Research Article| Volume 334, ISSUE 1-2, P55-62, November 15, 2013

Idiopathic normal-pressure hydrocephalus, cortical thinning, and the cerebrospinal fluid tap test

  • Kyunghun Kang
    Department of Neurology, School of Medicine, Kyungpook National University, Daegu, South Korea
    Search for articles by this author
  • Uicheul Yoon
    Department of Biomedical Engineering, College of Health and Medical Science, Catholic University of Daegu, Gyeongsan-si, South Korea
    Search for articles by this author
  • Jong-Min Lee
    Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
    Search for articles by this author
  • Ho-Won Lee
    Corresponding author at: Department of Neurology, School of Medicine, Brain Science & Engineering Institute, Kyungpook National University, 50 Samdeok-dong 2-ga, Jung-gu, Daegu, 700-721, South Korea. Tel.: +82 53 200 3271; fax: +82 53 200 3299.
    Department of Neurology, School of Medicine, Kyungpook National University, Daegu, South Korea

    Brain Science & Engineering Institute, Kyungpook National University, Daegu, South Korea
    Search for articles by this author
Published:August 12, 2013DOI:


      When considering the underlying pathophysiological mechanisms involved in idiopathic normal pressure hydrocephalus (iNPH), white matter is often the main locus of investigation. However, when an axon in the brain is damaged, degeneration of the neuron can occur proximally (dying back) and Alzheimer's disease (AD), associated with cortical thinning, is a common pathologic comorbidity with iNPH. We investigated differences in cortical thickness between CSF tap test (CSFTT) responders and non-responders in iNPH patients and compared patterns of cortical thickness in iNPH patients with that of AD patients. Thirty-two iNPH patients (16 CSFTT responders and 16 CSFTT non-responders) and 16 AD patients were imaged with MRI, including 3-dimensional volumetric images for cortical thickness analysis across the entire brain. Among the iNPH patients, CSFTT non-responders, when compared to responders, had statistically significant cortical thinning in the left superior frontal gyrus at the level of a false discovery rate (FDR) p < 0.05, and tended to show widespread cortical thinning in most areas of the brain. Relative to the CSFTT responders, AD patients showed statistically significant cortical thinning in superior and medial frontal gyrus, left precentral gyrus, postcentral gyrus, paracentral lobule, precuneus, and superior parietal lobule after FDR correction (p < 0.05). However, comparing patterns of cortical thinning between AD patients and CSFTT non-responders revealed no statistically significant differences. Differences in cortical thickness correlated with CSFTT response for iNPH patients may indicate a possibility for considering patterns of cortical thinning in patients with ventriculomegaly as potential brain imaging markers for the prediction of CSFTT responders. And, our findings suggest that comorbid AD pathology might be related to the cortical thinning patterns found in CSFTT non-responders. Larger studies, using normal controls and combinations of other biomarkers associated with AD, would be necessary to evaluate these hypotheses.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Adams R.D.
        • Fisher C.M.
        • Hakim S.
        • Ojemann R.G.
        • Sweet W.H.
        Symptomatic occult hydrocephalus with “normal” cerebrospinal-fluid pressure: a treatable syndrome.
        N Engl J Med. 1965; 273: 117-126
        • Wikkelsø C.
        • Andersson H.
        • Blomstrand C.
        • Lindqvist G.
        The clinical effect of lumbar puncture in normal pressure hydrocephalus.
        J Neurol Neurosurg Psychiatry. 1982; 45: 64-69
        • Ishikawa M.
        • Hashimoto M.
        • Kuwana N.
        • Mori E.
        • Miyake H.
        • Wachi A.
        • et al.
        Guidelines for management of idiopathic normal pressure hydrocephalus.
        Neurol Med Chir (Tokyo). 2008; 48 ([Suppl.]): 1-23
        • Akai K.
        • Uchigasaki S.
        • Tanaka U.
        • Komatsu A.
        Normal pressure hydrocephalus. Neuropathological study.
        Acta Pathol Jpn. 1987; 37: 97-110
        • Del Bigio M.R.
        Neuropathological changes caused by hydrocephalus.
        Acta Neuropathol. 1993; 85: 573-585
        • Di Rocco C.
        • Di Trapani G.
        • Maira G.
        • Bentivoglio M.
        • Macchi G.
        • Rossi G.F.
        Anatomo-clinical correlations in normotensive hydrocephalus. Reports on three cases.
        J Neurol Sci. 1977; 33: 437-452
        • Ginsberg S.D.
