Advertisement
Research Article| Volume 333, ISSUE 1-2, P76-87, October 15, 2013

Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination

Published:April 10, 2013DOI:https://doi.org/10.1016/j.jns.2013.03.002

      Abstract

      Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). The etiology of MS is not well understood, but it is believed that myelin-specific CD4+ T cells play a central role in initiating and orchestrating CNS inflammation. In this scenario, CD4+ T cells, activated in the periphery, infiltrate the CNS, where, by secreting cytokines and chemokines, they start an inflammatory cascade. Given the central role of CD4+ T cells in CNS autoimmunity, they have been studied extensively, principally by using experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the late 1980s, CD4+ T cells, based on their cytokine production, were divided into two helper lineages, Th1 and Th2 cells. It was postulated that Th1 cells, which produce IFN-γ, mediate inflammation of the CNS in MS/EAE, while Th2 cells, which produce IL-4, have a beneficial effect in disease, because of their antagonistic effect on Th1 cells. The Th1/Th2 paradigm remained the prevailing view of MS/EAE pathogenesis until 2005, when a new lineage, Th17, was discovered. In a relatively short period of time it became apparent that Th17 cells, named after their hallmark cytokine, IL-17A, play a crucial role in many inflammatory diseases, including EAE, and likely in MS as well. The Th17 paradigm developed rapidly, initiating the debate of whether Th1 cells contribute to EAE/MS pathogenesis at all, or if they might even have a protective role due to their antagonistic effects on Th17 cells. Numerous findings support the view that Th17 cells play an essential role in autoimmune CNS inflammation, perhaps mainly in the initial phases of disease. Th1 cells likely contribute to pathogenesis, with their role possibly more pronounced later in disease. Hence, the current view on the role of Th cells in MS/EAE pathogenesis can be called the Th17/Th1 paradigm. It is certain that Th17 cells will continue to be the focus of intense investigation aimed at elucidating the pathogenesis of CNS autoimmunity.

      Abbreviations:

      IL (interleukin), IFN (interferon), MOG (myelin oligodendrocyte glycoprotein), MS (multiple sclerosis), CNS (central nervous system), EAE (experimental allergic encephalomyelitis), APC (antigen presenting cells), MBP (myelin basic protein), TNF (tumor necrosis factor), GM-CSF (granulocyte macrophage colony-stimulating factor), NO (nitric oxide), WT (wild-type), Tregs (regulatory T cells)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Noseworthy J.H.
        • Lucchinetti C.
        • Rodriguez M.
        • Weinshenker B.G.
        Multiple sclerosis.
        N Engl J Med. 2000; 343 ([Epub 2000/09/28]): 938-952
        • Frohman E.M.
        • Racke M.K.
        • Raine C.S.
        Multiple sclerosis—the plaque and its pathogenesis.
        N Engl J Med. 2006; 354 ([Epub 2006/03/03]): 942-955
        • Nylander A.
        • Hafler D.A.
        Multiple sclerosis.
        J Clin Invest. 2012; 122 ([Epub 2012/04/03]): 1180-1188
        • Steinman L.
        • Zamvil S.S.
        How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis.
        Ann Neurol. 2006; 60 ([Epub 2006/06/28]): 12-21
        • Kuchroo V.K.
        • Anderson A.C.
        • Waldner H.
        • Munder M.
        • Bettelli E.
        • Nicholson L.B.
        T cell response in experimental autoimmune encephalomyelitis (EAE): role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T cell repertoire.
        Annu Rev Immunol. 2002; 20 ([Epub 2002/02/28]): 101-123
        • Furlan R.
        • Cuomo C.
        • Martino G.
        Animal models of multiple sclerosis.
        Methods Mol Biol. 2009; 549 ([Epub 2009/04/21]): 157-173
        • Williams K.C.
        • Ulvestad E.
        • Hickey W.F.
        Immunology of multiple sclerosis.
        Clin Neurosci. 1994; 2 ([Epub 1994/01/01]): 229-245
        • Mosmann T.R.
        • Cherwinski H.
        • Bond M.W.
        • Giedlin M.A.
        • Coffman R.L.
        Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins.
        J Immunol. 1986; 136 ([Epub 1986/04/01]): 2348-2357
        • Stevens T.L.
        • Bossie A.
        • Sanders V.M.
        • Fernandez-Botran R.
        • Coffman R.L.
        • Mosmann T.R.
        • et al.
        Regulation of antibody isotype secretion by subsets of antigen-specific helper T cells.
        Nature. 1988; 334 ([Epub 1988/07/21]): 255-258
        • Ando D.G.
        • Clayton J.
        • Kono D.
        • Urban J.L.
        • Sercarz E.E.
        Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype.
        Cell Immunol. 1989; 124 ([Epub 1989/11/01]): 132-143
        • Voskuhl R.R.
        • Martin R.
        • Bergman C.
        • Dalal M.
        • Ruddle N.H.
        • McFarland H.F.
        T helper 1 (Th1) functional phenotype of human myelin basic protein-specific T lymphocytes.
        Autoimmunity. 1993; 15 ([Epub 1993/01/01]): 137-143
        • van der Veen R.C.
        • Kapp J.A.
        • Trotter J.L.
        Fine-specificity differences in the recognition of an encephalitogenic peptide by T helper 1 and 2 cells.
        J Neuroimmunol. 1993; 48 ([Epub 1993/11/01]): 221-226
        • Markiewicz K.
        • Cholewa M.
        • Luciak M.
        Influence of tobacco smoking on serum free fatty acid, triglyceride and glucose levels during physical training and post-exertional restitution.
        Acta Med Acad Sci Hung. 1978; 35 ([Epub 1978/01/01]): 225-232
        • Olsson T.
        Critical influences of the cytokine orchestration on the outcome of myelin antigen-specific T-cell autoimmunity in experimental autoimmune encephalomyelitis and multiple sclerosis.
        Immunol Rev. 1995; 144 ([Epub 1995/04/01]): 245-268
        • Pierson E.
        • Simmons S.B.
        • Castelli L.
        • Goverman J.M.
        Mechanisms regulating regional localization of inflammation during CNS autoimmunity.
        Immunol Rev. 2012; 248 ([Epub 2012/06/26]): 205-215
        • Traugott U.
        • Lebon P.
        Multiple sclerosis: involvement of interferons in lesion pathogenesis.
        Ann Neurol. 1988; 24 ([Epub 1988/08/01]): 243-251
        • Chomarat P.
        • Rissoan M.C.
        • Banchereau J.
        • Miossec P.
        Interferon gamma inhibits interleukin 10 production by monocytes.
        J Exp Med. 1993; 177 ([Epub 1993/02/01]): 523-527
        • Trinchieri G.
        Cytokines acting on or secreted by macrophages during intracellular infection (IL-10, IL-12, IFN-gamma).
        Curr Opin Immunol. 1997; 9 ([Epub 1997/02/01]): 17-23
        • Panitch H.S.
        • Hirsch R.L.
        • Schindler J.
        • Johnson K.P.
        Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system.
        Neurology. 1987; 37 ([Epub 1987/07/01]): 1097-1102
        • Chitnis T.
        • Najafian N.
        • Benou C.
        • Salama A.D.
        • Grusby M.J.
        • Sayegh M.H.
        • et al.
        Effect of targeted disruption of STAT4 and STAT6 on the induction of experimental autoimmune encephalomyelitis.
        J Clin Invest. 2001; 108 ([Epub 2001/09/07]): 739-747
        • Jacobson N.G.
        • Szabo S.J.
        • Weber-Nordt R.M.
        • Zhong Z.
        • Schreiber R.D.
        • Darnell Jr., J.E.
