain injury rats.
      • The inhibition of NF-κB/IL-1β/GSK-3β affects the reduction of phosphorylation tau.
      • Our observation provides a novel insight on the effect of NGF in TBI.

      Abstract

      Traumatic brain injury (TBI) is a considerable cause of mild cognitive impairment and dementia. Intranasal administration of nerve growth factor (NGF) has previously been found to improve cognitive function after TBI, but the mechanism remains unclear. This study aimed to investigate the effects of intranasal NGF on the tau hyperphosphorylation following TBI. A modified Feeney's weight-drop model was used to induce TBI. Rats were randomly divided into control group, TBI group, TBI + NGF group, TBI + PDTC group and TBI + IL-1ra group. Rats in TBI + NGF group were administered with NGF (5 μg/d) for 3 d before surgery. Hyperphosphorylated tau protein was remarkable in the peri-contusional cortex area with TBI. Both western blotting and immunostaining results displayed intranasal pretreatment of NGF significantly reduced tau phosphorylation. To evaluate the underlying mechanism, the levels of glycogen synthase kinase 3β (GSK-3β), interleukin-1β (IL-1β), and the DNA binding activity of nuclear factor-κB (NF-κB) were assayed. NGF markedly inhibited GSK-3β. NGF also reduced TBI-induced elevation of IL-1β and NF-κB DNA binding activity. Furthermore, PDTC and IL-1ra were injected to prove a potential signaling pathway among NF-κB, IL-1β and GSK-3β. Taken together, these findings demonstrated that intranasal NGF could effectively attenuate the hyperphosphorylation of tau after TBI, which might involve an integrated signaling pathway related to NF-κB.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hyder A.A.
        • Wunderlich C.A.
        • Puvanachandra P.
        • Gururaj G.
        • Kobusingye O.C.
        The impact of traumatic brain injuries: a global perspective.
        NeuroRehabilitation. 2007; 22: 341-353
        • Lozano R.
        • Naghavi M.
        • Foreman K.
        • Lim S.
        • Shibuya K.
        • Aboyans V.
        • et al.
        Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010.
        Lancet. 2013; 380: 2095-2128
        • DeKosky S.T.
        • Ikonomovic M.D.
        • Gandy S.
        Traumatic brain injury — football, warfare, and long-term effects.
        New Engl J Med. 2010; 363: 1293-1296
        • Gavett B.E.
        • Stern R.A.
        • Cantu R.C.
        • Nowinski C.J.
        • McKee A.C.
        Mild traumatic brain injury: a risk factor for neurodegeneration.
        Alzheimers Res Ther. 2010; 2
        • Calissano P.
        • Matrone C.
        • Amadoro G.
        Nerve growth factor as a paradigm of neurotrophins related to Alzheimer's disease.
        Dev Neurobiol. 2010; 70: 372-383
        • Williams B.J.
        • Eriksdotter-Jonhagen M.
        • Granholm A.C.
        Nerve growth factor in treatment and pathogenesis of Alzheimer's disease.
        Prog Neurobiol. 2006; 80: 114-128
        • Albeck D.
        • Mesches M.H.
        • Juthberg S.
        • Browning M.
        • Bickford P.C.
        • Rose G.M.
        • et al.
        Exogenous NGF restores endogenous NGF distribution in the brain of the cognitively impaired aged rat.
        Brain Res. 2003; 967: 306-310
        • Capsoni S.
        • Giannotta S.
        • Cattaneo A.
        Nerve growth factor and galantamine ameliorate early signs of neurodegeneration in anti-nerve growth factor mice.
        Proc Natl Acad Sci U S A. 2002; 99: 12432-12437
        • Fan X.Y.
        • Li Y.
        • Ma M.M.
        • Guo R.B.
        • Xu G.L.
        • Liu X.F.
        • et al.
        Intranasal dosing of nerve growth factor protects brain from poisoning of organophosphorus compounds in rats.
        Zhonghua Yi Xue Za Zhi. 2012; 92: 2366-2369
        • Jiang Y.
        • Wei N.
        • Lu T.
        • Zhu J.
        • Xu G.
        • Liu X.
        Intranasal brain-derived neurotrophic factor protects brain from ischemic insult via modulating local inflammation in rats.
        Neuroscience. 2011; 172: 398-405
        • Jiang Y.
        • Zhu J.
        • Xu G.
        • Liu X.