        • Martin L.J.
        Axonal transection in adult rat brain induces transsynaptic apoptosis and persistent atrophy of target neurons.
        J Neurotrauma. 2002; 19: 99-109
        • Schallert T.
        • Jones T.A.
        • Lindner M.D.
        Multilevel transneuronal degeneration after brain damage. Behavioral events and effects of anticonvulsant gamma-aminobutyric acid-related drugs.
        Stroke. 1990; 21: 143-146
        • Johnson H.
        • Cowey A.
        Transneuronal retrograde degeneration of retinal ganglion cells following restricted lesions of striate cortex in the monkey.
        Exp Brain Res. 2000; 132: 269-275
        • Seo S.W.
        • Ahn J.
        • Yoon U.
        • Im K.
        • Lee J.M.
        • Tae Kim S.
        • et al.
        Cortical thinning in vascular mild cognitive impairment and vascular dementia of subcortical type.
        J Neuroimaging. 2010; 20: 37-45
        • Cabral D.
        • Beach T.G.
        • Vedders L.
        • Sue L.I.
        • Jacobson S.
        • Myers K.
        • et al.
        Frequency of Alzheimer's disease pathology at autopsy in patients with clinical normal pressure hydrocephalus.
        Alzheimers Dement. 2011; 7: 509-513
        • Hamilton R.
        • Patel S.
        • Lee E.B.
        • Jackson E.M.
        • Lopinto J.
        • Arnold S.E.
        • et al.
        Lack of shunt response in suspected idiopathic normal pressure hydrocephalus with Alzheimer disease pathology.
        Ann Neurol. 2010; 68: 535-540
        • Frisoni G.B.
        • Fox N.C.
        • Jack Jr., C.R.
        • Scheltens P.
        • Thompson P.M.
        The clinical use of structural MRI in Alzheimer disease.
        Nat Rev Neurol. 2010; 6: 67-77
        • Relkin N.
        • Marmarou A.
        • Klinge P.
        • Bergsneider M.
        • Black P.M.
        Diagnosing idiopathic normal-pressure hydrocephalus.
        Neurosurgery. 2005; 57: 4-16
        • American Psychiatric Association
        Diagnostic and statistical manual of mental disorders.
        DSM-IV. 4th ed. American Psychiatric Association, Washington, DC1994
        • McKhann G.
        • Drachman D.
        • Folstein M.
        • Katzman R.
        • Price D.
        • Stadlan E.M.
        Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease.
        Neurology. 1984; 34: 939-944
        • Kang Y.
        • Na D.L.
        • Hahn S.
        A validity study on the Korean Mini-Mental State Examination (K-MMSE) in dementia patients.
        J Korean Neurol Assoc. 1997; 15: 300-308
        • Choi S.H.
        • Na D.L.
        • Lee B.H.
        • Hahm D.S.
        • Jeong J.H.
        • Yoon S.J.
        • et al.
        Estimating the validity of the Korean version of expanded Clinical Dementia Rating (CDR) scale.
        J Korean Neurol Assoc. 2001; 19: 585-591
        • Dubois B.
        • Slachevsky A.
        • Litvan I.
        • Pillon B.
        The FAB: a Frontal Assessment Battery at bedside.
        Neurology. 2000; 55: 1621-1626
        • Mataro M.
        • Matarin M.
        • Poca M.A.
        • Pueyo R.
        • Sahuquillo J.
        • Barrios M.
        • et al.
        Functional and magnetic resonance imaging correlates of corpus callosum in normal pressure hydrocephalus before and after shunting.
        J Neurol Neurosurg Psychiatry. 2007; 78: 395-398
        • Kubo Y.
        • Kazui H.
        • Yoshida T.
        • Kito Y.
        • Kimura N.
        • Tokunaga H.
        • et al.
        Validation of grading scale for evaluating symptoms of idiopathic normal-pressure hydrocephalus.
        Dement Geriatr Cogn Disord. 2008; 25: 37-45
        • Podsiadlo D.
        • Richardson S.
        The timed “up & go”: a test of basic functional mobility for frail elderly persons.
        J Am Geriatr Soc. 1991; 39: 142-148
        • Steffen T.M.
        • Hacker T.A.
        • Mollinger L.
        Age- and gender-related test performance in community-dwelling elderly people: six-minute walk test, berg balance scale, timed up & go test, and gait speeds.
        Phys Ther. 2002; 82: 128-137
        • Gonzalez H.
        • Sunnerhagen K.S.