        • et al.
        Interleukin 12 signaling in T helper type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat)3 and Stat4.
        J Exp Med. 1995; 18 ([Epub 1995/05/01]): 1755-1762
        • Bettelli E.
        • Sullivan B.
        • Szabo S.J.
        • Sobel R.A.
        • Glimcher L.H.
        • Kuchroo V.K.
        Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis.
        J Exp Med. 2004; 200 ([Epub 2004/07/09]): 79-87
        • Gran B.
        • Zhang G.X.
        • Yu S.
        • Li J.
        • Chen X.H.
        • Ventura E.S.
        • et al.
        IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination.
        J Immunol. 2002; 169 ([Epub 2002/12/10]): 7104-7110
        • Krakowski M.
        • Owens T.
        Interferon-gamma confers resistance to experimental allergic encephalomyelitis.
        Eur J Immunol. 1996; 26 ([Epub 1996/07/01]): 1641-1646
        • Tran E.H.
        • Prince E.N.
        • Owens T.
        IFN-gamma shapes immune invasion of the central nervous system via regulation of chemokines.
        J Immunol. 2000; 164 ([Epub 2000/02/29]): 2759-2768
        • Zhang G.X.
        • Gran B.
        • Yu S.
        • Li J.
        • Siglienti I.
        • Chen X.
        • et al.
        Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-beta 2-deficient mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system.
        J Immunol. 2003; 170 ([Epub 2003/02/08]): 2153-2160
        • Duong T.T.
        • Finkelman F.D.
        • Singh B.
        • Strejan G.H.
        Effect of anti-interferon-gamma monoclonal antibody treatment on the development of experimental allergic encephalomyelitis in resistant mouse strains.
        J Neuroimmunol. 1994; 53 ([Epub 1994/08/01]): 101-107
        • Duong T.T.
        • St Louis J.
        • Gilbert J.J.
        • Finkelman F.D.
        • Strejan G.H.
        Effect of anti-interferon-gamma and anti-interleukin-2 monoclonal antibody treatment on the development of actively and passively induced experimental allergic encephalomyelitis in the SJL/J mouse.
        J Neuroimmunol. 1992; 36 ([Epub 1992/02/01]): 105-115
        • Heremans H.
        • Dillen C.
        • Groenen M.
        • Martens E.
        • Billiau A.
        Chronic relapsing experimental autoimmune encephalomyelitis (CREAE) in mice: enhancement by monoclonal antibodies against interferon-gamma.
        Eur J Immunol. 1996; 26 ([Epub 1996/10/01]): 2393-2398
        • Ferber I.A.
        • Brocke S.
        • Taylor-Edwards C.
        • Ridgway W.
        • Dinisco C.
        • Steinman L.
        • et al.
        Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE).
        J Immunol. 1996; 156 ([Epub 1996/01/01]): 5-7
        • Willenborg D.O.
        • Fordham S.
        • Bernard C.C.
        • Cowden W.B.
        • Ramshaw I.A.
        IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis.
        J Immunol. 1996; 157 ([Epub 1996/10/15]): 3223-3227
        • Willenborg D.O.
        • Fordham S.A.
        • Staykova M.A.
        • Ramshaw I.A.
        • Cowden W.B.
        IFN-gamma is critical to the control of murine autoimmune encephalomyelitis and regulates both in the periphery and in the target tissue: a possible role for nitric oxide.
        J Immunol. 1999; 163 ([Epub 1999/11/24]): 5278-5286
        • Trinchieri G.
        Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity.
        Annu Rev Immunol. 1995; 13 ([Epub 1995/01/01]): 251-276
        • Seder R.A.
        • Gazzinelli R.
        • Sher A.
        • Paul W.E.
        Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon gamma production and diminishes interleukin 4 inhibition of such priming.
        Proc Natl Acad Sci U S A. 1993; 90 ([Epub 1993/11/01]): 10188-10192
        • Leonard J.P.
        • Waldburger K.E.
        • Goldman S.J.
        Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12.
        J Exp Med. 1995; 181 ([Epub 1995/01/01]): 381-386
        • Bright J.J.
        • Du C.
        • Coon M.
        • Sriram S.
        • Klaus S.J.
        Prevention of experimental allergic encephalomyelitis via inhibition of IL-12 signaling and IL-12-mediated Th1 differentiation: an effect of the novel anti-inflammatory drug lisofylline.
        J Immunol. 1998; 161 ([Epub 1998/12/23]): 7015-7022
        • Heremans H.
        • Dillen C.
        • Groenen M.
        • Matthys P.
        • Billiau A.
        Role of endogenous interleukin-12 (IL-12) in induced and spontaneous relapses of experimental autoimmune encephalomyelitis in mice.
        Eur Cytokine Netw. 1999; 10 ([Epub 1999/07/10]): 171-180
        • Ichikawa M.
        • Koh C.S.
        • Inoue A.
        • Tsuyusaki J.
        • Yamazaki M.
        • Inaba Y.
        • et al.
        Anti-IL-12 antibody prevents the development and progression of multiple sclerosis-like relapsing–remitting demyelinating disease in NOD mice induced with myelin oligodendrocyte glycoprotein peptide.
        J Neuroimmunol. 2000; 102 ([Epub 2000/01/08]): 56-66
        • Shevach E.M.
        • Chang J.T.
        • Segal B.M.
        The critical role of IL-12 and the IL-12R beta 2 subunit in the generation of pathogenic autoreactive Th1 cells.
        Springer Semin Immunopathol. 1999; 21 ([Epub 2000/02/10]): 249-262
        • Becher B.
        • Durell B.G.
        • Noelle R.J.
        Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12.
        J Clin Invest. 2002; 110 ([Epub 2002/08/22]): 493-497
        • Leonard J.P.
        • Waldburger K.E.
        • Schaub R.G.
        • Smith T.
        • Hewson A.K.
        • Cuzner M.L.
        • et al.
        Regulation of the inflammatory response in animal models of multiple sclerosis by interleukin-12.
        Crit Rev Immunol. 1997; 17 ([Epub 1997/01/01]): 545-553
        • Gran B.
        • Chu N.
        • Zhang G.X.
        • Yu S.
        • Li Y.
        • Chen X.H.
        • et al.
        Early administration of IL-12 suppresses EAE through induction of interferon-gamma.
        J Neuroimmunol. 2004; 156 ([Epub 2004/10/07]): 123-131
        • Cheng X.
        • Zhao Z.
        • Ventura E.
        • Gran B.
        • Shindler K.S.
        • Rostami A.
        The PD-1/PD-L pathway is up-regulated during IL-12-induced suppression of EAE mediated by IFN-gamma.
        J Neuroimmunol. 2007; 185 ([Epub 2007/02/27]): 75-86
        • Berghmans N.
        • Dillen C.
        • Heremans H.
        Exogenous IL-12 suppresses experimental autoimmune encephalomyelitis (EAE) by tuning IL-10 and IL-5 levels in an IFN-gamma-dependent way.
        J Neuroimmunol. 2006; 176 ([Epub 2006/06/13]): 63-75
        • Jee Y.
        • Matsumoto Y.
        Two-step activation of T cells, clonal expansion and subsequent Th1 cytokine production, is essential for the development of clinical autoimmune encephalomyelitis.
        Eur J Immunol. 2001; 31 ([Epub 2001/06/01]): 1800-1812
        • Constantinescu C.S.
        • Hilliard B.
        • Wysocka M.
        • Ventura E.S.
        • Bhopale M.K.
        • Trinchieri G.
        • et al.
        IL-12 reverses the suppressive effect of the CD40 ligand blockade on experimental autoimmune encephalomyelitis (EAE).
