Advertisement
Research Article| Volume 324, ISSUE 1-2, P109-112, January 15, 2013

Acoustic impairment is a distinguishable clinical feature of Asidan/SCA36

Published:November 09, 2012DOI:https://doi.org/10.1016/j.jns.2012.10.013

      Abstract

      Objective

      To investigate acoustic function of Asidan/spinocerebellar ataxia type 36 (SCA36) in which sensorineural hearing loss may be found as one of extracerebellar symptom that can be a distinguishable feature from other degenerative ataxias.

      Methods

      Acoustic function in the groups of normal control (n=31), Asidan/SCA36 (n=13), cortical cerebellar atrophy (CCA, n=28), multiple system atrophy of cerebellar predominance (MSA-C, n=48), SCA31 (n=4), and other forms of SCAs (n=14) was evaluated by pure tone average (PTA) calculated by the results of audiogram and brainstem auditory evoked potentials (BAEPs).

      Results

      PTA was significantly decreased in Asidan/SCA36 in comparison to normal control and other ataxic groups, but not significant within other ataxic groups and normal control. In comparison to other groups, Asidan/SCA36 showed a constant depression at 7 different frequencies in audiogram, especially at 4000 and 8000 Hz. BAEPs in 2 Asidan/SCA36 cases suggested possible involvement in the inner ear or the peripheral part of the auditory system. PTA in Asidan/SCA36 cases significantly correlated with their severity of ataxia.

      Conclusions

      In addition to signs for motor neuron involvement, acoustic impairment in Asidan/SCA36 is another characteristic clinical feature that is distinguishable from other forms of SCAs.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Schols L.
        • Bauer P.
        • Schmidt T.
        • Schulte T.
        • Riess O.
        Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis.
        Lancet Neurol. 2004; 3: 291-304
        • Durr A.
        Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond.
        Lancet Neurol. 2010; 9: 885-894
        • Ikeda Y.
        • Nagai M.
        • Kurata T.
        • Yamashita T.
        • Ohta Y.
        • Nagotani S.
        • et al.
        Comparisons of acoustic function in SCA31 and other forms of ataxias.
        Neurol Res. 2011; 33: 427-432
        • Kobayashi H.
        • Abe K.
        • Matsuura T.
        • Ikeda Y.
        • Hitomi T.
        • Akechi Y.
        • et al.
        Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement.
        Am J Hum Genet. 2011; 89: 121-130
        • Ikeda Y.
        • Ohta Y.
        • Kobayashi H.
        • Okamoto M.
        • Takamatsu K.
        • Ota T.
        • et al.
        Clinical features of SCA36: A novel spinocerebellar ataxia with motor neuron involvement (Asidan).
        Neurology. 2012; 79: 333-341
        • Abe K.
        • Ikeda Y.
        • Kurata T.
        • Ohta Y.
        • Manabe Y.
        • Okamoto M.
        • et al.
        Cognitive and affective impairments of a novel SCA/MND crossroad mutation Asidan.
        Eur J Neurol. 2012; 19: 1070-1078
        • Ikeda Y.
        • Shizuka M.
        • Watanabe M.
        • Okamoto K.
        • Shoji M.
        Molecular and clinical analyses of spinocerebellar ataxia type 8 in Japan.
        Neurology. 2000; 54: 950-955
        • Ikeda Y.
        • Dalton J.C.
        • Moseley M.L.
        • Gardner K.L.
        • Bird T.D.
        • Ashizawa T.
        • et al.
        Spinocerebellar ataxia type 8: molecular genetic comparisons and haplotype analysis of 37 families with ataxia.
        Am J Hum Genet. 2004; 75: 3-16
        • Sato N.
        • Amino T.
        • Kobayashi K.
        • Asakawa S.
        • Ishiguro T.
        • Tsunemi T.
        • et al.
        Spinocerebellar ataxia type 31 is associated with “inserted” penta-nucleotide repeats containing (TGGAA)(n).
        Am J Hum Genet. 2009; 85: 544-557
        • Gilman S.
        • Wenning G.K.
        • Low P.A.
        • Brooks D.J.
        • Mathias C.J.
        • Trojanowski J.Q.
        • et al.
        Second consensus statement on the diagnosis of multiple system atrophy.
        Neurology. 2008; 71: 670-676
        • Abele M.
        • Minnerop M.
        • Urbach H.
        • Specht K.
        • Klockgether T.
        Sporadic adult onset ataxia of unknown etiology: a clinical, electrophysiological and imaging study.
        J Neurol. 2007; 254: 1384-1389
        • Schmitz-Hubsch T.
        • du Montcel S.T.
        • Baliko L.
        • Berciano J.
        • Boesch S.
        • Depondt C.
        • et al.
        Scale for the assessment and rating of ataxia: development of a new clinical scale.
        Neurology. 2006; 66: 1717-1720
        • Chia E.M.
        • Wang J.J.
        • Rochtchina E.
        • Cumming R.R.
        • Newall P.
        • Mitchell P.
        Hearing impairment and health-related quality of life: the Blue Mountains Hearing Study.
        Ear Hear. 2007; 28: 187-195
        • Garcia-Murias M.
        • Quintans B.
        • Arias M.
        • Seixas A.I.
        • Cacheiro P.
        • Tarrio R.
        • et al.
        ‘Costa da Morte’ ataxia is spinocerebellar ataxia 36: clinical and genetic characterization.
        Brain. 2012; 135: 1423-1435