        • Sjoberg I.
        • Kaponides G.
        • Olsson T.
        • Borg K.
        Intravenous immunoglobulin for post-polio syndrome: a randomised controlled trial.
        Lancet Neurol. 2006; 5: 493-500
        • Tice J.A.
        • Kanaya A.
        • Hue T.
        • Rubin S.
        • Buist D.S.
        • Lacroix A.
        • et al.
        Risk factors for mortality in middle-aged women.
        Arch Intern Med. 2006; 166: 2469-2477
        • Fahn S.
        • Elton R.L.
        Unified Parkinson's disease rating scale.
        in: Fahn S. Marsden C.D. Goldstein M. Calne D.B. Recent developments in Parkinson's disease. Macmillan Healthcare Information, New Jersey1987: 153-163
        • Ishikawa M.
        • Hashimoto M.
        • Mori E.
        • Kuwana N.
        • Kazui H.
        The value of the cerebrospinal fluid tap test for predicting shunt effectiveness in idiopathic normal pressure hydrocephalus.
        Fluids Barriers CNS. 2012; 9: 1-6
        • Evans A.C.
        • The N.I.H.
        MRI study of normal brain development.
        Neuroimage. 2006; 30: 184-202
        • Collins D.L.
        • Neelin P.
        • Peters T.M.
        • Evans A.C.
        Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space.
        J Comput Assist Tomogr. 1994; 18: 192-205
        • Kim J.S.
        • Singh V.
        • Lee J.K.
        • Lerch J.
        • Ad-Dab'bagh Y.
        • MacDonald D.
        • et al.
        Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification.
        Neuroimage. 2005; 27: 210-221
        • MacDonald D.
        • Kabani N.
        • Avis D.
        • Evans A.C.
        Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI.
        Neuroimage. 2000; 12: 340-356
        • Sled J.G.
        • Zijdenbos A.P.
        • Evans A.C.
        A nonparametric method for automatic correction of intensity nonuniformity in MRI data.
        IEEE Trans Med Imaging. 1998; 17: 87-97
        • Zijdenbos A.P.
        • Forghani R.
        • Evans A.C.
        Automatic “pipeline” analysis of 3-D MRI data for clinical trials: application to multiple sclerosis.
        IEEE Trans Med Imaging. 2002; 21: 1280-1291
        • Grabner G.
        • Janke A.L.
        • Budge M.M.
        • Smith D.
        • Pruessner J.
        • Collins D.L.
        Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults.
        Med Image Comput Comput Assist Interv. 2006; 9: 58-66
        • Tohka J.
        • Zijdenbos A.
        • Evans A.
        Fast and robust parameter estimation for statistical partial volume models in brain MRI.
        Neuroimage. 2004; 23: 84-97
        • Im K.
        • Lee J.M.
        • Lyttelton O.
        • Kim S.H.
        • Evans A.C.
        • Kim S.I.
        Brain size and cortical structure in the adult human brain.
        Cereb Cortex. 2008; 18: 2181-2191
        • Luders E.
        • Steinmetz H.
        • Jancke L.
        Brain size and grey matter volume in the healthy human brain.
        Neuroreport. 2002; 13: 2371-2374
        • Kabani N.
        • Le Goualher G.
        • MacDonald D.
        • Evans A.C.
        Measurement of cortical thickness using an automated 3-D algorithm: a validation study.
        Neuroimage. 2001; 13: 375-380
        • Lerch J.P.
        • Evans A.C.
        Cortical thickness analysis examined through power analysis and a population simulation.
        Neuroimage. 2005; 24: 163-173
        • Lyttelton O.
        • Boucher M.
        • Robbins S.
        • Evans A.
        An unbiased iterative group registration template for cortical surface analysis.
        Neuroimage. 2007; 34: 1535-1544
        • Ku B.D.
        • Na D.L.
        • Moon S.Y.
        • Kim S.Y.
        • Seo S.W.
        • Cheong H.K.
        • et al.
        Neuropsychological correlates of the proportional impact of white matter hyperintensities on mild to moderate dementia: the MRI 300 study.
        Dement Geriatr Cogn Disord. 2011; 31: 397-405
        • Genovese C.R.
        • Lazar N.A.
        • Nichols T.
        Thresholding of statistical maps in functional neuroimaging using the false discovery rate.
        Neuroimage. 2002; 15: 870-878
        • Sasaki H.
        • Ishii K.
        • Kono A.K.
        • Miyamoto N.
        • Fukuda T.