        J Neurol Sci. 1999; 171 ([Epub 1999/11/24]): 60-64
        • Ahmed Z.
        • Baker D.
        • Cuzner M.L.
        Interleukin-12 induces mild experimental allergic encephalomyelitis following local central nervous system injury in the Lewis rat.
        J Neuroimmunol. 2003; 140 ([Epub 2003/07/17]): 109-117
        • Constantinescu C.S.
        • Frei K.
        • Wysocka M.
        • Trinchieri G.
        • Malipiero U.
        • Rostami A.
        • et al.
        Astrocytes and microglia produce interleukin-12 p40.
        Ann N Y Acad Sci. 1996; 795 ([Epub 1996/10/31]): 328-333
        • Constantinescu C.S.
        • Wysocka M.
        • Hilliard B.
        • Ventura E.S.
        • Lavi E.
        • Trinchieri G.
        • et al.
        Antibodies against IL-12 prevent superantigen-induced and spontaneous relapses of experimental autoimmune encephalomyelitis.
        J Immunol. 1998; 161 ([Epub 1998/10/30]): 5097-5104
        • Constantinescu C.S.
        • Hilliard B.
        • Ventura E.
        • Wysocka M.
        • Showe L.
        • Lavi E.
        • et al.
        Modulation of susceptibility and resistance to an autoimmune model of multiple sclerosis in prototypically susceptible and resistant strains by neutralization of interleukin-12 and interleukin-4, respectively.
        Clin Immunol. 2001; 98 ([Epub 2001/01/06]): 23-30
        • Chua A.O.
        • Chizzonite R.
        • Desai B.B.
        • Truitt T.P.
        • Nunes P.
        • Minetti L.J.
        • et al.
        Expression cloning of a human IL-12 receptor component. A new member of the cytokine receptor superfamily with strong homology to gp130.
        J Immunol. 1994; 53( ([Epub 1994/07/01]): 128-136
        • Chua A.O.
        • Wilkinson V.L.
        • Presky D.H.
        • Gubler U.
        Cloning and characterization of a mouse IL-12 receptor-beta component.
        J Immunol. 1995; 155 ([Epub 1995/11/01]): 4286-4294
        • Gubler U.
        • Presky D.H.
        Molecular biology of interleukin-12 receptors.
        Ann N Y Acad Sci. 1996; 795 ([Epub 1996/10/31]): 36-40
        • Zhang G.X.
        • Yu S.
        • Gran B.
        • Li J.
        • Siglienti I.
        • Chen X.
        • et al.
        Role of IL-12 receptor beta 1 in regulation of T cell response by APC in experimental autoimmune encephalomyelitis.
        J Immunol. 2003; 171 ([Epub 2003/10/22]): 4485-4492
        • Parham C.
        • Chirica M.
        • Timans J.
        • Vaisberg E.
        • Travis M.
        • Cheung J.
        • et al.
        A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R.
        J Immunol. 2002; 168 ([Epub 2002/05/23]): 5699-5708
        • Xiao B.G.
        • Ma C.G.
        • Xu L.Y.
        • Link H.
        • Lu C.Z.
        IL-12/IFN-gamma/NO axis plays critical role in development of Th1-mediated experimental autoimmune encephalomyelitis.
        Mol Immunol. 2008; 45 ([Epub 2007/08/19]): 1191-1196
        • Cua D.J.
        • Sherlock J.
        • Chen Y.
        • Murphy C.A.
        • Joyce B.
        • Seymour B.
        • et al.
        Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain.
        Nature. 2003; 421 ([Epub 2003/03/01]): 744-748
        • Oppmann B.
        • Lesley R.
        • Blom B.
        • Timans J.C.
        • Xu Y.
        • Hunte B.
        • et al.
        Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12.
        Immunity. 2000; 13 ([Epub 2000/12/15]): 715-725
        • Gerosa F.
        • Baldani-Guerra B.
        • Lyakh L.A.
        • Batoni G.
        • Esin S.
        • Winkler-Pickett R.T.
        • et al.
        Differential regulation of interleukin 12 and interleukin 23 production in human dendritic cells.
        J Exp Med. 2008; 205 ([Epub 2008/05/21]): 1447-1461
        • Lyakh L.
        • Trinchieri G.
        • Provezza L.
        • Carra G.
        • Gerosa F.
        Regulation of interleukin-12/interleukin-23 production and the T-helper 17 response in humans.
        Immunol Rev. 2008; 226 ([Epub 2009/01/24]): 112-131
        • Fitzgerald D.C.
        • Ciric B.
        • Touil T.
        • Harle H.
        • Grammatikopolou J.
        • Das Sarma J.
        • et al.
        Suppressive effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis.
        J Immunol. 2007; 179: 3268-3275
        • Harrington L.E.
        • Hatton R.D.
        • Mangan P.R.
        • Turner H.
        • Murphy T.L.
        • Murphy K.M.
        • et al.
        Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages.
        Nat Immunol. 2005; 6 ([Epub 2005/10/04]): 1123-1132
        • Park H.
        • Li Z.
        • Yang X.O.
        • Chang S.H.
        • Nurieva R.
        • Wang Y.H.
        • et al.
        A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17.
        Nat Immunol. 2005; 6 ([Epub 2005/10/04]): 1133-1141
        • Komiyama Y.
        • Nakae S.
        • Matsuki T.
        • Nambu A.
        • Ishigame H.
        • Kakuta S.
        • et al.
        IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis.
        J Immunol. 2006; 177 ([Epub 2006/06/21]): 566-573
        • Haak S.
        • Croxford A.L.
        • Kreymborg K.
        • Heppner F.L.
        • Pouly S.
        • Becher B.
        • et al.
        IL-17A and IL-17 F do not contribute vitally to autoimmune neuro-inflammation in mice.
        J Clin Invest. 2009; 119 ([Epub 2008/12/17]): 61-69
        • Langrish C.L.
        • Chen Y.
        • Blumenschein W.M.
        • Mattson J.
        • Basham B.
        • Sedgwick J.D.
        • et al.
        IL-23 drives a pathogenic T cell population that induces autoimmune inflammation.
        J Exp Med. 2005; 201 ([Epub 2005/01/20]): 233-240
        • Kroenke M.A.
        • Carlson T.J.
        • Andjelkovic A.V.
        • Segal B.M.
        IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition.
        J Exp Med. 2008; 205 ([Epub 2008/06/25]): 1535-1541
        • Tigno-Aranjuez J.T.
        • Jaini R.
        • Tuohy V.K.
        • Lehmann P.V.
        • Tary-Lehmann M.
        Encephalitogenicity of complete Freund's adjuvant relative to CpG is linked to induction of Th17 cells.
        J Immunol. 2009; 183 ([Epub 2009/10/09]): 5654-5661
        • Chen Y.
        • Langrish C.L.
        • McKenzie B.
        • Joyce-Shaikh B.
        • Stumhofer J.S.
        • McClanahan T.
        • et al.
        Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis.
        J Clin Invest. 2006; 116 ([Epub 2006/05/04]): 1317-1326
        • Uyttenhove C.
        • Van Snick J.
        Development of an anti-IL-17A auto-vaccine that prevents experimental auto-immune encephalomyelitis.
        Eur J Immunol. 2006; 36 ([Epub 2006/10/19]): 2868-2874
        • Burgess A.W.
        • Metcalf D.
        The nature and action of granulocyte-macrophage colony stimulating factors.
        Blood. 1980; 56 ([Epub 1980/12/01]): 947-958
        • Ponomarev E.D.
        • Shriver L.P.
        • Maresz K.
        • Pedras-Vasconcelos J.
        • Verthelyi D.
        • Dittel B.N.
        GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis.
