Research Article| Volume 324, ISSUE 1-2, P163-166, January 15, 2013

ZNF512B gene is a prognostic factor in patients with amyotrophic lateral sclerosis

Published:November 19, 2012DOI:


      Recently, Iida et al. discovered a new single-nucleotide polymorphism (SNP) in the ZNF512B gene associated with susceptibility to amyotrophic lateral sclerosis (ALS). The ZNF512B gene was found to be a transcription factor promoting the expression of a downstream gene in the signal transduction pathway of the transforming growth factor-β (TGF-β), which is essential for the protection and survival of neurons but the influence of the new SNP (rs2275294) in actual ALS patients remained unknown. The objective of our study was to examine whether the new SNP in the ZNF512B gene might influence the phenotype of ALS. We conducted a retrospective analysis of the ZNF512B gene in 176 patients diagnosed as having ALS at our hospital. Evaluation of the prognosis after the onset using Kaplan–Meier survival curves in patients with versus without the risk allele (C allele: CC and CT genotypes) revealed a significantly lower survival probability in those with the risk allele (log-rank test, P<0.01), independent of the other prognostic factors in ALS. Our study revealed the influence of the new SNP in actual ALS patients. It would be clinically reasonable to suggest that the ZNF512B gene is a new prognostic factor in ALS. This study is the first, as per our knowledge, to indicate that the association between the new susceptibility gene for ALS and its pathway could be identified.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Iida A.
        • Takahashi A.
        • Kubo M.
        • Saito S.
        • Hosono N.
        • Ohnishi Y.
        • et al.
        A functional variant in ZNF512B is associated with susceptibility to amyotrophic lateral sclerosis in Japanese.
        Hum Mol Genet. 2011; 20: 3684-3692
        • Simpson C.L.
        • Al-Chalabi A.
        Amyotrophic lateral sclerosis as a complex genetic disease.
        Biochim Biophys Acta. 2006; 1762: 973-985
        • Schymick J.C.
        • Talbot K.
        • Traynor B.J.
        Genetics of sporadic, amyotrophic lateral sclerosis.
        Hum Mol Genet. 2007; 16: 233-242
        • Iida A.
        • Takahashi A.
        • Deng M.
        • Zhang Y.
        • Wang J.
        • Atsuta N.
        • et al.
        Replication analysis of SNPs on 9p21.2 and 19p13.3 with amyotrophic lateral sclerosis in East Asians.
        Neurobiol Aging. 2011; 32: 757e13-757e14
        • Colland F.
        • Jacq X.
        • Trouplin V.
        • Mougin C.
        • Groizeleau C.
        • Hamburger A.
        • et al.
        Functional proteomics mapping of a human signaling pathway.
        Genome Res. 2004; 14: 1324-1332
        • Henrich-Noack P.
        • Prehn J.H.
        • Krieglstein J.
        Neuroprotective effects of TGF-beta 1.
        J Neural Transm Suppl. 1994; 43: 33-45
        • Iwasaki Y.
        • Shiojima T.
        • Tagaya N.
        • Kobayashi T.
        • Kinoshita M.
        Effect of transforming growth factor beta 1 on spinal motor neurons after axotomy.
        J Neurol Sci. 1997; 147: 9-12
        • Krieglstein K.
        • Strelau J.
        • Schober A.
        • Sullivan A.
        • Unsicker K.
        TGF-beta and the regulation of neuron survival and death.
        J Physiol Paris. 2002; 96: 25-30
        • Brooks B.R.
        • Miller R.G.
        • Swash M.
        • Munsat T.L.
        El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis.
        Amyotroph Lateral Scler Other Motor Neuron Disord. 2000; 1: 293-299
        • Atsuta N.
        • Watanabe H.
        • Ito M.
        • Tanaka F.
        • Tamakoshi A.
        • Nakano I.
        • Research Committee on the Neurodegenerative Diseases of Japan
        • et al.
        Age at onset influences on wide-ranged clinical features of sporadic amyotrophic lateral sclerosis.