        Intranasal delivery of stem cells to the brain.
        Expert Opin Drug Deliv. 2011; 8: 623-632
        • Lv Q.
        • Fan X.
        • Xu G.
        • Liu Q.
        • Tian L.
        • Cai X.
        • et al.
        Intranasal delivery of nerve growth factor attenuates aquaporins-4-induced edema following traumatic brain injury in rats.
        Brain Res. 2013; 1493: 80-89
        • Guo R.
        • Tian L.
        • Lv Q.
        • Fan X.
        • Liu X.
        Intranasal delivery of nerve growth factor for cognitive dysfunction after traumatic brain injury in rats.
        J Med Postgrad. 2012; 5: 471-475
        • Tian L.L.
        • Guo R.B.
        • Yue X.Y.
        • Lv Q.S.
        • Ye X.C.
        • Wang Z.Z.
        • et al.
        Intranasal administration of nerve growth factor ameliorate beta-amyloid deposition after traumatic brain injury in rats.
        Brain Res. 2012; 1440: 47-55
        • Medeiros R.
        • Baglietto-Vargas D.
        • LaFerla F.M.
        The role of tau in Alzheimer's disease and related disorders.
        CNS Neurosci Ther. 2011; 17: 514-524
        • Montejo D.G.E.
        • Serrano L.
        • Avila J.
        Self assembly of microtubule associated protein tau into filaments resembling those found in Alzheimer disease.
        Biochem Biophys Res Commun. 1986; 141: 790-796
        • Kopke E.
        • Tung Y.C.
        • Shaikh S.
        • Alonso A.C.
        • Iqbal K.
        • Grundke-Iqbal I.
        Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease.
        J Biol Chem. 1993; 268: 24374-24384
        • Mandelkow E.
        • von Bergen M.
        • Biernat J.
        • Mandelkow E.M.
        Structural principles of tau and the paired helical filaments of Alzheimer's disease.
        Brain Pathol. 2007; 17: 83-90
        • Metcalfe M.J.
        • Figueiredo-Pereira M.E.
        Relationship between tau pathology and neuroinflammation in Alzheimer's disease.
        Mt Sinai J Med. 2010; 77: 50-58
        • Feeney D.M.
        • Boyeson M.G.
        • Linn R.T.
        • Murray H.M.
        • Dail W.G.
        Responses to cortical injury 1. Methodology and local-effects of contusions in the rat.
        Brain Res. 1981; 211: 67-77
        • Liu X.F.
        • Fawcett J.R.
        • Thorne R.G.
        • DeFor T.A.
        • Frey W.H.
        Intranasal administration of insulin-like growth factor-I bypasses the blood–brain barrier and protects against focal cerebral ischemic damage.
        J Neurol Sci. 2001; 187: 91-97
        • Ye R.
        • Yang Q.
        • Kong X.
        • Li N.
        • Zhang Y.
        • Han J.
        • et al.
        Sevoflurane preconditioning improves mitochondrial function and long-term neurologic sequelae after transient cerebral ischemia: role of mitochondrial permeability transition.
        Crit Care Med. 2012; 40: 2685-2693
        • Ye R.
        • Zhang X.
        • Kong X.
        • Han J.
        • Yang Q.
        • Zhang Y.
        • et al.
        Ginsenoside Rd attenuates mitochondrial dysfunction and sequential apoptosis after transient focal ischemia.
        Neuroscience. 2011; 178: 169-180
        • Jiang Y.
        • Wei N.
        • Zhu J.
        • Lu T.
        • Chen Z.
        • Xu G.
        • et al.
        Effects of brain-derived neurotrophic factor on local inflammation in experimental stroke of rat.
        Mediators Inflamm. 2010; 2010: 372423
        • Ye X.
        • Chopp M.
        • Liu X.
        • Zacharek A.
        • Cui X.
        • Yan T.
        • et al.
        Niaspan reduces high-mobility group box 1/receptor for advanced glycation endproducts after stroke in type-1 diabetic rats.
        Neuroscience. 2011; 190: 339-345
        • Yu F.S.
        • Zhang Y.M.
        • Chuang D.M.
        Lithium reduces BACE1 overexpression, beta amyloid accumulation, and spatial learning deficits in mice with traumatic brain injury.
        J Neurotrauma. 2012; 29: 2342-2351
        • Forstl H.
        • Haass C.
        • Hemmer B.
        • Meyer B.
        • Halle M.