        J Immunol. 2007; 178: 39-48
        • El-Behi M.
        • Ciric B.
        • Dai H.
        • Yan Y.
        • Cullimore M.
        • Safavi F.
        • et al.
        The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF.
        Nat Immunol. 2011; 12 ([Epub 2011/04/26]): 568-575
        • Codarri L.
        • Gyulveszi G.
        • Tosevski V.
        • Hesske L.
        • Fontana A.
        • Magnenat L.
        • et al.
        RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation.
        Nat Immunol. 2011; 12 ([Epub 2011/04/26]): 560-567
        • Hamilton J.A.
        Coordinate and noncoordinate colony stimulating factor formation by human monocytes.
        J Leukoc Biol. 1994; 55: 355-361
        • Timoshanko J.R.
        • Kitching A.R.
        • Semple T.J.
        • Holdsworth S.R.
        • Tipping P.G.
        Granulocyte macrophage colony-stimulating factor expression by both renal parenchymal and immune cells mediates murine crescentic glomerulonephritis.
        J Am Soc Nephrol. 2005; 16: 2646-2656
        • Zucali J.R.
        • Dinarello C.A.
        • Oblon D.J.
        • Gross M.A.
        • Anderson L.
        • Weiner R.S.
        Interleukin 1 stimulates fibroblasts to produce granulocyte-macrophage colony-stimulating activity and prostaglandin E2.
        J Clin Invest. 1986; 77: 1857-1863
        • Bagby Jr., G.C.
        • Dinarello C.A.
        • Wallace P.
        • Wagner C.
        • Hefeneider S.
        • McCall E.
        Interleukin 1 stimulates granulocyte macrophage colony-stimulating activity release by vascular endothelial cells.
        J Clin Invest. 1986; 78: 1316-1323
        • Leizer T.
        • Cebon J.
        • Layton J.E.
        • Hamilton J.A.
        Cytokine regulation of colony-stimulating factor production in cultured human synovial fibroblasts: I. Induction of GM-CSF and G-CSF production by interleukin-1 and tumor necrosis factor.
        Blood. 1990; 76: 1989-1996
        • Campbell I.K.
        • Novak U.
        • Cebon J.
        • Layton J.E.
        • Hamilton J.A.
        Human articular cartilage and chondrocytes produce hemopoietic colony-stimulating factors in culture in response to IL-1.
        J Immunol. 1991; 147: 1238-1246
        • Filonzi E.L.
        • Zoellner H.
        • Stanton H.
        • Hamilton J.A.
        Cytokine regulation of granulocyte-macrophage colony stimulating factor and macrophage colony-stimulating factor production in human arterial smooth muscle cells.
        Atherosclerosis. 1993; 99: 241-252
        • Gearing D.P.
        • King J.A.
        • Gough N.M.
        • Nicola N.A.
        Expression cloning of a receptor for human granulocyte-macrophage colony-stimulating factor.
        EMBO J. 1989; 8: 3667-3676
        • Whetton A.D.
        • Dexter T.M.
        Myeloid haemopoietic growth factors.
        Biochim Biophys Acta. 1989; 989: 111-132
        • Metcalf D.
        Hematopoietic regulators: redundancy or subtlety?.
        Blood. 1993; 82: 3515-3523
        • Kitamura T.
        • Sato N.
        • Arai K.
        • Miyajima A.
        Expression cloning of the human IL-3 receptor cDNA reveals a shared beta subunit for the human IL-3 and GM-CSF receptors.
        Cell. 1991; 66: 1165-1174
        • Tavernier J.
        • Devos R.
        • Cornelis S.
        • Tuypens T.
        • Van der Heyden J.
        • Fiers W.
        • et al.
        A human high affinity interleukin-5 receptor (IL5R) is composed of an IL5-specific alpha chain and a beta chain shared with the receptor for GM-CSF.
        Cell. 1991; 66: 1175-1184
        • Hercus T.R.
        • Thomas D.
        • Guthridge M.A.
        • Ekert P.G.
        • King-Scott J.
        • Parker M.W.
        • et al.
        The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease.
        Blood. 2009; 114: 1289-1298
        • Hancock G.E.
        • Kaplan G.
        • Cohn Z.A.
        Keratinocyte growth regulation by the products of immune cells.
        J Exp Med. 1988; 168: 1395-1402
        • Soldi R.
        • Primo L.
        • Brizzi M.F.
        • Sanavio F.
        • Aglietta M.
        • Polentarutti N.
        • et al.
        Activation of JAK2 in human vascular endothelial cells by granulocyte-macrophage colony-stimulating factor.
        Blood. 1997; 89: 863-872
        • Choi J.K.
        • Choi B.H.
        • Ha Y.
        • Park H.
        • Yoon S.H.
        • Park H.C.
        • et al.
        Signal transduction pathways of GM-CSF in neural cell lines.
        Neurosci Lett. 2007; 420: 217-222
        • Baldwin G.C.
        • Gasson J.C.
        • Kaufman S.E.
        • Quan S.G.
        • Williams R.E.
        • Avalos B.R.
        • et al.
        Nonhematopoietic tumor cells express functional GM-CSF receptors.
        Blood. 1989; 73: 1033-1037
        • Dedhar S.
        • Gaboury L.
        • Galloway P.
        • Eaves C.
        Human granulocyte-macrophage colony-stimulating factor is a growth factor active on a variety of cell types of nonhemopoietic origin.
        Proc Natl Acad Sci U S A. 1988; 85: 9253-9257
        • Bussolino F.
        • Wang J.M.
        • Defilippi P.
        • Turrini F.
        • Sanavio F.
        • Edgell C.J.
        • et al.
        Granulocyte- and granulocyte-macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate.
        Nature. 1989; 337: 471-473
        • Bussolino F.
        • Ziche M.
        • Wang J.M.
        • Alessi D.
        • Morbidelli L.
        • Cremona O.
        • et al.
        In vitro and in vivo activation of endothelial cells by colony-stimulating factors.
        J Clin Invest. 1991; 87: 986-995
        • Rivas C.I.
        • Vera J.C.
        • Delgado-Lopez F.
        • Heaney M.L.
        • Guaiquil V.H.
        • Zhang R.H.
        • et al.
        Expression of granulocyte-macrophage colony-stimulating factor receptors in human prostate cancer.
        Blood. 1998; 91: 1037-1043
        • Bozinovski S.
        • Jones J.E.
        • Vlahos R.
        • Hamilton J.A.
        • Anderson G.P.
        Granulocyte/macrophage-colony-stimulating factor (GM-CSF) regulates lung innate immunity to lipopolysaccharide through Akt/Erk activation of NFkappa B and AP-1 in vivo.
        J Biol Chem. 2002; 277: 42808-42814
        • Bozinovski S.
        • Jones J.
        • Beavitt S.J.
        • Cook A.D.
        • Hamilton J.A.
        • Anderson G.P.
        Innate immune responses to LPS in mouse lung are suppressed and reversed by neutralization of GM-CSF via repression of TLR-4.
        Am J Physiol Lung Cell Mol Physiol. 2004; 286: L877-L885
        • Fleetwood A.J.
        • Cook A.D.
        • Hamilton J.A.
        Functions of granulocyte-macrophage colony-stimulating factor.
        Crit Rev Immunol. 2005; 25: 405-428
        • Stanley E.R.
        • Chen D.M.
        • Lin H.S.
        Induction of macrophage production and proliferation by a purified colony stimulating factor.
        Nature. 1978; 274: 168-170
        • Stanley E.R.
        • Berg K.L.
        • Einstein D.B.
        • Lee P.S.
        • Pixley F.J.
        • Wang Y.
        • et al.
        Biology and action of colony-stimulating factor-1.