        • Shimada K.
        • et al.
        Cerebral perfusion pattern of idiopathic normal pressure hydrocephalus studied by SPECT and statistical brain mapping.
        Ann Nucl Med. 2007; 21: 39-45
        • Ishii K.
        • Hashimoto M.
        • Hayashida K.
        • Hashikawa K.
        • Chang C.C.
        • Nakagawara J.
        • et al.
        A multicenter brain perfusion SPECT study evaluating idiopathic normal-pressure hydrocephalus on neurological improvement.
        Dement Geriatr Cogn Disord. 2011; 32: 1-10
        • Denays R.
        • Tondeur M.
        • Noel P.
        • Ham H.R.
        Bilateral cerebral mediofrontal hypoactivity in Tc-99 m HMPAO SPECT imaging.
        Clin Nucl Med. 1994; 19: 873-876
        • Kanno S.
        • Abe N.
        • Saito M.
        • Takagi M.
        • Nishio Y.
        • Hayashi A.
        • et al.
        White matter involvement in idiopathic normal pressure hydrocephalus: a voxel-based diffusion tensor imaging study.
        J Neurol. 2011; 258: 1949-1957
        • Fierstra J.
        • Poublanc J.
        • Han J.S.
        • Silver F.
        • Tymianski M.
        • Crawley A.P.
        • et al.
        Steal physiology is spatially associated with cortical thinning.
        J Neurol Neurosurg Psychiatry. 2010; 81: 290-293
        • Tohgi H.
        • Yonezawa H.
        • Takahashi S.
        • Sato N.
        • Kato E.
        • Kudo M.
        • et al.
        Cerebral blood flow and oxygen metabolism in senile dementia of Alzheimer's type and vascular dementia with deep white matter changes.
        Neuroradiology. 1998; 40: 131-137
        • Sand T.
        • Bovim G.
        • Grimse R.
        • Myhr G.
        • Helde G.
        • Cappelen J.
        Idiopathic normal pressure hydrocephalus: the CSF tap-test may predict the clinical response to shunting.
        Acta Neurol Scand. 1994; 89: 311-316
        • Damasceno B.P.
        • Carelli E.F.
        • Honorato D.C.
        • Facure J.J.
        The predictive value of cerebrospinal fluid tap-test in normal pressure hydrocephalus.
        Arq Neuropsiquiatr. 1997; 55: 179-185
        • Wirth M.
        • Madison C.M.
        • Rabinovici G.D.
        • Oh H.
        • Landau S.M.
        • Jagust W.J.
        Alzheimer's disease neurodegenerative biomarkers are associated with decreased cognitive function but not beta-amyloid in cognitively normal older individuals.
        J Neurosci. 2013; 33: 5553-5563
        • Lerch J.P.
        • Pruessner J.C.
        • Zijdenbos A.
        • Hampel H.
        • Teipel S.J.
        • Evans A.C.
        Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy.
        Cereb Cortex. 2005; 15: 995-1001
        • Dickerson B.C.
        • Wolk D.A.
        MRI cortical thickness biomarker predicts AD-like CSF and cognitive decline in normal adults.
        Neurology. 2012; 78: 84-90
        • Stern Y.
        Cognitive reserve.
        Neuropsychologia. 2009; 47: 2015-2028
        • McKhann G.M.
        • Knopman D.S.
        • Chertkow H.
        • Hyman B.T.
        • Jack Jr., C.R.
        • Kawas C.H.
        • et al.
        The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease.
        Alzheimers Dement. 2011; 7: 263-269
        • Templeton A.R.
        A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping or DNA sequencing. V. Analysis of case/control sampling designs: Alzheimer's disease and the apoprotein E locus.
        Genetics. 1995; 140: 403-409
        • Iqbal K.
        • Grundke-Iqbal I.
        Alzheimer's disease, a multifactorial disorder seeking multitherapies.
        Alzheimers Dement. 2010; 6: 420-424
        • Moore D.W.
        • Kovanlikaya I.
        • Heier L.A.
        • Raj A.
        • Huang C.
        • Chu K.W.
        • et al.
        A pilot study of quantitative MRI measurements of ventricular volume and cortical atrophy for the differential diagnosis of normal pressure hydrocephalus.
        Neurol Res Int. 2012; 2012: 718150
        • Shprecher D.
        • Schwalb J.
        • Kurlan R.
        Normal pressure hydrocephalus: diagnosis and treatment.
        Curr Neurol Neurosci Rep. 2008; 8: 371-376