        Boxing-acute complications and late sequelae from concussion to dementia.
        Dtsch Arztebl Int. 2010; 107: 818-835
        • Greer J.E.
        • Povlishock J.T.
        • Jacobs K.M.
        Electrophysiological abnormalities in both axotomized and nonaxotomized pyramidal neurons following mild traumatic brain injury.
        J Neurosci. 2012; 32: 6682-6687
        • Ikonomovic M.D.
        • Uryu K.
        • Abrahamson E.E.
        • Ciallella J.R.
        • Trojanowski J.Q.
        • Lee V.
        • et al.
        Alzheimer's pathology in human temporal cortex surgically excised after severe brain injury.
        Exp Neurol. 2004; 190: 192-203
        • Lucas J.J.
        • Hernandez F.
        • Gomez-Ramos P.
        • Moran M.A.
        • Hen R.
        • Avila J.
        Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice.
        EMBO J. 2001; 20: 27-39
        • Obulesu M.
        • Venu R.
        • Somashekhar R.
        Tau mediated neurodegeneration: an insight into Alzheimer's disease pathology.
        Neurochem Res. 2011; 36: 1329-1335
        • Yamaguchi H.
        • Ishiguro K.
        • Uchida T.
        • Takashima A.
        • Lemere C.A.
        • Imahori K.
        Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3 beta and cyclin-dependent kinase 5, a component of TPK II.
        Acta Neuropathol. 1996; 92: 232-241
        • McGeer P.L.
        • McGeer E.G.
        NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies.
        Neurobiol Aging. 2007; 28: 639-647
        • Kitazawa M.
        • Oddo S.
        • Yamasaki T.R.
        • Green K.N.
        • LaFerla F.M.
        Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer's disease.
        J Neurosci. 2005; 25: 8843-8853
        • Li Y.
        • Liu L.
        • Barger S.W.
        • Griffin W.S.
        Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway.
        J Neurosci. 2003; 23: 1605-1611
        • Sriram K.
        • O'Callaghan J.P.
        Divergent roles for tumor necrosis factor-alpha in the brain.
        J Neuroimmune Pharmacol. 2007; 2: 140-153
        • Zhu J.
        • Jiang Y.
        • Wu L.
        • Lu T.
        • Xu G.
        • Liu X.
        Suppression of local inflammation contributes to the neuroprotective effect of ginsenoside Rb1 in rats with cerebral ischemia.
        Neuroscience. 2012; 202: 342-351
        • Fridmacher V.
        • Kaltschmidt B.
        • Goudeau B.
        • Ndiaye D.
        • Rossi F.M.
        • Pfeiffer J.
        • et al.
        Forebrain-specific neuronal inhibition of nuclear factor-kB activity leads to loss of neuroprotection.
        J Neurosci. 2003; 23: 9403-9408
        • Gotz J.
        • Chen F.
        • van Dorpe J.
        • Nitsch R.M.
        Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils.
        Science. 2001; 293: 1491-1495
        • Lewis J.
        • Dickson D.W.
        • Lin W.L.
        • Chisholm L.
        • Corral A.
        • Jones G.
        • et al.
        Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP.
        Science. 2001; 293: 1487-1491
        • Tran H.T.
        • LaFerla F.M.
        • Holtzman D.M.
        • Brody D.L.
        Controlled cortical impact traumatic brain injury in 3xTg-AD mice causes acute intra-axonal amyloid-beta accumulation and independently accelerates the development of tau abnormalities.
        J Neurosci. 2011; 31: 9513-9525
        • McKee A.C.
        • Cantu R.C.
        • Nowinski C.J.
        • Hedley-Whyte E.T.
        • Gavett B.E.
        • Budson A.E.
        • et al.
        Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury.
        J Neuropathol Exp Neurol. 2009; 68: 709-735
        • Vossel K.A.
        • Zhang K.
        • Brodbeck J.
        • Daub A.C.
        • Sharma P.
        • Finkbeiner S.
        • et al.
        Tau reduction prevents Abeta-induced defects in axonal transport.
        Science. 2010; 330: 198
        • Clinton L.K.
        • Blurton-Jones M.
        • Myczek K.
        • Trojanowski J.Q.
        • LaFerla F.M.
        Synergistic interactions between Abeta, tau, and alpha-synuclein: acceleration of neuropathology and cognitive decline.
        J Neurosci. 2010; 30: 7281-7289