        Mol Reprod Dev. 1997; 46: 4-10
        • Takahashi T.
        • Kalka C.
        • Masuda H.
        • Chen D.
        • Silver M.
        • Kearney M.
        • et al.
        Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization.
        Nat Med. 1999; 5: 434-438
        • Hamilton J.A.
        Colony-stimulating factors in inflammation and autoimmunity.
        Nat Rev Immunol. 2008; 8: 533-544
        • Campbell I.K.
        • Rich M.J.
        • Bischof R.J.
        • Dunn A.R.
        • Grail D.
        • Hamilton J.A.
        Protection from collagen-induced arthritis in granulocyte-macrophage colony-stimulating factor-deficient mice.
        J Immunol. 1998; 161: 3639-3644
        • Cook A.D.
        • Braine E.L.
        • Campbell I.K.
        • Rich M.J.
        • Hamilton J.A.
        Blockade of collagen-induced arthritis post-onset by antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF): requirement for GM-CSF in the effector phase of disease.
        Arthritis Res. 2001; 3: 293-298
        • McQualter J.L.
        • Darwiche R.
        • Ewing C.
        • Onuki M.
        • Kay T.W.
        • Hamilton J.A.
        • et al.
        Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis.
        J Exp Med. 2001; 194: 873-882
        • Kitching A.R.
        • Ru Huang X.
        • Turner A.L.
        • Tipping P.G.
        • Dunn A.R.
        • Holdsworth S.R.
        The requirement for granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor in leukocyte-mediated immune glomerular injury.
        J Am Soc Nephrol. 2002; 13: 350-358
        • Cates E.C.
        • Fattouh R.
        • Wattie J.
        • Inman M.D.
        • Goncharova S.
        • Coyle A.J.
        • et al.
        Intranasal exposure of mice to house dust mite elicits allergic airway inflammation via a GM-CSF-mediated mechanism.
        J Immunol. 2004; 173: 6384-6392
        • Vlahos R.
        • Bozinovski S.
        • Hamilton J.A.
        • Anderson G.P.
        Therapeutic potential of treating chronic obstructive pulmonary disease (COPD) by neutralising granulocyte macrophage-colony stimulating factor (GM-CSF).
        Pharmacol Ther. 2006; 112: 106-115
        • Yamashita N.
        • Tashimo H.
        • Ishida H.
        • Kaneko F.
        • Nakano J.
        • Kato H.
        • et al.
        Attenuation of airway hyperresponsiveness in a murine asthma model by neutralization of granulocyte-macrophage colony-stimulating factor (GM-CSF).
        Cell Immunol. 2002; 219: 92-97
        • Ditiatkovski M.
        • Toh B.H.
        • Bobik A.
        GM-CSF deficiency reduces macrophage PPAR-gamma expression and aggravates atherosclerosis in ApoE-deficient mice.
        Arterioscler Thromb Vasc Biol. 2006; 26: 2337-2344
        • Shindo J.
        • Ishibashi T.
        • Yokoyama K.
        • Nakazato K.
        • Ohwada T.
        • Shiomi M.
        • et al.
        Granulocyte-macrophage colony-stimulating factor prevents the progression of atherosclerosis via changes in the cellular and extracellular composition of atherosclerotic lesions in watanabe heritable hyperlipidemic rabbits.
        Circulation. 1999; 99: 2150-2156
        • Armitage J.O.
        Emerging applications of recombinant human granulocyte-macrophage colony-stimulating factor.
        Blood. 1998; 92: 4491-4508
        • Reed J.A.
        • Clegg D.J.
        • Smith K.B.
        • Tolod-Richer E.G.
        • Matter E.K.
        • Picard L.S.
        • et al.
        GM-CSF action in the CNS decreases food intake and body weight.
        J Clin Invest. 2005; 115: 3035-3044
        • Gaudreau S.
        • Guindi C.
        • Menard M.
        • Besin G.
        • Dupuis G.
        • Amrani A.
        Granulocyte-macrophage colony-stimulating factor prevents diabetes development in NOD mice by inducing tolerogenic dendritic cells that sustain the suppressive function of CD4 + CD25+ regulatory T cells.
        J Immunol. 2007; 179: 3638-3647
        • McGeachy M.J.
        • Bak-Jensen K.S.
        • Chen Y.
        • Tato C.M.
        • Blumenschein W.
        • McClanahan T.
        • et al.
        TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology.
        Nat Immunol. 2007; 8 ([Epub 2007/11/13]): 1390-1397
        • Pflanz S.
        • Timans J.C.
        • Cheung J.
        • Rosales R.
        • Kanzler H.
        • Gilbert J.
        • et al.
        IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4(+) T cells.
        Immunity. 2002; 16 ([Epub 2002/07/18]): 779-790
        • Pflanz S.
        • Hibbert L.
        • Mattson J.
        • Rosales R.
        • Vaisberg E.
        • Bazan J.F.
        • et al.
        WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27.
        J Immunol. 2004; 172 ([Epub 2004/02/07]): 2225-2231
        • Villarino A.V.
        • Huang E.
        • Hunter C.A.
        Understanding the pro- and anti-inflammatory properties of IL-27.
        J Immunol. 2004; 173 ([Epub 2004/07/09]): 715-720
        • Takeda A.
        • Hamano S.
        • Yamanaka A.
        • Hanada T.
        • Ishibashi T.
        • Mak T.W.
        • et al.
        Cutting edge: role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment.
        J Immunol. 2003; 170 ([Epub 2003/05/08]): 4886-4890
        • Batten M.
        • Li J.
        • Yi S.
        • Kljavin N.M.
        • Danilenko D.M.
        • Lucas S.
        • et al.
        Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells.
        Nat Immunol. 2006; 7: 929-936
        • Stumhofer J.S.
        • Laurence A.
        • Wilson E.H.
        • Huang E.
        • Tato C.M.
        • Johnson L.M.
        • et al.
        Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system.
        Nat Immunol. 2006; 7 ([Epub 2006/08/15]): 937-945
        • Ivanov I.I.
        • Zhou L.
        • Littman D.R.
        Transcriptional regulation of Th17 cell differentiation.
        Semin Immunol. 2007; 19: 409-417
        • Yoshimoto T.
        • Yoshimoto T.
        • Yasuda K.
        • Mizuguchi J.
        • Nakanishi K.
        IL-27 suppresses Th2 cell development and Th2 cytokines production from polarized Th2 cells: a novel therapeutic way for Th2-mediated allergic inflammation.
        J Immunol. 2007; 179: 4415-4423
        • Huber M.
        • Steinwald V.
        • Guralnik A.
        • Brustle A.
        • Kleemann P.
        • Rosenplanter C.
        • et al.
        IL-27 inhibits the development of regulatory T cells via STAT3.
        Int Immunol. 2008; 20: 223-234
        • Wang S.
        • Miyazaki Y.
        • Shinozaki Y.
        • Yoshida H.
        Augmentation of antigen-presenting and Th1-promoting functions of dendritic cells by WSX-1(IL-27R) deficiency.
        J Immunol. 2007; 179: 6421-6428
        • Guo B.
        • Chang E.Y.
        • Cheng G.
        The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice.
        J Clin Invest. 2008; 118: 1680-1690
        • Miyazaki Y.
        • Shimanoe Y.
        • Wang S.
        • Yoshida H.
        Amelioration of delayed-type hypersensitivity responses by IL-27 administration.
        Biochem Biophys Res Commun. 2008; 373: 397-402
        • Cao Y.
        • Doodes P.D.
        • Glant T.T.
        • Finnegan A.
        IL-27 induces a Th1 immune response and susceptibility to experimental arthritis.