        J Neurol Sci. 2009; 276: 163-169
        • Czaplinski A.
        • Yen A.A.
        • Appel S.H.
        Amyotrophic lateral sclerosis: early predictors of prolonged survival.
        J Neurol. 2006; 253: 1428-1436
        • Talbot K.
        Motor neuron disease: the bare essentials.
        Pract Neurol. 2009; 9: 303-309
        • del Aguila M.A.
        • Longstreth Jr., W.T.
        • McGuire V.
        • Koepsell T.D.
        • van Belle G.
        Prognosis in amyotrophic lateral sclerosis: a population-based study.
        Neurology. 2003; 60: 813-819
        • Kiernan M.C.
        • Vucic S.
        • Cheah B.C.
        • Turner M.R.
        • Eisen A.
        • Hardiman O.
        • et al.
        Amyotrophic lateral sclerosis.
        Lancet. 2011; 377: 942-955
        • Byrne S.
        • Elamin M.
        • Bede P.
        • Shatunov A.
        • Walsh C.
        • Corr B.
        • et al.
        Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study.
        Lancet Neurol. 2012; 11: 232-240
        • Ogaki K.
        • Li Y.
        • Atsuta N.
        • Tomiyama H.
        • Funayama M.
        • Watanabe H.
        • Japanese Consortium for Amyotrophic Lateral Sclerosis research (JaCALS)
        • et al.
        Analysis of C9orf72 repeat expansion in 563 Japanese patients with amyotrophic lateral sclerosis.
        Neurobiol Aging. 2012; 33 ([2527]): e11-6
        • Lacomblez L.
        • Bensimon G.
        • Leigh P.N.
        • Guillet P.
        • Meininger V.
        Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II.
        Lancet. 1996; 347: 1425-1431
        • Traynor B.J.
        • Nalls M.
        • Lai S.L.
        • Gibbs R.J.
        • Schymick J.C.
        • Arepalli S.
        • et al.
        Kinesin-associated protein 3 (KIFAP3) has no effect on survival in a population-based cohort of ALS patients.
        Proc Natl Acad Sci U S A. 2010; 107: 12335-12338
        • Orsetti V.
        • Pegoraro E.
        • Cima V.
        • D'Ascenzo C.
        • Palmieri A.
        • Querin G.
        • et al.
        Genetic variation in KIFAP3 is associated with an upper motor neuron-predominant phenotype in amyotrophic lateral sclerosis.
        Neurodegener Dis. 2011; 8: 491-495
        • Beleza-Meireles A.
        • Al-Chalabi A.
        Genetic studies of amyotrophic lateral sclerosis: controversies and perspectives.
        Amyotroph Lateral Scler. 2009; 10: 1-14
        • Chiò A.
        • Mora G.
        • Restagno G.
        • Brunetti M.
        • Ossola I.
        • Barberis M.
        • et al.
        UNC13A influences survival in Italian amyotrophic lateral sclerosis patients: a population-based study.
        Neurobiol Aging. 2013; 34 ([357]): e1-e5
        • Houi K.
        • Kobayashi T.
        • Kato S.
        • Mochio S.
        • Inoue K.
        Increased plasma TGF-beta1 in patients with amyotrophic lateral sclerosis.
        Acta Neurol Scand. 2002; 106: 299-301
        • Ilzecka J.
        • Stelmasiak Z.
        • Dobosz B.
        Transforming growth factor-beta 1 (tgf-beta 1) in patients with amyotrophic lateral sclerosis.
        Cytokine. 2002; 20: 239-243
        • Day W.A.
        • Koishi K.
        • Nukuda H.
        • McLennan I.S.
        Transforming growth factor-beta 2 causes an acute improvement in the motor performance of transgenic ALS mice.
        Neurobiol Dis. 2005; 19: 323-330
        • Katsuno M.
        • Adachi H.
        • Banno H.
        • Suzuki K.
        • Tanaka F.
        • Sobue G.
        Transforming growth factor-β signaling in motor neuron diseases.
        Curr Mol Med. 2011; 11: 48-56
        • Nakamura M.
        • Kaneko S.
        • Ito H.
        • Jiang S.
        • Fujita K.
        • Wate R.
        • et al.
        Activation of transforming growth factor-β/Smad signaling reduces aggregate formation of mislocalized TAR DNA-binding protein-43.
        Neurodegener Dis. 2012; 10