        J Immunol. 2008; 180: 922-930
        • Sugiyama N.
        • Nakashima H.
        • Yoshimura T.
        • Sadanaga A.
        • Shimizu S.
        • Masutani K.
        • et al.
        Amelioration of human lupus-like phenotypes in MRL/lpr mice by overexpression of IL-27R{alpha} (WSX-1).
        Ann Rheum Dis. Oct 2008; 67: 1461-1467
        • Young A.
        • Linehan E.
        • Hams E.
        • O'Hara Hall A.C.
        • McClurg A.
        • Johnston J.A.
        • et al.
        Cutting edge: suppression of GM-CSF expression in murine and human T cells by IL-27.
        J Immunol. 2012; 189 ([Epub 2012/07/28]): 2079-2083
        • El-behi M.
        • Ciric B.
        • Yu S.
        • Zhang G.X.
        • Fitzgerald D.C.
        • Rostami A.
        Differential effect of IL-27 on developing versus committed Th17 cells.
        J Immunol. 2009; 183 ([Epub 2009/09/30]): 4957-4967
        • Veldhoen M.
        • Uyttenhove C.
        • van Snick J.
        • Helmby H.
        • Westendorf A.
        • Buer J.
        • et al.
        Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset.
        Nat Immunol. 2008; 9 ([Epub 2008/10/22]): 1341-1346
        • Dardalhon V.
        • Awasthi A.
        • Kwon H.
        • Galileos G.
        • Gao W.
        • Sobel R.A.
        • et al.
        IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(−) effector T cells.
        Nat Immunol. 2008; 9 ([Epub 2008/11/11]): 1347-1355
        • Tan C.
        • Gery I.
        The unique features of Th9 cells and their products.
        Crit Rev Immunol. 2012; 32 ([Epub 2012/03/21]): 1-10
        • Jabeen R.
        • Kaplan M.H.
        The symphony of the ninth: the development and function of Th9 cells.
        Curr Opin Immunol. 2012; 24 ([Epub 2012/03/01]): 303-307
        • Stassen M.
        • Schmitt E.
        • Bopp T.
        From interleukin-9 to T helper 9 cells.
        Ann N Y Acad Sci. 2012; 1247 ([Epub 2012/01/13]): 56-68
        • Wilhelm C.
        • Hirota K.
        • Stieglitz B.
        • Van Snick J.
        • Tolaini M.
        • Lahl K.
        • et al.
        An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation.
        Nat Immunol. 2011; 12 ([Epub 2011/10/11]): 1071-1077
        • Nowak E.C.
        • Noelle R.J.
        Interleukin-9 as a T helper type 17 cytokine.
        Immunology. 2010; 131 ([Epub 2010/08/03]): 169-173
        • Li H.
        • Rostami A.
        IL-9: basic biology, signaling pathways in CD4+ T cells and implications for autoimmunity.
        J Neuroimmune Pharmacol. 2010; 5 ([Epub 2009/12/19]): 198-209
        • Hultner L.
        • Druez C.
        • Moeller J.
        • Uyttenhove C.
        • Schmitt E.
        • Rude E.
        • et al.
        Mast cell growth-enhancing activity (MEA) is structurally related and functionally identical to the novel mouse T cell growth factor P40/TCGFIII (interleukin 9).
        Eur J Immunol. 1990; 20: 1413-1416
        • Uyttenhove C.
        • Simpson R.J.
        • Van Snick J.
        Functional and structural characterization of P40, a mouse glycoprotein with T-cell growth factor activity.
        Proc Natl Acad Sci U S A. 1988; 85: 6934-6938
        • Elyaman W.
        • Bradshaw E.M.
        • Uyttenhove C.
        • Dardalhon V.
        • Awasthi A.
        • Imitola J.
        • et al.
        IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells.
        Proc Natl Acad Sci U S A. 2009; 106 ([Epub 2009/05/13]): 12885-12890
        • Elyaman W.
        • Bassil R.
        • Bradshaw E.M.
        • Orent W.
        • Lahoud Y.
        • Zhu B.
        • et al.
        Notch receptors and Smad3 signaling cooperate in the induction of interleukin-9-producing T cells.
        Immunity. 2012; 36 ([Epub 2012/04/17]): 623-634
        • Nowak E.C.
        • Weaver C.T.
        • Turner H.
        • Begum-Haque S.
        • Becher B.
        • Schreiner B.
        • et al.
        IL-9 as a mediator of Th17-driven inflammatory disease.
        J Exp Med. 2009; 206 ([Epub 2009/07/15]): 1653-1660
        • Li H.
        • Nourbakhsh B.
        • Ciric B.
        • Zhang G.X.
        • Rostami A.
        Neutralization of IL-9 ameliorates experimental autoimmune encephalomyelitis by decreasing the effector T cell population.
        J Immunol. 2010; 185 ([Epub 2010/09/02]): 4095-4100
        • Li H.
        • Nourbakhsh B.
        • Cullimore M.
        • Zhang G.X.
        • Rostami A.
        IL-9 is important for T-cell activation and differentiation in autoimmune inflammation of the central nervous system.
        Eur J Immunol. 2011; 41 ([Epub 2011/06/16]): 2197-2206
        • Murugaiyan G.
        • Beynon V.
        • Pires Da Cunha A.
        • Joller N.
        • Weiner H.L.
        IFN-gamma limits Th9-mediated autoimmune inflammation through dendritic cell modulation of IL-27.
        J Immunol. 2012; 189 ([Epub 2012/11/06]): 5277-5283
        • Zhou Y.
        • Sonobe Y.
        • Akahori T.
        • Jin S.
        • Kawanokuchi J.
        • Noda M.
        • et al.
        IL-9 promotes Th17 cell migration into the central nervous system via CC chemokine ligand-20 produced by astrocytes.
        J Immunol. 2011; 186 ([Epub 2011/02/25]): 4415-4421
        • Lu Y.
        • Hong S.
        • Li H.
        • Park J.
        • Hong B.
        • Wang L.
        • et al.
        Th9 cells promote antitumor immune responses in vivo.
        J Clin Invest. 2012; 122 ([Epub 2012/10/16]): 4160-4171
        • Jager A.
        • Dardalhon V.
        • Sobel R.A.
        • Bettelli E.
        • Kuchroo V.K.
        Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes.
        J Immunol. 2009; 183 ([Epub 2009/11/06]): 7169-7177
        • Tan C.
        • Aziz M.K.
        • Lovaas J.D.
        • Vistica B.P.
        • Shi G.
        • Wawrousek E.F.
        • et al.
        Antigen-specific Th9 cells exhibit uniqueness in their kinetics of cytokine production and short retention at the inflammatory site.
        J Immunol. 2010; 185 ([Epub 2010/10/26]): 6795-6801
        • Hirota K.
        • Duarte J.H.
        • Veldhoen M.
        • Hornsby E.
        • Li Y.
        • Cua D.J.
        • et al.
        Fate mapping of IL-17-producing T cells in inflammatory responses.
        Nat Immunol. 2011; 12 ([Epub 2011/02/01]): 255-263
        • Tzartos J.S.
        • Friese M.A.
        • Craner M.J.
        • Palace J.
        • Newcombe J.
        • Esiri M.M.
        • et al.
        Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis.
        Am J Pathol. 2008; 172 ([Epub 2007/12/25]): 146-155
        • Uzawa A.
        • Mori M.
        • Arai K.
        • Sato Y.
        • Hayakawa S.
        • Masuda S.
        • et al.
        Cytokine and chemokine profiles in neuromyelitis optica: significance of interleukin-6.
        Mult Scler. 2010; 16: 1443-1452
        • Benoist C.
        • Mathis D.
        Treg cells, life history, and diversity.
        Cold Spring Harb Perspect Biol. 2012; 4 ([Epub 2012/09/07]): a007021
        • Kim H.J.
        • Cantor H.
        Regulation of self-tolerance by Qa-1-restricted CD8(+) regulatory T cells.
        Semin Immunol. 2011; 23 ([Epub 2011/12/06]): 446-452
        • Mauri C.
        • Bosma A.
        Immune regulatory function of B cells.
        Annu Rev Immunol. 2012; 30 ([Epub 2012/01/10]): 221-241
        • Lindau D.
        • Gielen P.
        • Kroesen M.
        • Wesseling P.
        • Adema G.J.
        The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells.
        Immunology. 2013; 138 ([Epub 2012/12/12]): 105-115
        • Lowther D.E.
        • Hafler D.A.
        Regulatory T cells in the central nervous system.
        Immunol Rev. 2012; 248 ([Epub 2012/06/26]): 156-169
        • Geiger T.L.
        • Tauro S.
        Nature and nurture in Foxp3(+) regulatory T cell development, stability, and function.
        Hum Immunol. 2012; 73 ([Epub 2012/01/14]): 232-239
        • Collison L.W.
        • Chaturvedi V.
        • Henderson A.L.
        • Giacomin P.R.
        • Guy C.
        • Bankoti J.
        • et al.
        IL-35-mediated induction of a potent regulatory T cell population.
        Nat Immunol. 2010; 11 ([Epub 2010/10/19]): 1093-1101
        • Josefowicz S.Z.
        • Lu L.F.
        • Rudensky A.Y.
        Regulatory T cells: mechanisms of differentiation and function.
        Annu Rev Immunol. 2012; 30 ([Epub 2012/01/10]): 531-564
        • Kumar V.
        • Sercarz E.E.
        The involvement of T cell receptor peptide-specific regulatory CD4+ T cells in recovery from antigen-induced autoimmune disease.
        J Exp Med. 1993; 178 ([Epub 1993/09/01]): 909-916
        • Lafaille J.J.
        • Nagashima K.
        • Katsuki M.
        • Tonegawa S.
        High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice.
        Cell. 1994; 78 ([Epub 1994/08/12]): 399-408
        • Olivares-Villagomez D.
        • Wang Y.
        • Lafaille J.J.
        Regulatory CD4(+) T cells expressing endogenous T cell receptor chains protect myelin basic protein-specific transgenic mice from spontaneous autoimmune encephalomyelitis.
        J Exp Med. 1998; 188 ([Epub 1998/11/17]): 1883-1894
        • Kohm A.P.
        • Carpentier P.A.
        • Anger H.A.
        • Miller S.D.
        Cutting edge: CD4 + CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis.
        J Immunol. 2002; 169 ([Epub 2002/10/23]): 4712-4716
        • Reddy J.
        • Illes Z.
        • Zhang X.
        • Encinas J.
        • Pyrdol J.
        • Nicholson L.
        • et al.
        Myelin proteolipid protein-specific CD4 + CD25+ regulatory cells mediate genetic resistance to experimental autoimmune encephalomyelitis.
        Proc Natl Acad Sci U S A. 2004; 101 ([Epub 2004/10/20]): 15434-15439
        • Korn T.
        • Bettelli E.
        • Gao W.
        • Awasthi A.
        • Jager A.
        • Strom T.B.
        • et al.
        IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells.
        Nature. 2007; 448 ([Epub 2007/06/22]): 484-487
        • Stephens L.A.
        • Gray D.
        • Anderton S.M.
        CD4 + CD25+ regulatory T cells limit the risk of autoimmune disease arising from T cell receptor crossreactivity.
        Proc Natl Acad Sci U S A. 2005; 102 ([Epub 2005/11/17]): 17418-17423
        • Zhang X.
        • Koldzic D.N.
        • Izikson L.
        • Reddy J.
        • Nazareno R.F.
        • Sakaguchi S.
        • et al.
        IL-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25 + CD4+ regulatory T cells.
        Int Immunol. 2004; 16 ([Epub 2004/01/22]): 249-256
        • Montero E.
        • Nussbaum G.
        • Kaye J.F.
        • Perez R.
        • Lage A.
        • Ben-Nun A.
        • et al.
        Regulation of experimental autoimmune encephalomyelitis by CD4+, CD25+ and CD8+ T cells: analysis using depleting antibodies.
        J Autoimmun. 2004; 23 ([Epub 2004/07/09]): 1-7
        • Liu Y.
        • Teige I.
        • Birnir B.
        • Issazadeh-Navikas S.
        Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE.
        Nat Med. 2006; 12 ([Epub 2006/04/25]): 518-525
        • Korn T.
        • Reddy J.
        • Gao W.
        • Bettelli E.
        • Awasthi A.
        • Petersen T.R.
        • et al.
        Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation.
        Nat Med. 2007; 13 ([Epub 2007/03/27]): 423-431
        • McGeachy M.J.
        • Stephens L.A.
        • Anderton S.M.
        Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system.
        J Immunol. 2005; 175 ([Epub 2005/08/24]): 3025-3032
        • O'Connor R.A.
        • Malpass K.H.
        • Anderton S.M.
        The inflamed central nervous system drives the activation and rapid proliferation of Foxp3+ regulatory T cells.
        J Immunol. 2007; 179 ([Epub 2007/07/10]): 958-966
        • Trajkovic V.
        • Vuckovic O.
        • Stosic-Grujicic S.
        • Miljkovic D.
        • Popadic D.
        • Markovic M.
        • et al.
        Astrocyte-induced regulatory T cells mitigate CNS autoimmunity.
        Glia. 2004; 47 ([Epub 2004/06/09]): 168-179
        • Viglietta V.
        • Baecher-Allan C.
        • Weiner H.L.
        • Hafler D.A.
        Loss of functional suppression by CD4 + CD25+ regulatory T cells in patients with multiple sclerosis.
        J Exp Med. 2004; 199 ([Epub 2004/04/07]): 971-979
        • Feger U.
        • Luther C.
        • Poeschel S.
        • Melms A.
        • Tolosa E.
        • Wiendl H.
        Increased frequency of CD4+ CD25+ regulatory T cells in the cerebrospinal fluid but not in the blood of multiple sclerosis patients.
        Clin Exp Immunol. 2007; 147 ([Epub 2007/02/17]): 412-418
        • Frisullo G.
        • Nociti V.
        • Iorio R.
        • Patanella A.K.
        • Caggiula M.
        • Marti A.
        • et al.
        Regulatory T cells fail to suppress CD4T + −bet + T cells in relapsing multiple sclerosis patients.
        Immunology. 2009; 127 ([Epub 2008/11/20]): 418-428
        • Haas J.
        • Hug A.
        • Viehover A.
        • Fritzsching B.
        • Falk C.S.
        • Filser A.
        • et al.
        Reduced suppressive effect of CD4 + CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis.
        Eur J Immunol. 2005; 35 ([Epub 2005/10/06]): 3343-3352
        • Venken K.
        • Hellings N.
        • Broekmans T.
        • Hensen K.
        • Rummens J.L.
        • Stinissen P.
        Natural naive CD4 + CD25 + CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression.
        J Immunol. 2008; 180 ([Epub 2008/04/22]): 6411-6420
        • Venken K.
        • Hellings N.
        • Thewissen M.
        • Somers V.
        • Hensen K.
        • Rummens J.L.
        • et al.
        Compromised CD4+ CD25(high) regulatory T-cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level.
        Immunology. 2008; 123 ([Epub 2007/09/28]): 79-89
        • Huan J.
        • Culbertson N.
        • Spencer L.
        • Bartholomew R.
        • Burrows G.G.
        • Chou Y.K.
        Decreased FOXP3 levels in multiple sclerosis patients.
        J Neurosci Res. 2005; 81 ([Epub 2005/06/14]): 45-52
        • Venken K.
        • Hellings N.
        • Hensen K.
        • Rummens J.L.
        • Medaer R.
        • D'Hooghe M.B.
        • et al.
        Secondary progressive in contrast to relapsing-remitting multiple sclerosis patients show a normal CD4 + CD25+ regulatory T-cell function and FOXP3 expression.
        J Neurosci Res. 2006; 83 ([Epub 2006/04/04]): 1432-1446
        • de Andres C.
        • Aristimuno C.
        • de Las Heras V.
        • Martinez-Gines M.L.
        • Bartolome M.
        • Arroyo R.
        • et al.
        Interferon beta-1a therapy enhances CD4+ regulatory T-cell function: an ex vivo and in vitro longitudinal study in relapsing-remitting multiple sclerosis.
        J Neuroimmunol. 2007; 182: 204-211
        • Korporal M.
        • Haas J.
        • Balint B.
        • Fritzsching B.
        • Schwarz A.
        • Moeller S.
        • et al.
        Interferon beta-induced restoration of regulatory T-cell function in multiple sclerosis is prompted by an increase in newly generated naive regulatory T cells.
        Arch Neurol. 2008; 65 ([Epub 2008/11/13]): 1434-1439
        • Hong J.
        • Li N.
        • Zhang X.
        • Zheng B.
        • Zhang J.Z.
        Induction of CD4 + CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3.
        Proc Natl Acad Sci U S A. 2005; 102 ([Epub 2005/04/27]): 6449-6454
        • Carding S.R.
        • Egan P.J.
        Gammadelta T cells: functional plasticity and heterogeneity.
        Nat Rev Immunol. 2002; 2 ([Epub 2002/05/30]): 336-345
        • Lewis J.M.
        • Girardi M.
        • Roberts S.J.
        • Barbee S.D.
        • Hayday A.C.
        • Tigelaar R.E.
        Selection of the cutaneous intraepithelial gammadelta + T cell repertoire by a thymic stromal determinant.
        Nat Immunol. 2006; 7 ([Epub 2006/07/11]): 843-850
        • Bigby M.
        • Markowitz J.S.
        • Bleicher P.A.
        • Grusby M.J.
        • Simha S.
        • Siebrecht M.
        • et al.
        Most gamma delta T cells develop normally in the absence of MHC class II molecules.
        J Immunol. 1993; 15 ([Epub 1993/11/01]): 4465-4475
        • Correa I.
        • Bix M.
        • Liao N.S.
        • Zijlstra M.
        • Jaenisch R.
        • Raulet D.
        Most gamma delta T cells develop normally in beta 2-microglobulin-deficient mice.
        Proc Natl Acad Sci U S A. 1992; 89 ([Epub 1992/01/15]): 653-657
        • Duhindan N.
        • Farley A.J.
        • Humphreys S.
        • Parker C.
        • Rossiter B.
        • Brooks C.G.
        Patterns of lymphokine secretion amongst mouse gamma delta T cell clones.
        Eur J Immunol. 1997; 27 ([Epub 1997/07/01]): 1704-1712
        • Rhodes K.A.
        • Andrew E.M.
        • Newton D.J.
        • Tramonti D.
        • Carding S.R.
        A subset of IL-10-producing gammadelta T cells protect the liver from Listeria-elicited, CD8(+) T cell-mediated injury.
        Eur J Immunol. 2008; 38 ([Epub 2008/07/16]): 2274-2283
        • Jensen K.D.
        • Su X.
        • Shin S.
        • Li L.
        • Youssef S.
        • Yamasaki S.
        • et al.
        Thymic selection determines gammadelta T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma.
        Immunity. 2008; 29 ([Epub 2008/07/01]): 90-100
        • Lukens J.R.
        • Barr M.J.
        • Chaplin D.D.
        • Chi H.
        • Kanneganti T.D.
        Inflammasome-derived IL-1beta regulates the production of GM-CSF by CD4(+) T cells and gammadelta T cells.
        J Immunol. 2012; 188 ([Epub 2012/02/22]): 3107-3115
        • Martin B.
        • Hirota K.
        • Cua D.J.
        • Stockinger B.
        • Veldhoen M.
        Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals.
        Immunity. 2009; 31 ([Epub 2009/08/18]): 321-330
        • Ribot J.C.
        • deBarros A.
        • Pang D.J.
        • Neves J.F.
        • Peperzak V.
        • Roberts S.J.
        • et al.
        CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets.
        Nat Immunol. 2009; 10 ([Epub 2009/03/10]): 427-436
        • Kobayashi Y.
        • Kawai K.
        • Ito K.
        • Honda H.
        • Sobue G.
        • Yoshikai Y.
        Aggravation of murine experimental allergic encephalomyelitis by administration of T-cell receptor gammadelta-specific antibody.
        J Neuroimmunol. 1997; 73 ([Epub 1997/03/01]): 169-174
        • Ponomarev E.D.
        • Novikova M.
        • Yassai M.
        • Szczepanik M.
        • Gorski J.
        • Dittel B.N.
        Gamma delta T cell regulation of IFN-gamma production by central nervous system-infiltrating encephalitogenic T cells: correlation with recovery from experimental autoimmune encephalomyelitis.
        J Immunol. 2004; 173 ([Epub 2004/07/22]): 1587-1595
        • Ponomarev E.D.
        • Dittel B.N.
        Gamma delta T cells regulate the extent and duration of inflammation in the central nervous system by a Fas ligand-dependent mechanism.
        J Immunol. 2005; 174 ([Epub 2005/04/09]): 4678-4687
        • Clark R.B.
        • Lingenheld E.G.
        Adoptively transferred EAE in gamma delta T cell-knockout mice.
        J Autoimmun. 1998; 11 ([Epub 1998/03/14]): 105-110
        • Rajan A.J.
        • Gao Y.L.
        • Raine C.S.
        • Brosnan C.F.
        A pathogenic role for gamma delta T cells in relapsing-remitting experimental allergic encephalomyelitis in the SJL mouse.
        J Immunol. 1996; 157: 941-949
        • Rajan A.J.
        • Klein J.D.
        • Brosnan C.F.
        The effect of gammadelta T cell depletion on cytokine gene expression in experimental allergic encephalomyelitis.
        J Immunol. 1998; 160 ([Epub 1998/06/24]): 5955-5962
        • Spahn T.W.
        • Issazadah S.
        • Salvin A.J.
        • Weiner H.L.
        Decreased severity of myelin oligodendrocyte glycoprotein peptide 33–35-induced experimental autoimmune encephalomyelitis in mice with a disrupted TCR delta chain gene.
        Eur J Immunol. 1999; 29 ([Epub 1999/12/22]): 4060-4071
        • Sutton C.E.
        • Lalor S.J.
        • Sweeney C.M.
        • Brereton C.F.
        • Lavelle E.C.
        • Mills K.H.
        Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity.
        Immunity. 2009; 3: 331-341
        • Petermann F.
        • Rothhammer V.
        • Claussen M.C.
        • Haas J.D.
        • Blanco L.R.
        • Heink S.
        • et al.
        Gammadelta T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism.
        Immunity. 2010; 33 ([Epub 2010/09/14]): 351-363
        • Ishizu T.
        • Osoegawa M.
        • Mei F.J.
        • Kikuchi H.
        • Tanaka M.
        • Takakura Y.
        • et al.
        Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis.
        Brain. 2005; 128 ([Epub 2005/03/04]): 988-1002